Проблема распознавания. Обзор существующих методов распознавания образов. Простой случай, одномерное разделение

Nokia 15.03.2019
Nokia

Процесс распознавания состоит в том, что система распознавания на основании сопоставления апостериорной информации относительно каждого поступившего на вход системы объекта или явления с априорным описанием классов принимает решение о принадлежности этого объекта (явления) к одному из классов. Правило, которое каждому объекту ставит в соответствие определенное наименование класса, называют решающим правилом. В литературе, посвященной распознаванию образов, утвердилось мнение, что суть проблемы распознавания заключается в определении решающих правил, нахождении в признаковом пространстве таких границ (решающих границ), придерживаясь которых признаковые пространства оптимальным образом, например с точки зрения минимизации ошибок распознавания, подразделяются на области, соответствующие классам. Так, в сказано, что в отыскании таких решающих правил на основании заданных описаний классов и заключается проблема распознавания.

При определении решающих правил (решающих границ в признаковом пространстве) в зависимости от объема исходной априорной информации рассматриваются следующие ситуации:

1. Количество исходной информации достаточно для того, чтобы путем ее анализа и непосредственной обработки определить решающие правила (системы распознавания без обучения, см. рис. 1.4).

2. Количество исходной информации недостаточно для определения решающих правил на основе ее непосредственной обработки, в связи с чем реализуется процедура обучения (обучающиеся системы распознавания, см. рис. 1.5).

В ситуациях 1 и 2 задача отыскания решающих правил базируется на том, что алфавит классов объектов и априорный словарь признаков, предназначенных для их описаний, известны. Рассматривается также и такая ситуация, когда словарь признаков известен, но неизвестен алфавит классов. При этом, однако, определен некоторый набор правил, в соответствии с которыми на основании процедуры самообучения находится искомый алфавит классов. Затем определяются решающие правила (самообучающиеся системы, см. рис. 1.6).

Исторически сложилось так, что первые теоретические исследования и прикладные работы в области распознавания базировались на том, что признаковое пространство известно, известен также и алфавит классов. В этих условиях проблема распознавания действительно может трактоваться как проблема определения в некотором смысле наилучших решающих границ (решающих правил). В настоящее время часто при построении распознающих устройств имеет место ситуация, когда известны и алфавит классов, и словарь признаков. Однако в общем случае при построении реальных систем распознавания, требующих разработки специальных измерительных средств и целых измерительных комплексов, исходить из того, что алфавит классов и словарь признаков априорно известны, к сожалению, не приходится.

Назначение систем распознавания - получить информацию, необходимую для принятия определенных решений, о принадлежности неизвестного объекта (явления) к тому или иному классу. Именно так обстоит дело в системах медицинской и технической диагностики, геологической разведки, метеорологического прогноза, криминалистике, системах распознавания целей и т. п. Поэтому системы распознавания, являясь частью системы управления (автоматической или автоматизированной), должны строиться с учетом обеспечения наиболее эффективного использования всего набора допустимых решений. Этот факт накладывает на построение систем распознавания следующие ограничения.

1. При прочих равных условиях повышение эффективности принимаемых решений следует связывать со степенью детализации определения или назначения либо характера распознаваемого объекта или явления. Степень детализации определяется количеством классов, на которое подразделено множество объектов или явлений. Так, если система управления располагает m различными решениями, то в алфавите классов системы распознавания, учитывая сказанное, целесообразно предусмотреть m+1 классов. Тогда, если распознанный объект относится к классу Ω 1 принимается решение l 1 , если к классу Ω 2 - решение h и т. д., если же объект относится к классу Ω m +1 , решение не принимается.

2. Эффективность принимаемых системой управления решений при прочих равных условиях (в том числе, естественно, при заданном алфавите классов) зависит от точности определения принадлежности распознаваемого объекта или явления к соответствующему классу. Точность же определения или ошибка распознавания при заданном по точности априорном описании классов определяется размерностью и информативностью признакового пространства, объемом и качеством апостериорной информации о значениях признаков (параметров), которыми характеризуется распознаваемый объект. Иначе говоря, расширение алфавита классов, увеличивающее степень детализации определения назначения либо характера распознаваемого объекта (явления), при неизменном словаре признаков увеличивает ошибку распознавания.

Пусть заданы три класса Ω 1 , Ω 2 и Ω 3 объектов распределениями f 1 (х), f 2 (x),f 3 (x) априорными вероятностями появления объектов соответствующих классов P(Ω 1)=P(Ω 2)=P(Ω 3)=P, а также потерями c 11 = c 22 = с 33 = 0 и с 12 = с 21 = c 13 = с 31 = с 23 = с 32 = с.

На рис. 2.1 представлены законы распределений. Средний (байесовский) риск (см. § 4.2)

Положим теперь, что объекты, относящиеся к классам Ω 1 и Ω 2 , решено объединить в один класс Ω 4 , описание которого

Средний риск в данном случае в предположении неизменности границы b составит

Из сравнения величин Rã 1 и Rã 2 видно, что Rã l >Rã 2 на величину

Следовательно, при заданном признаковом пространстве и прочих равных условиях уменьшение числа классов приводит

Рис. 2.1

к уменьшению ошибок распознавания и, наоборот, при увеличении числа классов системы распознавания в целях поддержания на заданном уровне или даже уменьшения среднего риска (вероятности ошибочных решений) надо расширять словарь признаков (естественно, при прочих равных условиях). В то же время расширение признакового пространства в целях уменьшения ошибок распознавания сопряжено с увеличением числа технических измерительных средств, каждое из которых обеспечивает определение соответствующего признака или группы признаков. Это, в свою очередь, требует увеличения затрат на построение системы распознавания. На величину же затрат в реальных условиях, как правило, накладываются те или другие ограничения.

Таким образом, стремление по возможности наиболее эффективно использовать набор возможных решений системы управления приводит к необходимости увеличения алфавита классов до m+1. Однако естественная ограниченность ресурсов, ассигнованных на построение измерительных средств системы распознавания или системы распознавания в целом, приводит к тому, что по мере увеличения алфавита классов ошибки распознавания растут, а это уменьшает эффективность использования возможных решений. Только некоторый компромисс между размерами алфавита классов и объемом рабочего словаря признаков системы, базирующийся на исходных данных относительно набора возможных решений и величины ресурсов, отпущенных на создание измерительной аппаратуры, реализующей словарь признаков, позволяет обеспечить решение задачи построения системы распознавания оптимальным образом.

Итак, в общем случае при построении систем распознавания приходится иметь дело со следующей ситуацией. Создается некоторая система управления, реализующая то или другое управление в зависимости от результатов оценки, существенных свойств, характера, назначения объекта или явления, его распознавания. Система управления располагает конечным числом решений. Составляющая эффективности управлений, зависящая от функционирования системы распознавания, обусловливается двумя факторами. Первый фактор связан со степенью детализации распознавания объектов или явлений, наибольшее значение которой будет в том случае, если число классов, содержащихся в алфавите классов системы распознавания, равно количеству возможных решений (плюс единица - последний класс, объекты которого не распознаются). Второй фактор - точность решения задачи распознавания. Естественно, чем она выше, тем меньше вероятность принять решение, не соответствующее особенностям данного объекта или явления. Например, применить не адекватную заболеванию стратегию лечения в случае использования системы медицинской диагностики; применить не по назначению данное средство противодействия в случае использования системы распознавания целей и т. п. Однако при заданном словаре признаков увеличение алфавита классов уменьшает точность решения задачи распознавания. Увеличение же словаря признаков в общем случае связано с разработкой новой или использованием существующей измерительной аппаратуры, что влечет за собой увеличение расходов на построение системы распознавания.

Таким образом, суть проблемы распознавания состоит в разработке таких алфавита классов и словаря признаков, которые в условиях ограниченных ресурсов на построение системы распознавания обеспечивают максимальную эффективность системы управления, принимающей соответствующее решение в зависимости от результатов решения задачи распознавания. При этом, безусловно, выбирая словарь признаков и определяя алфавит классов, следует находить наилучшие решающие правила, решающие границы между классами. Однако в общем случае не в этом состоит проблема распознавания, как не важна и как подчас не сложна задача определения оптимальных решающих правил, обеспечивающих в условиях заданных алфавита классов и словаря признаков наибольшую точность распознавания . Более того, при построении логических систем распознавания, использующих либо алгоритмы распознавания, основанные на методах алгебры логики, либо структурных (лингвистических) систем (см. гл. 8), решающие правила вообще не определяются.

Таким образом, нет достаточных оснований считать справедливым суждение о том, что проблема распознавания состоит в определении решающих правил (решающих границ).

Конец работы -

Эта тема принадлежит разделу:

Общая характеристика проблемы распознавания объектов и явлений

В а скрипкин.. методы распознавания.. общая характеристика проблемы распознавания объектов и явлений..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Качественное описание задачи распознавания i
Распознавание образов (объектов, сигналов, ситуаций, явлений или процессов) - едва ли не самая распространенная задача, которую человеку приходится решать практически ежесекундно от первого до посл

Основные задачи построения систем распознавания
Рассмотренный в § 1.1 пример свидетельствует о том, что распознавание сложных объектов и явлений требует создания специальных систем распознавания - сложных динамических систем, сос

Экспертные системы распознавания
Рассмотренная классификация систем распознавания и принципы их функционирования отражают современное состояние вопроса. Все виды систем распознавания базируются на строго формализов

Постановка задачи распознавания
Пусть задано множество объектов или явлений Ω={w1 ..., ..., wz}, а также множество возможных решений L={l1, ..., lk}, которые могут

Метод решения задачи распознавания
Рассмотренная постановка проблемы распознавания позволяет определить последовательность задач, возникающих при разработке системы распознавания, предложить их формулировки и возможн

Системы распознавания без обучения
Построение систем распознавания без обучения возможно при наличии полной первоначальной априорной информации, которая представляет собой совокупность: 1) сведений о том, какова есте

Обучающиеся системы распознавания
Использование методов обучения для построения систем распознавания необходимо в случае, когда отсутствует полная первоначальная априорная информация. Ее объем позволяет подразделить

Самообучающиеся системы распознавания
На практике иногда приходится сталкиваться с необходимостью построения распознающих устройств в условиях, когда провести классификацию объектов либо невозможно, либо по тем или другим соображениям

Некоторые сведения из теории статистических решений
Рассмотрим основные результаты теории статистических решений на следующем примере. Пусть совокупность объектов подразделена на классы Ω1 и Ω2, а дл

Критерий Байеса
Критерий Байеса - правило, в соответствии с которым стратегия решений выбирается таким образом, чтобы обеспечить минимум среднего риска. Применение критерия Байеса целесообразно в с

Минимаксный критерий
При построении систем распознавания возможны такие ситуации, когда априорные вероятности появления объектов соответствующих классов неизвестны. Минимизировать значение среднего риск

Критерий Неймана-Пирсона
При построении некоторых систем распознавания могут быть неизвестны не только априорные вероятности появления объектов соответствующих классов, но и платежная матрица (1.7). В подоб

Процедура последовательных решений
Ранее предполагалось, что решение о принадлежности распознаваемого объекта w соответствующему классу Ωi, i=l, ..., m, принимается после измерения всей совокупности

Регуляризация задачи распознавания
В соответствии со стратегией Байеса, если у распознаваемого объекта со измеренное значение признака х = х0 , то

Рабочего словаря признаков
В § 5.1 был рассмотрен один из возможных методов выбора пространства признаков системы распознавания, обеспечивающий в пределах выделенных ресурсов максимальное значение критерия ка

Сравнительная оценка признаков
Выше были рассмотрены достаточно общие методы выбора совокупности признаков, которые целесообразно и доступно использовать при построении системы распознавания. Однако на практике д

Изображающие числа и базис
Булева функция считается заданной, если можно указать значения истинности этой функции при всех возможных комбинациях значений истинности входящих в нее элементов. Таблицу, которая

Восстановление булевой функции по изображающему числу
Рассмотрим методы, позволяющие переходить от задания булевой функции в виде изображающего числа к явному выражению ее через элементы. Дизъюнктивная нормальная форма (ДНФ).

Зависимость и независимость высказываний
Условия независимости. Поскольку каждая булева функция может иметь два значения истинности, n булевых функций могут образовывать 2n комбинаций значений истинности. По опр

Булевы уравнения
Решение многих задач, связанных с распознаванием объектов, может быть сведено к нахождению решений булевых алгебраических уравнений с одним (или более) неизвестным. Примером булева

Замена переменных
Понятие замены переменных в алгебре логики аналогично понятию замены переменных в обычной алгебре. Если А, В, С, ... - элементарные высказывания и совершается замена переменных, то,

Решение логических задач распознавания
В логических системах распознавания классы и признаки объектов рассматриваются как логические переменные. Чтобы подчеркнуть эту особенность, для обозначения классов и признаков введ

Решение задач распознавания при большом числе элементов
Приложение изложенных в предыдущих параграфах методов построения сокращенного базиса и решения логических задач существенно ограничивается объемом памяти ЭВМ и их быстродействием. Т

Алгоритм построения сокращенного базиса
В § 7.1 было показано, как с помощью ЭВМ, опираясь на сокращенный базис b´ [А1, А2, ...Ω1, Ω2,...], находить

Распознавание объектов в условиях их маскировки
Маскировка - один из основных методов снижения эффективности разведки противника в общем комплексе мероприятий по противодействию. Решение проблемы маскировки требует привлечения, с

Распознавание в условиях противодействия
Рассмотрим задачу распознавания объектов в условиях, когда противник может препятствовать как выявлению отдельных признаков объектов, так и сознательно изменять свою тактику в отнош

Алгоритмы распознавания, основанные на вычислении оценок
Логические алгоритмы распознавания, рассмотренные выше, в ряде случаев не позволяют получить однозначное решение о принадлежности распознаваемого объекта к определенному классу. Ю.

Общая характеристика структурных методов распознавания
Во многих случаях апостериорная информация о распознаваемых объектах или явлениях содержится в записях соответствующих сигналов (электрокардиограмм, энцефалограмм, отраженных от цел

Основные элементы аппарата структурных методов распознавания
Говоря о средстве описания объектов в терминах непроизводных элементов и их отношений, употребляют понятие язык. Правила этого языка, определяющие способы построения объекта из непр

Реализация процесса распознавания на основе структурных методов
Для распознавания неизвестного объекта на основе структурных методов необходимо прежде всего найти его непроизводные элементы и отношения между ними, а затем с помощью синтаксическо

Постановка задачи оптимизации процесса распознавания
Прежде всего покажем, что с увеличением числа признаков, используемых при распознавании, вероятность правильного распознавания неизвестных объектов также увеличивается. Вер

Алгоритм управления процессом распознавания
Рассмотренные понятия позволяют построить алгоритм управления процессом распознавания в виде правила последовательного поиска решений, обеспечивающего разработку оптимального плана

Частные подходы к принятию решений при распознавании
Решение задачи оптимизации распознавания в рассмотренной постановке требует наличия определенных данных. Когда они отсутствуют, приходится пользоваться частными подходами к пр

Алгебраический подход к задаче распознавания
Выше рассмотрены алгоритмы распознавания: детерминированные алгоритмы, основанные на проведении в признаковом пространстве решающей границы (границы, разделяющей классы и представля

Эффективность вероятностных систем распознавания
Чтобы оценить эффективность вероятностных систем распознавания на основе математического моделирования, можно использовать метод статистических испытаний. Для проведения таких испыт

Эффективность логических систем распознавания
При построении логических систем распознавания приходится сталкиваться с ситуацией, когда значения истинности элементов А1..., Аn, выражающих признаки объектов

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все объекты различных образов. Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов без каких-либо других подсказок. В качестве объектов обучения могут быть либо картинки, либо другие визуальные изображения (буквы), либо различные явления внешнего мира, например звуки, состояния организма при медицинском диагнозе, состояние технического объекта в системах управления и др. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает машине правило классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.
Проблема обучения распознаванию образов интересна как с прикладной, так и с принципиальной точки зрения. С прикладной точки зрения решение этой проблемы важно прежде всего потому, что оно открывает возможность автоматизировать многие процессы, которые до сих пор связывали лишь с деятельностью живого мозга. Принципиальное значение проблемы тесно связано с вопросом, который все чаще возникает в связи с развитием идей кибернетики: что может и что принципиально не может делать машина? В какой мере возможности машины могут быть приближены к возможностям живого мозга? В частности, может ли машина развить в себе способность перенять у человека умение производить определенные действия в зависимости от ситуаций, возникающих в окружающей среде? Пока стало ясно только то, что если человек может сначала сам осознать свое умение, а потом его описать, т. е. указать, почему он производит действия в ответ на каждое состояние внешней среды или как (по какому правилу) он объединяет отдельные объекты в образы, то такое умение без принципиальных трудностей может быть передано машине. Если же человек обладает умением, но не может объяснить его, то остается только один путь передачи умения машине - обучение примерами.
Круг задач, которые могут решаться с помощью распознающих систем, чрезвычайно широк. Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи распознавания сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными операциями. В каждой из таких задач анализируются некоторые явления, процессы, состояния внешнего мира, всюду далее называемые объектами наблюдения. Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную информацию. Такая информация представляет собой характеристику объектов, их отображение на множестве воспринимающих органов распознающей системы.
Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Например, какая-либо буква, даже одинаково написанная, может в принципе как угодно смещаться относительно воспринимающих органов. Кроме того, объекты одного и того же образа могут достаточно сильно отличаться друг от друга и, естественно, по-разному воздействовать на воспринимающие органы.
Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы.
При решении задач управления методами распознавания образов вместо термина "изображение" применяют термин "состояние". Состояние - это определенной формы отображение измеряемых текущих (или мгновенных) характеристик наблюдаемого объекта. Совокупность состояний определяет ситуацию. Понятие "ситуация" является аналогом понятия "образ". Но эта аналогия не полная, так как не всякий образ можно назвать ситуацией, хотя всякую ситуацию можно назвать образом.
Ситуацией принято называть некоторую совокупность состояний сложного объекта, каждая из которых характеризуется одними и теми же или схожими характеристиками объекта. Например, если в качестве объекта наблюдения рассматривается некоторый объект управления, то ситуация объединяет такие состояния этого объекта, в которых следует применять одни и те же управляющие воздействия. Если объектом наблюдения является военная игра, то ситуация объединяет все состояния игры, которые требуют, например, мощного танкового удара при поддержке авиации.
Выбор исходного описания объектов является одной из центральных задач проблемы ОРО. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться тривиальной и, наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения. Например, если решается задача распознавания объектов, отличающихся по цвету, а в качестве исходного описания выбраны сигналы, получаемые от датчиков веса, то задача распознавания в принципе не может быть решена.

о том, какие проблемы ещё предстоит решить, чтобы вывести системы автоматического распознавания речи на человеческий уровень.

С тех пор, как в распознавании речи появилось глубокое обучение, уровень ошибок сильно снизился. Но несмотря на все, что вы могли читать и видеть, у нас все ещё не существует системы распознавания речи человеческого уровня. В распознавании речи есть множество ошибок. Для продвижения вперед важно знать, когда они происходят, и предпринимать шаги по решению проблем. Только так можно перейти от автоматического распознавания речи (ASR), которое работает для некоторых людей, к ASR, которое работает для всех людей и всегда.

Улучшения в показателе частоты ошибок в тесте распознавания разговорной речи Switchboard. Набор тестов был собран в 2000 году. Он состоит из 40 телефонных разговоров между двумя случайными носителями английского языка.

Говорить, что мы достигли человеческого уровня распознавания разговорной речи, основываясь на результатах Switchboards, это то же самое, что говорить, что беспилотный автомобиль водит так же хорошо, как человек, после тестирования в одном городе в солнечный день без пробок. Последние улучшения в распознавании разговорной речи изумительны. Но заявлять о достижении уровня людей слишком рано. Ниже представлены несколько разделов, требующих улучшения.

Акценты и шум

Одно из самых заметных различий в распознавании речи – это способность разбираться с акцентами и фоновым шумом. Прямая причина этого заключается в том, что данные для обучения состоят из английской речи с американским акцентом с высоким показателем отношения сигнала к шуму (SNR – signal-to-noise ratio). Например, наборы данных для обучения и тестов Switchboard включают только речь носителей английского языка с небольшим фоновым шумом.

Однако увеличение количества данных для обучения, вероятно, не решит проблему просто так. Существует множество языков с большим количеством диалектов и акцентов. Невозможно собрать достаточно данных для всех случаев. Создание качественной системы распознавания речи только для английского с американским акцентом требует пять тысяч часов транскрибированного аудио.

Сравнение человеческих стенограмм со стенограммами модели Deep Speech 2 от Baidu. Заметьте, что люди хуже распознают неамериканский акцент. Вероятно, это связано с американским происхождением стенографов. Я думаю, что нативные для каждого региона спикеры лучше бы распознавали акценты родных стран.

Что касается фонового шума, в движущемся автомобиле SNR редко бывает на показателе -5 дБ. Люди без проблем понимают друг друга в этой среде. Автоматические системы распознавания речи допускают гораздо больше ошибок с увеличением шума. На диаграмме выше мы видим, как разница между ошибками людей и модели резко возрастает от аудио с низким SNR к аудио с высоким SNR.

Семантические ошибки

Показатель уровня ошибок в словах не самый объективный показатель. Нас интересует показатель семантических ошибок. Это доля высказываний, в которых мы искажаем смысл.

Пример семантической ошибки: если кто-то сказал “let’s meet up Tuesday” (давайте встретимся во вторник), но система распознала высказывание как “let’s meet up today” (давайте встретимся сегодня). У нас также могут быть ошибки в словах без семантических ошибок: если система отбросила слово up и распознала “let’s meet Tuesday”, то семантика высказывания не изменилась.

Мы должны осторожнее использовать показатель ошибок в словах (WER – word error rate) в качестве основного. Позвольте показать вам худшую ситуацию. WER в 5% соответствует одному пропущенному слову на каждые двадцать. Если в каждом предложении двадцать слов (средний показатель для английского), то показатель ошибок в предложениях составит 100%. Но пропущенные слова вряд ли изменят смысл предложений. В ином случае даже с 5% WER каждое предложение было бы неправильно интерпретировано.

При сравнении моделей и людей важно проверять природу ошибок, а не просто смотреть на показатель WER. По своему опыту могу сказать, что когда люди расшифровывают речь, они совершают меньше ошибок, и эти ошибки не так критичны.

Исследователи в Microsoft недавно сравнили ошибки людей и систем распознавания речи с человеческим уровнем ошибок. Они обнаружили, что модель чаще путает междометия “а” и “ага”. У этих двух слов совершенно разная семантика: “а” просто заполняет паузы, а “ага” выступает в качестве подтверждения. Но модель и люди также совершили много похожих ошибок.

Один канал, множество говорящих

Тест от Switchboard проще, потому что каждый говорящий записан на отдельный микрофон. В одном канале аудио не перекрываются разные голоса. Люди же могут понимать нескольких людей, говорящих одновременно.

Хорошая систем распознавания речи должна быть способна сегментировать аудио на основании того, кто говорит (диаризация). Она также должна понимать аудио от нескольких говорящих (разделение источников). Это должно быть возможно без необходимости присутствия микрофона около каждого говорящего.

Другие области

Акценты и фоновый шум – это всего лишь два фактора, в отношении которых должна повышаться надежность распознавателя речи. Вот еще несколько:

  • Реверберация от изменения акустической среды.
  • Артефакты аппаратного обеспечения.
  • Кодек, используемый для артефактов звука и сжатия.
  • Частота выборки.
  • Возраст оратора.

Многие люди даже не заметят разницы между файлами mp3 и wav. Прежде, чем мы заявим о производительности на уровне человека, распознаватели речи должны быть надежными и в отношении этих факторов.

Контекст

Вы можете заметить, что показатель ошибок людей в тестах вроде Switchboard довольно высок. Если бы вы общались с другом, и они не понимали 1 из 20 сказанных вами слов, вам было бы сложно общаться.

Одна из причин этого – оценка совершается независимо от контекста. В реальной жизни мы используем много других подсказок, чтобы понять, что говорит собеседник. Несколько примеров контекста, который используеют люди:

  • Прошлые разговоры и тема обсуждения.
  • Визуальные подсказки, например, выражения лица и движения губ.
  • Знания о человеке, с которым мы общаемся.

Сейчас у распознавателя речи в Android есть доступ к вашему списку контактов, чтобы он мог распознавать имена ваших друзей. Голосовой поиск в картах использует геолокацию, чтобы сузить список потенциальных пунктов назначения. Точность ASR-систем возрастает с применением такого типа сигналов. Но мы только начала изучать, какой контекст мы можем включить и как мы можем это сделать.

Реализация

Недавние улучшения в распознавании разговорной речи нельзя быстро развернуть. Когда мы рассуждаем о том, что делает новый алгоритм распознавания речи реализуемым, мы обращаемся к показателям задержки и мощности. Они связаны, и алгоритмы, уменьшающие время задержки, повышают показатель мощности. Разберем каждый отдельно.

Задержка: Это время от момента завершения речи до завершения транскрибирования. Низкое время задержки – распространенное требование в системах распознавания речи. Это может сильно повлияет на опыт пользователя, и задержка часто измеряется в десятках миллисекунд. Это может показаться чрезмерным, но помните, что создание транскрипции – это первый шаг в серии вычислений. Например, в голосовом поиске сам поиск совершается после распознавания речи.

Двунаправленные рекуррентные сети являются хорошим примером значительного улучшения. Все последние современные разработки в распознавании разговорной речи используют их. Проблема в том, что мы не можем ничего вычислить после первого двунаправленного слоя, пока пользователь не закончит говорить. Таким образом, задержка увеличивается с длиной высказывания.

При использовании одного направления мы можем начать транскрипцию мгновенно

С двунаправленным повторением мы вынуждены ждать окончания речи.

Хороший способ эффективного использования будущей информации в распознавании речи по-прежнему остается открытой проблемой.

Мощность: количество вычислительной мощности, которое необходимо для транскрипции высказывания является экономическим ограничением. Мы должны учитывать ценность и стоимость каждого улучшения точности распознавания речи. Если улучшение не укладывается в экономические рамки, оно не может быть воплощено.

Классическим примером улучшения, которое не реализуется, является ансамблевое обучение. Сокращение показателя ошибок на 1-2% не стоит увеличение вычислительной мощности от 2 до 8 раз. Современные модели на основе рекуррентных нейронных сетей обычно также относятся к этой категории, потому что их очень дорого использовать в лучевом поиске, хотя я ожидаю, что в будущем это изменится.

Я не считаю, что исследования, связанные с улучшением точности и большой вычислительной мощностью, бессмысленны. Мы уже видели модель “сначала медленно, но точно, затем быстро” до этого. Смысл в том, что пока улучшение не станет достаточно быстрым, его нельзя использовать.

Следующие пять лет

В распознавании речи существует много открытых и сложных проблем. Среди них:

  • Расширение возможностей в новые области, на новые акценты и на речь с низким соотношением сигнала и шума.
  • Внедрение большего количества контекста в процесс распознавания.
  • Диаризация и разделение источников.
  • Показатель семантических ошибок и инновационные методы оценки распознавателей.
  • Низкая задержка и эффективные алгоритмы.

Проблема распознавания образов сводится к двум задачам: обучения и распознавания. Поэтому, прежде чем сформулировать задачу обучения распознаванию образов уточним, в чем смысл их распознавания.

Простейшим вариантом распознавания является строгий запрос на поиск объекта в базе данных по его признакам, который реализуется в информационно-поисковых системах. При этом каждому полю соответствует признак (описательная шкала), а значению поля - значение признака (градация описательной шкалы). Если в базе данных есть записи, все значения заданных полей которых точно совпадают со значениями, заданными в запросе на поиск, то эти записи извлекаются в отчет, иначе запись не извлекается.

Более сложными вариантами распознавания является нечеткий запрос с неполнотой информации , когда не все признаки искомых объектов задаются в запросе на поиск, т.к. не все они известны, и нечеткий запрос с шумом , когда не все признаки объекта известны, а некоторые считаются известными ошибочно. В этих случаях из базы данных извлекаются все объекты, у которых совпадает хотя бы один признак и в отчете объекты сортируются (ранжируются) в порядке убывания количества совпавших признаков. При этом при определении ранга объекта в отсортированном списке все признаки считаются имеющими одинаковый "вес" и учитывается только их количество.

  • - во-первых, на самом деле признаки имеют разный вес, т.е. один и тот же признак в разной степени характерен для различных объектов;
  • - во-вторых, нас могут интересовать не столько сами объекты, извлекаемые из базы данных прецедентов по запросам, сколько классификация самого запроса, т.е. отнесение его к определенной категории, т.е. к тому или иному обобщенному образу класса.

Если реализация строгих и даже нечетких запросов не вызывает особых сложностей, то распознавание как идентификация с обобщенными образами классов, причем с учетом различия весов признаков представляет собой определенную проблему.

Обучение осуществляется путем предъявления системе отдельных объектов, описанных на языке признаков, с указанием их принадлежности тому или другому классу. При этом сама принадлежность к классам сообщается системе человеком - Учителем (экспертом).

В результате обучения распознающая система должна приобрести способность:

  • 1. Относить объекты к классам, к которым они принадлежат (идентифицировать объекты верно).
  • 2. Не относить объекты к классам, к которым они не принадлежат (неидентифицировать объекты ошибочно).

Эта и есть проблема обучения распознаванию образов, и состоит она в следующем:

  • 1. В разработке математической модели, обеспечивающей: обобщение образов конкретных объектов и формирование обобщенных образов классов; расчет весов признаков; определение степени сходства конкретных объектов с классами и ранжирование классов по степени сходства с конкретным объектом, включая и положительное, и отрицательное сходство.
  • 2. В наполнении этой модели конкретной информацией, характеризующей определенную предметную область.

20 Проблема распознавания образов

Человеческий мозг, так же как и мозг животных, с самого рождения и на протяжении всей жизни ежеминутно решает задачи распознавания образов. Ребенок или детеныш животного с первых минут своего появления на свет узнает пищу, мать, ее голос, окружающие предметы. По мере взросления ребенок учится узнавать свои игрушки, комнату, дом, множество необходимых предметов, лица друзей, их речь, музыку, буквы, слова, книги и т.д.

В своей повседневной жизни человек настолько легко справляется с задачами распознавания, что это считается само собой разумеющимся. Между тем, попытки моделирования на компьютерах этих высокоинтеллектуальных функций наталкиваются на весьма серьёзные трудности.

Для того чтобы человек сознательно воспринял информацию, она должна пройти довольно длительный цикл предварительной обработки. Рассмотрим на примере восприятия зрительного образа:

1. Вначале свет попадает в глаз. Пройдя через всю оптическую систему фотоны попадают на сетчатку (слой светочувствительных клеток). Здесь происходит первый этап обработки информации. У млекопитающих, сразу за светочувствительными клетками находится обычно два слоя нервных клеток, которые выполняют сравнительно несложную обработку.

2. По зрительному нерву информация поступает в головной мозг, в так называемые "зрительные бугры".

3. Далее зрительная информация поступает в отделы мозга, которые уже выделяют из неё отдельные составляющие (горизонтальные, вертикальные, диагональные линии; контуры; области светлого, темного, цветного). До этих пор можно без труда смоделировать работу мозга применяя различные графические фильтры.

4. Постепенно образы становятся все более сложными и размытыми, но графический образ пройдет еще долгий путь, прежде чем достигнет уровня сознания. Причём на уровне сознания к образу могут примешаться еще звуки, запахи и вкусовые ощущения.

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путём показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы.

Круг задач, которые могут решаться с помощью распознающих систем, чрезвычайно широк. Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи распознавания сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными операциями.

В настоящее время наибольших успехов удалось добиться в распознавании зрительных образов, таких как печатные символы. Не вызывает сомнений полезность известных программ распознавания текстовой информации – FineReader и CuneiForm . Функции обнаружения и распознавания военных объектов противника уже давно закладываются в бортовые компьютеры ракет, самолетов, кораблей и подводных лодок.

Какие идеи и принципы могут быть заложены в основу распознающих систем? Первое, что приходит в голову, – действовать "с позиции грубой силы": заложить в компьютер как можно больше известных образов-шаблонов и сравнивать их с поступающими для распознавания неизвестными образами. Однако этот путь сразу заводит в тупик. Предположим, что зрительное изображение считывается с помощью стандартной системы светочувствительных элементов – 32 позиции по ширине и 48 по высоте, т.е. всего 1536 элементов. Но даже на такой грубой сетке можно воспринять порядка 10 460 возможных образов. Хранить в памяти такое число шаблонных изображений и осуществлять с ними сравнение поступающих на вход образов невозможно.

Поэтому на практике системы распознавания на первой стадии обязательно обрабатывают изображение и выделяют характерные признаки, качественные или количественные. Таким образом, количество информации для распознавания существенно уменьшается.

Следующая идея, которая обычно используется в распознающих системах, – это идея обучения. Она является обязательным элементом многих современных интеллектуальных систем.



Рекомендуем почитать

Наверх