Общая структура систем цифровой связи. Элементы цифровой системы связи. Другие недостатки протокола FDMA

Для Symbian 18.03.2019
Для Symbian

Аналоговые системы радиосвязи были популярны на протяжении долгих лет. Сегодня же они постепенно «уходят» с рынка, а их место занимают системы цифровой радиосвязи.

Почему цифровая связь «вытеснила» аналоговую :

  • На многих предприятиях возникла потребность в расширении возможностей сети
  • Современным объектам потребовалось универсальное решение в плане организации системы связи
  • Абоненты, помимо отправки обычных голосовых сообщений, нуждались в передаче данных, и более высоких скоростях радиосистем

Именно цифровая радиосвязь смогла решить все эти проблемы. Заменив старые аналоговые радиоустройства в сети на цифровые, можно мгновенно повысить производительность сети, расширить ее функционал, и предостеречь себя от многих проблем в будущем.

Двухсторонняя аналоговая связь на многих объектах уже давно заменена цифровой. Давайте рассмотрим основные принципы работы этих систем и преимущества.

Как работает цифровая радиосвязь

Цифровая радиосвязь – система радиоустройств, которая преобразовывает голос человека в определенный цифровой формат, после чего обрабатывает эти данные и отправляет их на приемник.

В случае, когда данные поступают на приемник из интернета или другого устройства сразу в цифровом виде, то преобразование не происходит. Эта информация будет сразу обработана и отправлена в радио-эфир.

Чтобы обеспечить максимальную надежность такой связи и высшее качество голоса, необходимо применять разные протоколы отправки информации, которые работают вместе с различными алгоритмами обработки ошибок.

Работает цифровая связь в УКВ-диапазоне. Сегодня в мире есть несколько принятых стандартов цифровой связи – , APCO и другие.

Системы цифровой радиосвязи:

Система цифровой радиосвязи – «мощная» совокупность устройств для решения универсальных задач в плане связи. К примеру, DMR (Digital Mobile Radio). Этот стандарт разработан специально для стран Европы.

В его основе лежит протокол TDMA (2-интервальный). А на основе протокола TDMA уже разработана масса других стандартов связи, которые давно стали популярными по всему миру. TETRA и GSM – лишь некоторые из них.

Системы цифровой радиосвязи на базе TDMA имеют массу преимуществ, среди которых: небольшая цена оборудования, длительный эксплуатационный срок аккумуляторов, «открытость» для модернизации и т.д.

А, если затронуть цифровую связь в общем, то она отличается:

  • Повышенным качеством передачи голосовых данных
  • Сниженным уровнем помех на линии
  • Обширной зоной покрытия (без потери качества голоса и сигнала на предельных расстояниях)
  • Эффективность в плане использования частотного диапазона (каналы делятся на так называемые слоты, скорость передачи информации – повышенная, реализован пакетный режим и многое другое)
  • Большие возможности в области шифрования данных
  • Быстрая организация системы цифровой радиосети

Есть вопросы по цифровой радиосвязи? – наши эксперты с радостью ответят на них! Звоните в офис нашей Компании по номеру, указанному выше.


Владельцы патента RU 2454793:

Изобретение относится к области передачи и приема цифровых сигналов. Техническим результатом является повышение качества восстановления речи за счет снижения уровня шумов квантования на 6 дБ путем увеличения на единицу числа разрядов для передачи модуля отсчета. В цифровой системе связи знак отсчетов не передается и вместо 7 используются все 8 разрядов кодового слова для передачи модуля отсчетов, что снижает шум квантования на 6 дБ и тем самым повышает качество речи на приемной стороне. Введены на передающей стороне однополупериодный выпрямитель, пропускающий на выход только положительные отсчеты, а на приемной стороне - восстановитель отрицательных отсчетов. 2 ил.

Изобретение относится к области передачи и приема цифровых сигналов, описанных в различных источниках, например в:

1. Шмытинский В.В., Котов В.К., Здоровцов И.А.

Цифровые системы передачи информации на железнодорожном транспорте. - М.: Транспорт, 1995.

2. Тюрин В.Л. Многоканальная связь на железнодорожном транспорте. - М.: Транспорт, 1992.

3. Нейман В.И. Системы и сети передачи данных на железнодорожном транспорте. - М.: Маршрут, 2005. - С.127-132.

По технической сущности наиболее близкой к изобретению является цифровая система ИКМ-30, описанная в первом источнике, которая по этой причине и принимается за его прототип. В остальных источниках описаны аналоги изобретения.

Прототип-кодер на передающей стороне состоит из устройства управления и последовательно соединенных компаратора, цифрового регистра, устройства преобразования сигналов управления, устройства коммутации ФЭСов, двух формирователей эталонных сигналов (ФЭСов), выход которых подключен к второму входу компаратора, на первый вход которого поступает отсчет аналогового речевого сигнала (PC). Устройство управления подключено своим выходом к управляющему входу компаратора и цифрового регистра, являющемуся выходным блоком кодера. Кодер работает по методу взвешивания, для чего используется 11 эталонов-сегментов. В нем кодирование объединено с квантованием и компандированием сигналов. Нелинейная квантующая характеристика является квази логарифмической, которая получается путем замены плавной логарифмической кривой ломаной линией, состоящей из 8-и прямолинейных отрезков-сегментов в положительной и отрицательной областях, каждый из которых соединен с двумя точками плавной кривой. Длительность каждого последующего сегмента, начиная с 3-го, удваивается по отношению к предыдущему. Внутри каждого сегмента компрессия отсутствует. Каждый уровень отсчета PC в цифровом виде представляется 8-ю разрядами (битами), называемыми кодовым словом. Первый бит несет информацию о знаке отсчета, биты с 2-го по 4-й определяют номер сегмента, в пределах которого находится амплитуда входного отсчета, а остальные с 5-го по 8-й бит определяют интервал линейного квантования в пределах данного сегмента. Структура декодера ИКМ-30 на приемной стороне совпадает со структурой кодера за исключением того, что:

Вместо компаратора с его связями используется дифференциальный усилитель, к одному входу которого подключен выход одного ФЭС, а к другому входу - выход другого ФЭС;

Отсутствует блок управления;

Цифровой сигнал поступает на вход цифрового регистра, а выходной сигнал снимается с выхода дифференциального усилителя.

Видно, что кодер и декодер ИКМ-30 сложны, а модуль отсчета PC определяется 7-ю разрядами, а не 8-ю, при которых качество восстановленной речи удовлетворяет требованиям коммерческой телефонной связи. При 7-и разрядах шумы квантования выше на 6 дБ, чем при 8-и разрядах.

Основным недостатком прототипа является повышенный на 6 дБ уровень шумов квантования по сравнению с требуемым.

Техническим результатом изобретения является повышение качества восстановленной речи за счет снижения уровня шумов квантования на 6 дБ, что достигнуто путем увеличения на единицу числа разрядов для передачи модуля отсчета.

Сущность изобретения состоит в том, что в цифровую систему связи, состоящую на передающей стороне из источника аналогового речевого сигнала (PC), дискретизатора по времени, компрессора уровня отсчетов, расширителя отсчетов, цифрового кодера, преобразователя параллельного кода в последовательный, усилителя импульсов, линии связи, а также из генератора импульсов, блока задержки импульсов по времени, генератора тактовых импульсов, причем, генератор импульсов своим выходом подключен к высокочастотному (в.ч.) входу дискретизатора непосредственно и ко второму входу расширителя отсчетов - через блок задержки по времени, а выход генератора тактовых импульсов подключен непосредственно к тактовому входу преобразователя кода, а на приемной стороне - из последовательно подключенных к линии связи усилителя импульсов приемника, регенератора импульсов, преобразователя последовательного кода в параллельный, цифрового декодера, экспандера отсчетов, фильтра нижних частот, дополнительно введены на передающей стороне однополупериодный выпрямитель с активной нагрузкой, через который подключен выход дискретизатора PC к входу компрессора, а на приемной стороне - последовательно подключенные к выходу экспандера фильтр огибающей отсчетов, преобразователь однополярных импульсов в двухполярные, дискретизатор по времени генератором импульсов, подключенным к его второму входу, интегратор по времени, к выходу которого подключен фильтр нижних частот.

Существенным отличием изобретения является передача только положительных отсчетов, а отрицательные отсчеты восстанавливаются на приемной стороне. Это позволило не передавать знак отсчета, а его бит использовать для передачи положительных отсчетов. В этом случае в кодовом слове не 7, как в прототипе, а 8 бит, отчего шум квантования уменьшен на 6 дБ. Введенные элементы реализуют сказанное.

Изобретение иллюстрируется чертежами.

На фиг.1 представлена структурная схема предложенной цифровой системы связи, а на фиг.2 - временные диаграммы, поясняющие ее работу. На фиг.1 обозначено: 1 - источник аналогового речевого сигнала (PC), 2 - дискретизатор PC по времени, 3 - генератор импульсов, 4 - однополупериодный выпрямитель с активной нагрузкой, 5 - компрессор уровня отсчетов, 6 - расширитель длительности отсчетов, 7 - блок задержки импульсов по времени, 8 - цифровой кодер отсчетов, 9 - преобразователь параллельного кода в последовательный, 10 - генератор тактовых импульсов, 11 - усилитель импульсов цифрового сигнала (ЦС), 12 - линия связи, 13 - усилитель импульсов, 14 - регенератор импульсов, 15 - преобразователь последовательного кода в параллельный, 16 - декодер ЦС, 17 - экспандер, 18 - фильтр огибающей, 19 - блок исключения постоянной составляющей сигнала, 20 - дискретизатор по времени, 21 - генератор импульсов дискретизации, 22 - усилитель-ограничитель амплитуды импульсов, 23 - интегратор по времени, 24 - фильтр нижних частот (ФНЧ). Введенные элементы обведены пунктирной линией.

Работа схемы предложенной цифровой системы происходит следующим образом.

На передающей стороне речевой сигнал с блока 1 поступает на н.ч. вход дискретизатора 2, на в.ч. вход которого подаются импульсы малой длительности с генератора 3. Частота следования этих импульсов определяется теоремой Котельникова и равна 8 кГц. С выхода блока 2 разнополярные отсчеты поступают на вход однополупериодного выпрямителя 4 с активной нагрузкой, который пропускает на свой выход только положительные отсчеты. Эти отсчеты компрессируются по уровню в блоке 5, после чего поступают на вход расширителя отсчетов, на другой вход которого подаются импульсы с генератора 3 через блок 7 задержки по времени на длительность τ. На выходе блока имеют место отсчеты прямоугольной формы разной амплитуды, но одинаковой длительности τ, которые поступают на вход кодера 8. Здесь амплитуда отсчета преобразуется в цифровой 8-и разрядный сигнал параллельного кода, который поступает на один вход преобразователя 9 параллельного кода в последовательный. На второй вход блока 9 подаются тактовые импульсы с генератора 10. С выхода блока 9 ЦС последовательного кода поступает через усилитель 11 в линию связи 12. На приемной стороне ЦС с линии связи поступает через усилитель импульсов 13, регенератор импульсов 14 на информационный вход преобразователя 15 последовательного кода в параллельный, на тактовый вход которого поступают импульсы с блока 14. С блока 15 ЦС поступает в декодер 16, на выходе которого имеют место отсчеты PC. Эти отсчеты расширяются по уровню в экспандере 17, компенсируя сжатие в компрессоре на передающей стороне, после чего поступают на восстановитель отрицательных импульсов, которые были исключены на передающей стороне выпрямителем 4. Первым блоком восстановителя, обведенного пунктирной линией, является фильтр 18 огибающей отсчетов, на выходе которого имеют место однополярные н.ч. импульсы, как показано на фиг.2. Блок 19, представляющий собой конденсатор большой емкости, устраняет постоянную составляющую этих импульсов, отчего они из однополярных преобразуются в двухполярные, как показано на фиг.2 с помощью пунктирной линии. Эти двухполярные импульсы поступают на н.ч. вход дискретизатора 20, на в.ч. вход которого поступают импульсы с генератора 21 той же частоты, что и с блока 3. В блоке 20 восстанавливаются отрицательные импульсы, которые после усиления и ограничения по амплитуде в блоке 22, как показано на фиг.2, поступают на вход интегратора 23 по времени. В нем восстанавливается PC со ступенчатой огибающей, которая преобразуется в плавную в ФНЧ 24, являющемся выходным блоком приемника.

Технико-экономическим эффектом изобретения является повышение качества восстановленной речи на выходе приемника за счет снижения шумов квантования на 6 дБ, что получено путем исключения передачи отрицательных отсчетов и увеличения разрядности кодового слова на единицу. Сказанное реализовано введенными элементами.

Цифровая система связи, состоящая на передающей стороне из последовательно соединенных источника аналогового речевого сигнала (PC), дискретизатора по времени, компрессора уровня сигнала, расширителя длительности отсчетов, цифрового кодера, преобразователя параллельного кода в последовательный, усилителя, линии связи, а также из генератора импульсов, блока задержки импульсов во времени, генератора тактовых импульсов, причем генератор импульсов своим выходом подключен к высокочастотному входу дискретизатора непосредственно и к второму входу расширителя длительности отсчетов - через блок задержки во времени, а выход генератора тактовых импульсов подключен непосредственно к тактовому входу преобразователя кода, а на приемной стороне - из последовательно подключенных к линии связи усилителя импульсов, регенератора импульсов, преобразователя последовательного кода в параллельный, цифрового декодера, экспандера уровня сигнала, фильтра нижних частот (ФНЧ), отличающаяся тем, что в нее дополнительно введены на передающей стороне однополупериодный выпрямитель с активной нагрузкой, через который подключен выход дискретизатора PC к входу компрессора, а на приемной стороне дополнительно введены последовательно подключенные к выходу экспандера фильтр огибающей отсчетов, преобразователь однополярных импульсов в двухполярные, дискретизатор по времени с генератором импульсов, подключенным к его второму входу, интегратор по времени, к выходу которого подключен ФНЧ, являющийся выходным блоком приемника.

Похожие патенты:

Изобретение относится к способу и устройству для передачи управляющей информации в системе беспроводной связи с использованием кода с малой плотностью проверок на четность (LDPC).

ПОЧЕМУ ЦИФРА?

Технология цифровой двусторонней радиосвязи призвана решить проблему перегруженности радиочастотного спектра и обеспечить эффективность его использования. В мире используются миллионы аналоговых радиостанций, и такое огромное количество пользователей в радиочастотных диапазонах существенно ухудшает качество и надежность коммуникации. В некоторых странах уже приняты законодательные акты, обязывающие производителей выпускать и продавать только цифровое оборудование радиосвязи. В результате, большинство производителей радиооборудования инвестируют в развитие новых цифровых радиотехнологий, чтобы удовлетворить постоянно растущий спрос на более эффективное оборудование двусторонней радиосвязи. Цифра меняет взгляд пользователей на коммуникацию и использование радиостанций.

Недостатки аналоговой радиосвязи

Аналоговые системы радиосвязи до сих пор имеют широкое применение, и их пользователям хорошо известно об их недостатках:

^^ Качество звука

Фоновые шумы и атмосферные помехи.

^^ Нестабильное функционирование

Случайные сбои при передаче или приеме вызовов.

^^ Дальность радиосвязи

Уменьшение эффективности с увеличением расстояния.

^^ Недостаточная защищенность радиосвязи

Бесконтрольность прослушивания разговоров.

^^ Перегруженность канала

Риск потери важного вызова из-за работы посторонних

радиостанций и помех.

^^ Управление вызовами

Невозможность установить прямой вызов определенному

ЦИФРОВЫЕ ТЕХНОЛОГИИ МЕНЯЮТ ПРЕДСТАВ ЛЕНИЯ О РАДИОСВЯЗИ

С развитием новых цифровых технологий, включающих в себя традиционный функционал аналоговых устройств с рядом дополнительных функций, пользователи получают широкий спектр возможностей радиосвязи. Устойчиво высокое качество вызовов Звук - цифровые технологии обеспечивают более эффективное подавление шумов и помех, сохраняя качество звука на большем расстоянии, и пользователи слышат, что им говорят, ясно и отчетливо. Использование вокодера AMBE+2™ помогает значительно улучшить качество передаваемого звука в помехонасыщенной среде для достижения эффективности радиочастотного спектра. Зона покрытия — цифровые технологии помогают пользователям сделать большее количество вызовов в большее количество мест. Цифровой сигнал остается мощным и чистым на протяжении всей дальности радиопередачи. Повышенная устойчивость цифрового радиосигнала обеспечивает большую дальность связи, которая была недоступна ранее.

УЛУЧШЕННОЕ УПРАВЛЕНИЕ ВЫЗОВАМИ

Контроль — обычное желание пользователей аналоговыми радиостанциями - контролировать тех, кто получает

сообщения, и избегать трансляции сообщений широкому кругу слушателей. Цифровые технологии делают это возможным при помощи уникального идентификатора, который присваивается каждой цифровой радиостанции. Пользователь может избирательно вызывать отдельную радиостанцию или группу, посылая вызовы только тем абонентам, которым необходимо передать определенную информацию.

Возможности управления вызовами

^^ Индивидуальный вызов - пользователь может напрямую вызвать другого определенного пользователя, и больше никто в канале их не услышит.

^^ Групповой вызов - пользователь может вызвать определенную группу пользователей. При этом все участники группы слышат друг друга, но их не могут услышать другие пользователи, кто не входит в данную группу, несмотря на то,что будут использовать тот же самый канал.

^^ Общий вызов - пользователь осуществляет вызов всем радиостанциям в канале.

^ ^ Поздний вход - во время активной фазы индивидуального или группового вызова, другие пользователи могут присоединиться к разговору на более поздней стадии.

Текстовые сообщения — цифровые технологии дают возможность отправлять и принимать текстовые сообщения, как запрограммированные, так и произвольные. Таким

образом, пользователь может оставаться на связи, когда голосовая связь невозможна, а также, когда нужно сохранить сообщения для последующего использования.

Защита информации — в цифровом режиме не требуется никакого дополнительного оборудования для защиты каналов связи. При включенной функции шифрования, сообщения слышат только те абоненты, которым оно адресовано, при этом отсутствует значительное снижение качества звука, присущее скремблированию в аналоговом режиме.

ПЕРЕХОДИТЕ НА ЦИФРУ ПРАВИЛЬНО НЕ ВСЕ ЦИФРОВЫЕ ТЕХНОЛОГИИ ОДИНАКОВЫ

В отличие от аналоговых систем радиосвязи, которые, вне зависимости от марок, могут прекрасно взаимодействовать между собой,в цифровых системах используется один из двух протоколов: TDMA или FDMA. Важно отметить, что эти два протокола несовместимы, т.е. в цифровой системе радиостанция с протоколом FDMA не будут взаимодействовать с радиостанцией с протоколом TDMA. Во всем мире в более чем 74% цифровых радиостанций используется протокол TDMA, позволяющий увеличить эффективность и мощность.

Протокол TDMA предполагает использование полногоканала 12,5 кГц, который делится на два независимых слота, тем самым достигая эффективности 6,25 кГц каждый. Таким образом, пропускная способность частотного канала удваивается. Благодаря этому на базе одного канала может быть организовано два одновременных сеанса голосовой связи. В качестве альтернативы один слот может быть занят голосом, а второй использован для передачи данных - например, текстовых сообщений. При этом не возникает потребности в приобретении второй лицензии, не происходит уменьшения дальности связи и нет угрозы помех от соседних каналов.

Другие преимущества TDMA:

^^ Совместимость с аналоговыми системами связи для более легкого и эффективного перехода на цифру.

^^ Меньшая стоимость оборудования - не требуется дополнительных ретрансляторов или комбайнеров, для получения двойной емкости канала.

^^ Более продолжительное время работы от батареи - протокол TDMA позволяет уменьшить вдвое время передачи, увеличивает длительность разговоров и время работы радиостанции от одной батареи без подзарядки. Меньшие затраты на дополнительное оборудование ведут к экономии затрат на электроэнергию.

^^ Большая свобода выбора - TDMA - самый распространенный в мире протокол цифровой подвижной радиосвязи. Применение TDMA позволяет пользователям получить более гибкие системы радиосвязи.

Протокол FDMA предполагает разделение полосы частот на несколько узких подканалов, но при этом пропускная способность канала 12,5 кГц используется не полностью. По мере сужения полосы возрастает угроза помех, снижается чувствительность и может уменьшиться радиус действия устройств - то есть, общее качество связи падает. Для решения этой проблемы требуются дополнительные лицензии и полосы частот, что делает систему значительно дороже.

Другие недостатки протокола FDMA:

^^ Высокая стоимость оборудования - для организации каждого канала требуется отдельный ретранслятор. Кроме того, чтобы совмещать несколько частот на одной антенне базовой станции необходимо уплотняющее устройство.

^^ Высокие затраты на приобретение лицензий - для

достижения необходимой пропускной способности требуются дополнительные лицензии или полосы частот. Два подканала 6,25 кГц не могут полноценно работать в канале 12,5 кГц, цифровые системы не смогут взаимодействовать с таким аналоговыми системами, так как это будет происходить на разных частотах.

^^ Ограниченный выбор - ассортимент радиостанций, работающих на основе протокола FDMA невелик - лишь небольшое количество производителей предлагают такие устройства.

НОВЫЙ ЭТАП БОЛЬШОГО ПУТИ

То, что вас устраивало раньше, не значит, что будет устраивать и впредь - Вы можете позволить себе более качественную связь.Преодоление недостатков аналоговых устройств прежних поколений и стремление к лучшему качеству звука, надежной защите и большей дальности связи - это недорогие двусторонней радиосвязи Vertex eVerge. Совместимые с другими аналоговыми устройствами, эти высокотехнологические решения предоставляют больше возможностей для наилучшего решения задач радиосвязи.

^^ выходная мощность 45 Вт VHF /

^^ 16 каналов


Исторически первой попыткой передать цифру считают телеграф Шиллинга (1832). Постепенно изобретатель, пытаясь снизить число соединительных линий, внедрил методику кодирования печатных знаков двумя состояниями. Аналогично работает азбука Морзе (1840).

Цифровая связь – род электросвязи, использующий дискретные сигналы, как правило, двоичной системы счисления.

История кодирования информации с точки зрения связи

Считаем излишним упоминать опостылевший читателям дым костра пещерных людей. Семафор Шаппа столь же никудышный пример. И тут Википедия, сообщила: Лейбниц, основоположник двоичного счета, интересовался китайской Книгой перемен… Глубочайшие древние знания сегодня недооценивается брезгливо отбрасывающими непонятое неучами. Пойдём узкой тропой.

Древние жители Малайзии использовали комбинированную двоично-десятичную систему счисления. Ритуальные барабаны Африки формировали кодовый сигнал, служащий различным целям.

Древний Египет

Википедия не даст соврать – египтяне хорошо умели считать. Дробей было даже два вида:

  1. Египетские получили собственное название. Бытовала запись числа конечной суммой простых дробей. Математики доказали: каждое положительное рациональное число раскладывается указанным образом. Методику переняли многие древние цивилизации.
  2. Глаз Гора (напоминает Око Ра), знак даёт защиту, королевскую власть, отличное здоровье. Современные исследователи дали изображению собственные названия, отметив схожесть отдельных элементов с цифрами.

Глаза Гора

Гор считается сыном Осириса и Исиды. Традиционно наделяют головой сокола. Правый глаз древних изображений олицетворяет бога солнца Ра, левый – бога мудрости Тота. Оба являются зеркальными отражениями друг друга. Иероглифы, обозначающие глаз, имеют смысл: делатель; человек, занимающийся трудом. Различные участки изображения представляли единицу, делённую на первые 6 степеней двойки, напоминая современный бинарный код:

  1. 1/2. Правая сторона глаза.
  2. 1/4. Глазное яблоко.
  3. 1/8. Бровь.
  4. 1/16. Левая сторона.
  5. 1/32. Изгиб, завиток, имитирующий морщину ниже глаза.
  6. 1/64. След слезы.

В 2003 году Джим Риттер окончательно доказал несостоятельность теории сходства элементов глаз с иероглифами, обозначающими цифры. Однако терминология прижилась, продолжает активно применяться учёными-математиками. Египтяне применяли делители степень двоек, подсчитывая урожай, объёмы жидкостей. Первые следы употребления датируются 2400 г. до Р.Х. Порядок действий при умножении задействует алгоритм, включающий двоичное представление второго числа.

Книга перемен

Документ, датированный IX в. до Р.Х., демонстрирует систему гаданий в четверичной системе счисления. Базовая система образована:

  1. Двойственной природой сил: инь, ян.
  2. Восемью триграммами Будуа (общее количество: третья степень числа два).
  3. 64 гексаграммами Люшисыгуа (общее количество: шестая степень числа два).

Шао Йонг выстроил гексаграммы согласно порядку возрастания, создав набор чисел. Хотя никогда не пытался использовать картинки, выполняя математические вычисления.

Индия

Древний учёный Пингала (2 в. до Р.Х.) разработал ритмическую систему стихосложения, напоминающую азбуку Морзе – длинные/короткие слоги. Трактат Чандас-шастра стал обрядовой классикой, сопутствующей Ведам. Информация описана матрицей, помогающей снабдить стихотворение неповторимым ритмом. Современный двоичный аналог отсутствует.

Средневековая двоичная система

В 1605 году Фрэнсис Бэкон рассматривал систему двоичного кодирования букв, предлагая визуальную систему распознавания шифрованной информации. Попутно упоминал возможность использования:

  1. Колоколов.
  2. Огней.
  3. Факелов.
  4. Мушкетных залпов.
  5. Трубных мелодий.

Джон Непер (1617) описал систему двоичных вычислений. Томас Харриот интересовался вопросом, поленившись опубликовать результаты. Позже бумаги были найдены среди рукописей учёного. Первой тематической рукописью считают работу Хуана Карамуэля и Лобковица (1670). Раздел Ru binara arithmetica вводит понятие двоичной системы:

  • 1 = а.
  • 0 = о.

Попутно богослов упоминает возможность использования основ счисления выше десятичной, предлагая заменять недостающие цифры буквами. 32 = аооо. Поныне используется современными вычислительными системами. Учёный пытался показать: двоичное счисление подсказано природой. Лобковиц опирался на музыкальный строй инструментов. Вплетая витиеватые представления философии, указал небесную подоплёку применения троичной системы. Четыре стороны света увязал на четверичную.

Похожими тропами двигались мысли Харриота, чьи работы составляли тайну для современников.

Лейбниц

Лейбниц заинтересовался проблемой в 1979 году. Первому знакомству с китайским раритетом обязан члену миссионерской общины Иоакиму Буве, посещавшему (1685) страну шелка лично. Гексаграммы подтвердили универсальность собственных христианских мировоззрений Лейбница. Проиллюстрируем не очевидный ход мысли учёного:

  1. Христос создан из ничего (Ex nihilo) велением Бога. Противопоставляясь другим людям, созданным из материи. «Нелегко донести язычникам концепцию творения из ничего посредством силы Бога. Теперь каждый может показаться замечательную систему счисления, где мир представлен число 1, ничто – числом 0.» Цитата письма герцогу Брауншвейгу с приложенными гексаграммами.
  2. Связка Бытие/Ничто формирует дуалистическую систему.
  3. Двоичный счёт является даром небес.

Двадцать пять лет спустя вышел очерк Объяснение двоичной арифметики, использующей числа 0 и 1, дополненное объяснением полезности и связи с китайскими фигурами Фу Си. Семантическое представление значений идентично общепринятому современному. Учёный потрудился выстроить гексаграммы (см. выше), получив мощное средство производства вычислений.

Двоичная арифметика

Джордж Буль (1854) создал знаменитую логику, получившую волей сообщества математиков уникальное название. Логика стала основой конструирования современных цифровых приборов. Клод Шеннон (1937, Массачусетский технологический институт) сформулировал ключевые тезисы реализации электронных вычислителей, использующих переключатели, реле. К ноябрю Джордж Штибиц реализовал концепцию, построив Модель К. Литера обозначала кухню, где трудился изобретатель.

США

Первый вычислитель умел складывать цифры. Лаборатории Белла организовали исследовательскую программу, поставив главным Штибица. Оконченная 8 января 1940 года машина использовала комплексные числа. Демонстрируя детище конференции Американского математического общества на базе колледжа Дартмуна, изобретатель подавал команды посредством телефонной линии, используя телетайп. Продемонстрировав прототип современной клавиатуры – устройства ввода. Демонстрацию посетили лично:

  1. Джон фон Ньюманн.
  2. Норберт Винер.
  3. Джон Моучли.

Германия

Параллельно компьютер Z1 (альтернативное имя V1 – экспериментальная модель) построил Конрад Цузе. Двоичный вычислитель считывал простейшие инструкции с перфорированной плёнки. Изделие 1935-1936 г.г. считают первым программируемым устройством современной истории человечества. Разработка полностью оплачена частными фондами. Компьютер весом 1 тонну полностью уничтожен бомбардировкой Берлина 1943 года войсками союзников. Рядом сгорели чертежи…

Это интересно! Оригинальное имя V1 повторяло название знаменитых Фау-1 (самолётов-снарядов). Поэтому современной литературой употребляется Z1.

  1. Контрольный блок – аналог процессора.
  2. Математическую логику с плавающей запятой.
  3. Память (читаемая/исполняемая) объёмом 64 слова.
  4. Устройства ввода-вывода, включая считыватель 35 мм перфоленты.

Контрольный блок давал возможность наблюдать последовательность исполняемых операций. Вычислительный блок оперировал 22-битными числами с плавающей запятой. Логические операции расширяли функциональность. Первоначальный набор содержал 9 инструкций, занимающих 1-20 «процессорных» циклов.

Входные/выходные данные десятичные.

История развития цифровой связи

Исторически первой стала амплитудная модуляция сигнала, внедрённая Поповым за неимением выбора. Частотная запатентована 26 декабря 1933 года Эдвином Армстронгом. Отличается более широкой полосой частот, занимаемых передаваемым сигналом. Цифровой сигнал использует обе методики. Отличие описывается способом представления информации:

  1. Величина физического мира аналогового характера становится цифрой двоичной системы счисления.
  2. Символы 0, 1 кодируются установленным образом.
  3. Приёмная сторона расшифровывает послание.

Исторически первым устройством, применяющим кодирование называют телеграф Шиллинга (1832) – реализацию идеи Андрэ-Мари Ампера. Некорректно называть связь цифровой, потому что буквы также являются объектами дискретными. Отсутствует факт преобразования величин.

Мультиплексирование

Необходимость нарезать сигнал вызвана желанием телеграфистов использовать одну линию передачи. Первый трансатлантический кабель стоил недёшево. Немедля начали канал сдваивать, учетверять. Наука дискретизации шагает параллельно первым потугам моряков утопить кабель. Американский изобретатель Мосес Фармер предложил (1853) мультиплексирование с временным делением абонентов. Несколько передатчиков смогли использовать одну линию.

Двадцать лет спустя Эмиль Бодо построил машину автоматического мультиплексирования телеграфов Хагис. Долгое время положение дел устраивало общественность. Отсутствие элементной базы стопорило работы. В 1903 году Майнер создал электромеханический коммутатор временного мультиплексирования телеграфов. Последовательно технологию транспонировали на телефонные линии. Частота нарезки составляла 3,5-4 Гц, оставляя желать лучшего.

Кабельная система передачи изображений Бартлейна (1920) посылала оцифрованные рисунки принимающему факсу на другой стороне Атлантического океана. Применение бинарной арифметики снижало время передачи, достигая показателя 3 часа. Изначально производилась кодировка пятью оттенками серого. Постепенно число повышалось, достигнув (1929) пятнадцати. Имя технологии является производным двух создателей концепции:

  1. Гарри Бартоломью.
  2. Майнхард МкФарлейн.

Идею перенял Пол Рэйни, запатентовавший факсимильную машину, производящую оцифровку изображения 5-битным кодом посредством опто-механического конвертера. Попытка промышленного выпуска провалилась. Британского инженера Алека Ривса считают основоположником оцифровка голосовых сообщений. Теоретически рассмотрев вопрос, изобретатель подал заявку французскому бюро (по месту основной работы). Война подзатянула решение комиссии. Положительный ответ принёс 1943 год.

Зелёный шершень

Историки затрудняются указать первый факт установления цифровой связи, запутанный секретами Второй мировой войны. Шифровальное оборудование SIGSLAY радовало союзников непонятными врагам передачами. Википедия однозначно называет альянс пионерами. Техника использовала кодово-импульсную модуляцию. Находятся энтузиасты, приписывающие роль первопроходца Попову. Полагаем, несостоятельность трактовки очевидна.

Это интересно! Прототип первого цифрового связного оборудования назвали программой Зелёный шершень. Передатчик похоже гудел, кодируя информацию. Зелёный шершень помог провести 3000 конференций.

Немецкие шпионы прослушивали каналы связных скрамблеров А-3, построенных Вестерн Электрик. Иногда глушили трафик. Враждующие стороны постоянно взламывали взаимную защиту. Злоумышленникам помогал анализатор спектра. Сигсалли маскировал посылку, спрятанную предварительно вокодером, псевдошумовым сигналом. Разработчики заложили частоту дискретизации 25 Гц. Изобретатели продемонстрировали ряд новых технологий, реализуя схему:

  1. Выборку десяти каналов линии диапазона 250..2950 Гц шифрации.
  2. Оцифровку согласно правилу наличия, отсутствие фонации.
  3. Наличие характеризовалось высотой тона, скорость изменения ниже 25 Гц.

Выборки нарезали частотой 50 Гц, амплитуду конвертировали шестью уровнями (числом 0..5). Шкала дискретизации нелинейная с большими пролётами на сильных сигналах. Разработчики использовали данные физиологов, констатирующих: оттенки голоса закладываются не всеми колебаниями голосовых связок одинаково. Звук с фонацией кодировали парой 6-уровневых чисел, добиваясь получения 36 уровней.

Криптографический ключ образован серией случайных значений 6-уровневых чисел. Код вычитался из выборки голосовых отсчётов по модулю 6, скрывая содержимое. Несущая подвергалась частотной манипуляции (резкое изменение значения несущей). Приёмник принимал набор значений, образовывал выборку сообразно принятой системе кодирования. Затем сигнал расшифровывали, производя сложение по модулю 6. Вокодер довершал цепочку преобразований.

  1. Белым шумом заполнялись промежутки, лишённые фонации.
  2. Генератор формировал сетку гармоник, частота которых контролировалась высотой тона (см. выше).
  3. Отдельный переключал тонации контролировал тип звучания.
  4. Дело довершал регулируемый усилитель.

Шумовые комбинации шифрования ключа изначально записали с большого ртутного выпрямителя на фонограф. Информацию разослали пользователям системы. Терминал, сформированный 40 блоками, весил 50 тонн, потребляя 30 кВт энергии. Комнату приходилось охлаждать воздухом. Первый комплект занял помещение здания Пентагона. Президент Франклин Рузвельт круглосуточно имел возможность общаться, выслушивая планы премьер-министра Уинстона Черчилля, имевшего собственный экземпляр под Оксфорд Стрит. 15 июля 1943 года состоялась первая пресс-конференция союзников. Стороны установили необходимое количество наборов, включая один, занявший борт флагмана Генерал Дуглас МакАртур.

Достижения

  1. Первая секретная радиосвязь.
  2. Первая дискретизированная передача данных.
  3. Внедрение концепции кодово-импульсного радиоканала.
  4. Использование компадирования.
  5. Первая радиопередача многоуровневой частотной манипуляции.
  6. Первая технология компрессии спектра речи.
  7. Внедрение методики частотного деления каналов при помощи манипуляции.

Развитие концепции цифровой связи

Канадская военно-морская система DATAR (1949) стала транслировать информацию. Формирование считают первым примером военной информационной системы, реализуя концепцию единого командного пункта. Канада хорошо помнила 1943 год, когда получила возможность координировать действия морских сил союзников. Командование задумало упростить процесс. Круглый планшет, напоминающий экран радиолокационной станции, показывал положение участников баталии. Проект затрагивал морской флот, попутно специалисты отметили возможный охват всех родов войск.

Демонстрация 1953 года провалилась, заставив ВВС США заняться разработкой SAGE. Центральная система управляла действиями NORAD, отражая возможные атаки воздушного флота противника. Обстановка, сдобренная изрядной долей дисплеев, компьютеров, стала неотъемлемой частью холодной войны. Основу производственной мощности составил супервычислитель AN/FSQ-7, снабдивший процессорным временем командные центры, занимавший 22000 квадратных футов пола.

Стоимость, исчисляемая миллиардами долларов, перекрыла затраты Манхэттанского проекта. Тест Небесного щита показал перехват 25% бомбардировщиков. Сегодня управляющая роль получена микрокомпьютерам, дублирующим функции машинных залов. Ограниченность технологии объяснялась необходимостью использования вакуумных электрических приборов. Военные отдали часть технологий промышленности. 24-канальные машины 1953 года были далеки океану, военной авиации. Истинное призвание техники RCA – посылать звуковые сообщения на Брод Стрит (Нью-Йорк), обеспечивать функционирование линий Роки Пойнт – Лонг Айленд.

Цифровая революция

Подложка давно была готова. Основы, кропотливо развиваемые учёными, заложил Чарльз Бэббидж. Технологии связи развивали телеграфисты. США выделили для цифровых проектов бюджет. Статья Клода Шеннона Математическая теории связи (1948) стала путеводной звездой отрасли. Промышленность ринулась оцифровывать аналоговые сигналы. Копии стали идентичны оригиналом, перестали стариться. Цифровая информация без потерь преодолевала кабель, эфир.

1947 год принёс миру полупроводниковый триод. Военные мигом оценили предоставляемые возможности. Вероятно засекреченные ранее сведения специально обнародовали, оценив потенциал гражданской промышленности США. Параллельно Великий рывок совершила Япония, порастеряв остатки феодального строя. 50-60-е годы основными потребителями оставались военные, правительство. В 1969 году Intel выпустили микропроцессор 4004, подготовивший базис будущей революции. Одновременно США заложили будущую основу общемировой сети интернет, инициировав проект ARPANET.

Хронология развития кодово-импульсной модуляции

Важно! Зал славы национальных изобретателей США наградил Бернарда Оливера, Клода Шеннона за создание кодово-импульсной модуляции (патент США 2.801.281, 1957 год).

Первая система вещательных приёмопередатчиков (1961) несла 24 телефонных канала кодово-импульсной модуляции (КИМ), частотой выборки 8 кГц, кодированных 8-битными числами. Качество связи соответствовало используемому ранее частотному мультиплексированию. Указанное помогло оцифровать:

  1. Связь. Поколение 2G (1992) сотовых сетей стало цифровым.
  2. Телевещание (начало 90-х, XX века). Женевское соглашение, принятое 17 июня 2015 года, установила сроки устранения странами последних признаков аналогового вещания. Первыми (2006) ушли Нидерланды, Люксембург. Россия планирует окончить процесс в 2019.
  3. Радиовещание (конец 80-х, XX века). Норвежская корпорация NRK 1 июня 1995 года первой начала коммерческую трансляцию. К 2017 году 38 стран запустили сервис, включая Россию.

Изобретённая Алеком Ривсом (1937) импульсно-кодовая модуляция постепенно достигла областей звукозаписи, позже захватив коммерческое вещание. Пионерами стали продукты японских брендов (1971) NHK, Ниппон Колумбия. Параллельно опыты вели ВВС, создавшие цифровой двухканальный рекордер. Годом позже британцы провели пробную цифровую трансляцию. Развитие цифровой записи предшествовало появлению вещания.

  • Четвёртое поколение коммутаторов 4ESS внедрено в систему телефонных линий США (1976).
  • Линейная кодово-импульсная модуляция (1982) включена красной книгой стандартов записи компакт-дисков.
  • AES3, основа будущего S/DIF, вводится в обиход (1985).
  • Формат файлов.WAV становится стандартом персональных компьютеров (1991).
  • Мировая запись носителей переходит на цифру: DVD (1995), Blu-ray (2005).
  • Разработка цифровых протоколов передачи (2001) любительских раций (D-STAR, компании ICOM).
  • HDMI поддерживает кодово-импульсную модуляцию (2002).
  • Контейнер RF64 включает КИМ (2007).

Резюме развития технологии

Виды радиолюбительской связи на КВ принёс миллениум. Упоминая наработки Второй мировой войны, попутно обсуждали громадные размеры оборудования (машинные залы). Минимизация шла полным ходом, однако новинки оставались засекреченными. Исключая области записи, компьютерных сетей. Развал СССР явил миру чудеса цифровой техники: вещание, персональные вычислительные машины, связь. Поэтапно мир выбрасывает вон аналоговые технологии, модернизируя оборудование.

Структурная схема процесса позволяет игнорировать старение, погодные условия, помехи. Модем шутя выполняет работу машинного зала времён Второй мировой войны. Радиолюбителям стали выделять технику, о которой мечтали вьетнамские войска. Процесс вскоре позволит домоседам проектировать системы, насиживая уютное кресло. Возблагодарим интернет, подаривший людям возможности, доселе не известные планете.

Рис. 1.2. Структурная схема цифровой системы связи.

Рис.1.3. - Процесс преобразования дискретного сообщения в сигнал и обратного преобразования сигнала в сообщение

Дадим описание каждого блока структурной схемы цифровой системы передачи непрерывных сообщений.

1. Источник информации (сообщения) генерирует сигнал, предназначенный для дальнейшей передачи в канале связи. Этот сигнал должен содержать случайную составляющую, иначе он не будет нести никакой информации.

Источник информации может выдавать данные для передачи по каналу связи как в цифровом виде (современные носители цифровой информации, различные датчики с цифровым интерфейсом и т. д.), так и в аналоговом виде (аналоговые датчики, передача звука и изображения и др.). Независимо от типа источника информации данные должны быть представлены в как можно более сжатом цифровом виде. Процесс эффективного преобразования данных в последовательность двоичных символов называется кодированием источника или сжатием данных . Как правило, данные на цифровых носителях являются уже сжатыми (например, формат цифрового кодирования звуковой информации с потерями MP3, алгоритмы сжатия видеоинформации MPEG, алгоритм сжатия изображений JPEG), тогда как данные с аналоговых источников информации зачастую слишком избыточны и требуют сжатия.

2. Аналогово-цифровой преобразователь. В составе цифрового канала предусмотрены устройства для преобразования непрерывного сообщения в цифровую формуаналогово-цифровой преобразователь на передающей стороне и устройство преобразования цифрового сигнала в непрерывный – ЦАП на приемной стороне. АЦП посредством импульсно-кодовой модуляции переводит сигнал из аналоговой формы в цифровую, представленную в виде последовательности m-ичных кодовых комбинаций. На приемной стороне ЦАП восстанавливает исходное сообщение по принятым кодовым комбинациям.

Рис.1.4. Структурная схема АЦП

Суть преобразования аналоговых величин заключается в представлении некой непрерывной функции (например, напряжения) от времени в последовательность чисел, отнесенных к неким фиксированным моментам времени. Пусть, к примеру, есть какой-либо сигнал (непрерывный) и для преобразования его в цифровой необходимо этот сигнал представить в виде последовательности определенных чисел, каждое из которых относится к определенному моменту времени. Для преобразования аналогового (непрерывного) сигнала в цифровой необходимо выполнить 3 операции: дискретизация, квантование и кодирование.

Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.



3. Модулятор (лат. modulator - соблюдающий ритм) -устройство, изменяющее параметры несущего сигнала в соответствии с изменениями передаваемого (информационного) сигнала. Этот процесс называют модуляцией , а передаваемый сигнал модулирующим .

По виду управляемых параметров модуляторы делятся на: амплитудные , частотные , фазовые , квадратурные , однополосные и т.д. Если несущими являются импульсные сигналы, то их модулируют с помощью амплитудно-импульсных, частотно-импульсных, время-импульсных и широтно-импульсных модуляторов. Качество работы модуляторов определяется линейностью его модуляционных характеристик.

Модулятор является одной из составных частей передающих устройств радиосвязи, радио- и телевещания. Здесь несущими являются высокочастотные гармонические колебания, а модулирующими - колебания звуковой частоты и видеосигналы. Модуляторы также применяют в радиолокации, системах кодово-импульсной связи, телеуправлении и телеметрии. Модуляторы, преобразующие постоянные напряжения в переменные, применяются в усилителях постоянного тока, работающих по принципу модуляции -демодуляции, для устранения дрейфа нуля и повышения чувствительности аналоговых вычислительных устройств. Устройство, работающее по принципу модулятор-демодулятор, называется модем .

Рис.1.5. Модулирование аналогового сигнала

4. Канал связи (англ. channel, data line ) - система технических средств или среда распространения сигналов для передачи данных от источника к получателю. В случае использования проводной линии связи, средой распространения сигнала может являться оптическое волокно или витая пара.

Канал связи является составной частью канала передачи данных. Линией связи называется среда, используемая для передачи сигналов от передатчика к приемнику. В системах электрической связи - это кабель или волновод, в системах радиосвязи - область пространства, в котором распространяются электромагнитные волны от передатчика к приемнику.

Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В. Точки А и В могут быть выбраны произвольно, лишь бы между ними проходил сигнал. Если сигналы, поступающие на вход канала и снимающиеся с его выхода, являются дискретными (по состояниям), то канал называется дискретным . Если входные и выходные сигналы канала являются непрерывными, то и канал называется непрерывным . Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот. Видно, что канал может быть дискретным или непрерывным независимо от характера передаваемых сообщений. Более того, в одной и той же системе связи можно выделить как дискретный, так и непрерывный каналы. Все зависит от того, каким образом выбраны точки А и В входа и выхода канала.

Непрерывный канал связи можно характеризовать так же, как и сигнал, тремя параметрами: временем T k , в течение которого по каналу ведется передача, динамическим диапазоном D k и полосой пропускания канала F k . Также в канале связи на сигнал накладываются помехи, обусловленные различными характеристиками среды распространения.

Важнейшими показателями работы системы связи являются:

Скорость передачи;

Пропускная способность;

Помехоустойчивость.

Кроме того, во всех системах связи должно соблюдаться условие: пропускная способность > скорость передачи.

Под помехоустойчивостью понимают способность системы противостоять вредному влиянию помех на передачу сообщений. Максимальное количество информации, которое может быть передано двоичным символом, получило название бит . Существуют и многие другие параметры, характеризующие с различных точек зрения качества системы связи. К ним относятся скрытность связи , надежность системы , габаритные размеры и масса аппаратуры , стоимость оборудования , эксплуатационные расходы и т. п.

5. Демодулятор , детектор (фр. demodulateur ) - электронный узел устройств, отделяющий полезный (модулирующий) сигнал от несущей составляющей.

Переданное сообщение в приемнике обычно восстанавливается в такой последовательности. Сначала принятый сигнал демодулируется. В системах передачи непрерывных сообщений в результате демодуляции восстанавливается первичный сигнал, отображающий переданное сообщение. Этот сигнал затем поступает на воспроизводящее или записывающее устройство.

В системах передачи дискретных сообщений в результате демодуляции последовательность элементов сигнала превращается в последовательность кодовых символов, после чего эта последовательность преобразуется в последовательность элементов сообщения, выдаваемую получателю. Это преобразование называется декодированием .

Операции демодуляции и декодирования – не просто операции обратные модуляции и кодированию. В результате различных искажений и воздействия помех пришедший сигнал может существенно отличаться от переданного. Поэтому всегда можно высказать несколько предположений о том, какое именно сообщение передавалось. Задачей приемного устройства и является принятие решения о том, какое из возможных сообщений действительно передавалось источником. Та часть приемного устройства, которая осуществляет анализ приходящего сигнала и принимает решение о переданном сообщении, называется решающей схемой .

6. Цифро-аналоговый преобразователь (ЦАП ) - устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами

Общие типы электронных ЦАП:

- широтно-импульсный модулятор - простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi-аудиотехнике;

- ЦАП передискретизации , такие как - ЦАП, основанные на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования. Часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования.

- ЦАП взвешивающего типа , в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов и непостоянного импеданса. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;

- ЦАП лестничного типа (цепная R-2R-схема). В R-2R-ЦАП значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R , называемой матрицей постоянного импеданса. Данная матрица имеет два вида включения: прямое - матрица токов и инверсное - матрица напряжений. Применение одинаковых резисторов позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. ЦАП типа R-2R позволяют отодвинуть ограничения по разрядности. С лазерной подгонкой резисторов на одной подложке достигается точность 20-22 бита. Основное время на преобразование тратится в операционном усилителе, поэтому он должен иметь максимальное быстродействие. Быстродействие ЦАП единицы микросекунд и ниже (то есть наносекунды)

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом.

7. Получатель информации (выход сигнала) – им может служить динамик, экран телевизора, любое воспроизводящее полученный сигнал устройство.

Поскольку человек как получатель информации является ключевым элементом любой телекоммуникационной системы, качество сигнала оценивается по его субъективному восприятию речи. К основным показателям качества принимаемой речи относят: разборчивость (понятность) , громкость и натуральность .

Понятность речи - определяющая характеристика тракта передачи речи, так как если тракт не обеспечивает полной понятности речи, то никакие другие его преимущества не имеют значения - он не пригоден к эксплуатации. Для непосредственного определения этой качественной характеристики есть только один метод – субъективно-статистические испытания (ССИ), требующий большого количества речевого материала, обработанного кодеками и трактом передачи, и привлечения группы экспертов (тренированных слушателей и дикторов). Разработан косвенный, объективный количественный метод определения понятности речи через ее разборчивость .



Рекомендуем почитать

Наверх