Реактивная нагрузка. Понятия активной, полной и реактивной мощностей

Скачать Viber 23.07.2019
Скачать Viber

Расчет электрической энергии, используемой бытовым или промышленным электротехническим прибором, производится обычно с учетом полной мощности электрического тока, проходящего через измеряемую электрическую цепь.

При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей.

Полная мощность.
По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения – полная мощность измеряется в вольт-амперах (ВА), а полезная – в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

Активная электроэнергия.
Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее. Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

Понятие реактивной электроэнергии.
Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия - это часть полной поступаемой мощности, которая не расходуется на полезную работу. В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ». При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации. Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

Расчет реактивной электроэнергии.
Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент. Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7. Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом.

Значение коэффициента при учете потерь.
Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

Расчет стоимости электроэнергии для частных клиентов.
Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются. Учет реактивной электроэнергии для предприятий Другое дело – предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты. Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

Коэффициент реактивной энергии.
Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах.
Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности.
Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию. В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.


Обозначение реактивной составляющей:

Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.


Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

Q L = U L I = I 2 x L

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P 2 + Q 2 , и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: x L = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL – QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит :

  • Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  • У сигнальных и радиоустройств уменьшаются помехи;
  • На порядок уменьшаются гармоники в электрической сети.
  • В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

    Мощность бывает активная, а бывает полная. Спрашивается, полная чем? А вот, мол, тем, что нам служит на пользу, что делает нам полезную работу, но и… оказывается, это еще не все. Еще есть вторая составляющая, которая получается этаким довеском, и она просто сжигает энергию. Греет то что не надо, а нам от этого ни жарко, ни холодно.

    Такая мощность называется реактивной. Но виноваты, как это ни странно, мы сами. Вернее, наша система выработки, передачи и потребления электроэнергии.

    Мощность активная, реактивная и полная

    Мы пользуемся электричеством с помощью сетей переменного тока. Напряжение у нас в сетях каждую секунду колеблется 50 раз от минимального значения до максимального. Это так получилось. Когда изобретали электрический генератор, который механическое движение преобразует в электричество, то оказалось, что perpetuum mobile, или, переведя с латинского, вечное движение, легче всего устроить по кругу. Изобрели когда-то колесо, и с тех пор знаем, что если его подвесить на оси, то можно вращать долго-долго, а оно будет оставаться все на том же месте - на оси.

    Почему у нас в сети напряжение переменное

    И электрический генератор имеет ось и нечто, на ней вращающееся. А в результате и получается электрическое напряжение. Только генератор состоит из двух частей: вращающейся, ротора, и неподвижной, статора. И обе они участвуют в выработке электроэнергии. А когда одна часть крутится около другой, то неизбежно точки поверхности вращающейся части то приближаются к точкам поверхности неподвижной, то от них отдаляются. И это совместное их положение с неизбежностью описывается только одной математической функцией - синусоидой. Синусоида есть проекция вращения по кругу на одну из геометрических осей. Но осей таких можно построить много. Обычно наши координаты друг другу перпендикулярны. И тогда при вращении по кругу некоторой точки на одной оси проекцией вращения будет синусоида, а по другой - косинусоида, или та же синусоида, только смещенная относительно первой на четверть поворота, или на 90°.

    Вот нечто такое и представляет собой напряжение, которое доводит до нашей квартиры электрическая сеть.

    угол поворота здесь разбит не на 360 градусов,
    а на 24 деления. То есть одно деление соответствует 15°
    6 делений = 90°

    Итак, напряжение в нашей сети синусоидальное с частотой 50 герц и амплитудой 220 вольт, потому что удобнее было делать генераторы, которые вырабатывают напряжение именно переменное.

    Выгода от переменного напряжения - выгода системы

    А чтобы сделать напряжение постоянным, надо специально его выпрямить. И это можно делать либо прямо в генераторе (специально сконструированном - тогда он станет генератором постоянного тока), либо когда-нибудь потом. Вот это «когда-нибудь» и получилось снова очень кстати, потому что переменное напряжение можно преобразовывать трансформатором - повышать или понижать. Это оказалось вторым удобством переменного напряжения. А повысив его трансформаторами до напряжений буквально ЗАПРЕДЕЛЬНЫХ (полмиллиона вольт и больше), можно передавать на гигантские расстояния по проводам без гигантских при этом потерь. И это тоже пришлось вполне кстати в нашей большой стране.

    Вот, доведя, все-таки, напряжение до нашей квартиры, понизив его до хоть сколько-то мыслимой (хотя все еще и опасной) величины в 220 вольт, преобразовать его в постоянное опять забыли. Да и зачем? Лампочки горят, холодильник работает, телевизор показывает. Хотя в телевизоре этих постоянных/переменных напряжений… но, не будем тут еще и об этом.

    Убытки от переменного напряжения

    И вот мы пользуемся сетью переменного напряжения.

    А в ней присутствует «плата за забывчивость» - реактивное сопротивление наших потребляющих сетей и их реактивная мощность. Реактивное сопротивление - это сопротивление переменному току. И мощность, которая просто-напросто уходит мимо наших потребляющих электроприборов.

    Ток, идя по проводам, создает вокруг них электрическое поле. Электростатическое поле притягивает к себе заряды со всего, что источник поля, то есть ток, окружает. А изменение тока создает еще и поле электромагнитное, которое начинает бесконтактно наводить во всех проводниках вокруг электрические токи. Так, наша токовая синусоида, как только мы что-то у себя включаем, есть не просто ток, а непрерывное его изменение. Проводников вокруг хватает, начиная от металлических корпусов тех же электроприборов, металлических труб водоснабжения, отопления, канализации и кончая прутами арматуры в железобетонных стенах и перекрытиях. Вот во всем этом и наводится электричество. Даже вода в бачке унитаза, и та участвует во всеобщем веселье - в ней тоже индуцируются токи наводки. Такое электричество нам совсем не нужно, мы его «не заказывали». Но оно эти проводники пытается разогреть, а значит, уносит из нашей квартирной сети электроэнергию.

    Чтобы охарактеризовать соотношение мощностей в сети нашего переменного тока, рисуют треугольник.

    S – полная мощность, расходуемая нашей сетью,
    P – активная мощность, она же полезная активная нагрузка,
    Q – мощность реактивная.

    Мощность полную можно замерить ваттметром, а активная мощность получается расчетом нашей сети, в которой мы учитываем только полезные для нас нагрузки. Естественно, сопротивлением проводов мы пренебрегаем, считая их малыми относительно полезных сопротивлений электроприборов.

    Полная мощность

    S = U x I = U a x I f

    То есть, чем «тупее» этот острый угол, тем хуже у нас работает внутренняя квартирная потребляющая сеть - много энергии уходит в потери.

    Что такое активная, реактивная и полная мощности

    Угол j можно еще назвать углом фазового сдвига между током и напряжением в нашей сети. Ток является результатом приложения к нашей сети исходного напряжения в 220 вольт частотой в 50 герц. Когда нагрузка активна, то фаза тока совпадает с фазой напряжения в ней. А реактивные нагрузки эту фазу сдвигают на этот угол.

    Собственно говоря, угол и характеризует степень эффективности нашего потребления энергии. И надо стараться его уменьшить. Тогда S будет приближаться к P.

    Только удобнее оперировать не с углом, а с косинусом угла. Это как раз и есть соотношение двух мощностей:

    Косинус угла приближается к единице, когда угол приближается к нулю. То есть, чем острее угол j, тем лучше, эффективнее работает электрическая потребляющая сеть. На практике, если добиться величины косинуса фи (а его можно выразить в процентах) порядка 70–90%, то это уже считается неплохо.

    Часто используется другое отношение, связывающее активную мощность и реактивную:

    Из диаграммы тока и напряжения можно найти выражения для мощностей: активной, реактивной и полной.

    Если более привычная нам активная мощность измеряется в ваттах, то полная мощность измеряется в вольт-амперах (вар). Ватт из вара можно посчитать умножением на косинус фи.

    Что такое реактивная мощность

    Реактивная мощность бывает индуктивная и емкостная. Они ведут себя в электрической цепи по-разному. На постоянном токе индуктивность - это просто кусок провода, имеющий какое-то очень малое сопротивление. А конденсатор на постоянном напряжении - просто разрыв в цепи.

    И когда мы их включаем в цепь, подводим к ним напряжение, во время переходного процесса они ведут себя тоже прямо противоположно. Конденсатор заряжается, при этом возникающий ток сначала большой, потом, по мере зарядки, маленький, уменьшающийся до нуля.

    В индуктивности, катушке с проводом, возникающее магнитное поле после включения в самом начале сильно препятствует прохождению тока, и он сначала маленький, потом увеличивается до своего стационарного значения, определяемого активными элементами схемы.

    Конденсаторы, таким образом, способствуют изменению тока в цепи, а индуктивности препятствуют изменению тока.

    Индуктивная и емкостная составляющие сопротивления сети

    Таким образом, реактивные элементы имеют свои разновидности сопротивления - емкостное и индуктивное. С полным сопротивлением, включающим активную и реактивную составляющие, это связывается следующей формулой:

    Z – полное сопротивление,

    R – активное сопротивление,

    X – реактивное сопротивление.

    В свою очередь, реактивное сопротивление состоит из двух частей:

    X L – индуктивной и X C – емкостной.

    Отсюда мы видим, что вклад в реактивную составляющую у них разный.

    Все, что в сети индуктивно, увеличивает реактивное сопротивление сети, все, что в сети имеет емкостной характер, уменьшает реактивное сопротивление.

    Электроприборы, влияющие на качество потребления

    Если бы все приборы у нас в сети были, как лампочки, то есть являлись чисто активной нагрузкой, проблем бы не было. Была бы активная потребляющая сеть, одна сплошная активная нагрузка, и, как говорится, в чистом поле - вокруг ничего, то все легко бы подсчитывалось по законам Ома и Кирхгофа, и было справедливо - сколько потребил, за столько и заплатил. Но вот имея и вокруг себя загадочную токопроводящую «инфраструктуру», и в самой сети множество неучтенных емкостей и индуктивностей, мы и получаем, кроме полезной нам, еще и реактивную, ненужную нам нагрузку.

    Как от нее избавиться? Когда электрическая потребляющая сеть уже создана, то можно проводить мероприятия по уменьшению реактивной составляющей. Компенсация и строится на «антагонизме» индуктивностей и емкостей.

    То есть, в сложившейся сети следует измерить ее составляющие, а потом придумать компенсацию.

    Особенно хороший эффект от таких мероприятий достигается в больших потребляющих сетях. Например, на уровне заводского цеха, имеющего большое количество постоянно работающего оборудования.

    Для компенсации реактивной составляющей используются специальные компенсаторы реактивной мощности (КРМ), содержащие в своей конструкции конденсаторы, меняющие суммарный сдвиг фаз в сети в лучшую сторону.

    Еще приветствуется использование в сетях синхронных двигателей переменного тока, так как они способны компенсировать реактивную мощность. Принцип простой: в сети они способны работать в режиме двигателя, а когда при сдвиге фаз наблюдается «завал» электроэнергии (других слов язык уже не находит), они способны компенсировать это, «подрабатывая» в сети в режиме генератора.

    Наверняка многие из вас слышали о реактивной электроэнергии. Зная, насколько сложен для понимания этот термин, давайте разберём детально отличия реактивной и активной энергии. Важно осознать тот факт, что реактивную электроэнергию мы можем наблюдать только в переменном токе. Там, где течёт постоянный ток, реактивная энергия не присутствует. Обусловлено это природой появления реактивной энергии .

    Через несколько понижающих трансформаторов к потребителю поступает переменный ток, конструкция которых разделяет обмотки низкого и высокого напряжения. То есть получается так, что в трансформаторе отсутствует физический контакт между двумя обмотками, при этом ток всё равно течёт. Объяснить это довольно просто. Электроэнергия всегда передаётся через воздух, который является прекрасным диэлектриком, при помощи электромагнитного поля, составляющая которого – переменное магнитное поле. Оно регулярно пересекает обмотку, появляясь в другой, и не имеет с первой электрического контакта, наводя электродвижущую силу. Коэффициент полезного действия у современных трансформаторов достаточно велик, отсюда потеря электроэнергии сводиться к минимуму, и потому вся мощь переменного тока, который протекает в первичной обмотке, оказывается в цепи вторичной обмотки. Тоже самое происходит в конденсаторе, правда, уже за счёт электрического поля. Ёмкость и индуктивность вместе порождают реактивную энергию. Активная энергия (которой мешает возврат реактивной энергии) преобразовывается в тепловую, механическую и другую.


    Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.

    Пример : если на электродрели указана величина мощности в 800 Вт и cosφ = 0,8, то отсюда следует, что потребляемая инструментом полная мощность составляет 800/0,8=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.

    Реактивный тип нагрузки характеризуется тем, что сначала, неторое время, в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю - реактивная составляющая мощности обычно считается вредной характеристикой цепи.


    Для того, чтобы компенсировать противодействие реактивной энергии, применяются специальные устанавливаемые конденсаторы. Это заставляет свести к минимуму появляющееся негативное влияние реактивной энергии. Мы уже отмечали, что реактивная мощность существенно влияет на потерю электрической энергии в сети. Потому получается, что величину той самой негативной энергии приходиться постоянно держать под контролем, и лучший для этого способ – организовать её учёт.

    Там, где озабочены этой проблемой (различные промышленные предприятия) довольно часто ставят отдельные специальные приборы, которые ведут учёт не только самой реактивной энергии, но и активной её части. Учёт ведётся в трёхфазных сетях по индуктивной и ёмкостной составляющей. Обычно такие счётчики, это не что иное, как аналого-цифровое устройство, которое преобразует мощность в аналоговый сигнал, который превращается в частоту следования электро-импульсов. Сложив их, мы можем судить о количестве потребляемой энергии. Обычно счётчик сделан из пластмассового корпуса, где установлены 3 трансформатора и блок учёта на печатной плате. На внешней стороне располагается ЖК экран или светодиоды.


    Предприятия в настоящее время всё чаще ставят универсальные счётчики учёта электроэнергии, которые измеряют количество как активной, так и реактивной энергии. Более того, такие приборы могут совмещать функции от двух, а иногда и более устройств, что позволяет снижать затраты на обслуживание и позволяет сэкономить во время покупки. Такие устройство способны вычислять реактивную и активную мощность, а также измерять мгновенные значения напряжений. Счётчик фиксирует, каков уровень потребления энергии и показывает всю информацию на дисплее 3-мя сменяющимися кадрами (индуктивная составляющая, ёмкостная составляющая, а также объём активной энергии). Современные модели позволяют передавать данные по ИК цифровому каналу, защищены от магнитных полей, хищения энергии. Более того, мы получаем более точные измерения и малое энергопотребление, что выгодно отличает новые модели от предшественников.

    Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

    Определение

    Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

    Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

    Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.


    Обозначение реактивной составляющей:

    Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

    Расчет

    Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

    S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

    Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

    Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

    S = U * I * cos φ.

    Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

    Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.


    Максимальная и активная обозначается P, реактивная мощность – Q.

    Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

    Q L = U L I = I 2 x L

    Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

    Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

    S = √P 2 + Q 2 , и все это равняется U*I .

    Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

    Сопротивление индуктивности: x L = ωL = 2πfL,

    Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

    Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

    При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

    К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

    cos φ = r/z = P/S

    Для получения максимально точных результатов рекомендуется не округлять полученные данные.

    Компенсация

    Учитывая, что при резонансе токов реактивная мощность равняется 0:

    Q = QL – QC = ULI – UCI

    Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

    При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит :

  • Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  • У сигнальных и радиоустройств уменьшаются помехи;
  • На порядок уменьшаются гармоники в электрической сети.
  • В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.



    Рекомендуем почитать

    Наверх