Цифровое кодирование сигнала. Кодирование формы сигнала

Скачать Viber 13.05.2019
Скачать Viber

Общие сведения

Как известно, для передачи информации ее представляют в форме сообщения, например текста. При этом сообщение формируется из некоторого набора символов (букв). Набор символов, из которого формируется сообщение, называется первичным алфавитом . Первичный алфавит обычно содержит большое число символов, например, в русском языке первичный алфавит составляет 33 символа (буквы). При передаче сообщения на него воздействуют помехи, что приводит к изменению символов сообщения, а поскольку количество символов сравнительно большое и вероятность появления их одинакова, то восстановить исходное сообщение довольно сложно. Поэтому осуществляют переход от первичного алфавита с большим количеством символов к вторичному алфавиту с малым числом символов. Так как количество символов вторичного алфавита меньше, то и восстановить исходное сообщение становится легче. Таким образом, можно сказать, что, вторичный алфавит это набор символов, с помощью которого осуществляется отображение символов первичного алфавита. Процесс перехода от первичного алфавита к его вторичному отображению называется кодированием . Набор элементов и правило, в соответствии с которым осуществляется переход от первичного алфавита ко вторичному отображению называется кодом . В процессе кодирования каждому символу первичного алфавита соответствует некоторый набор символов вторичного алфавита. Последовательность символов вторичного алфавита соответствующая одному символу первичного алфавита называется кодовой комбинацией . Для того чтобы правильно восстановить закодированное исходное сообщение необходимо, чтобы кодовые комбинации различных символов первичного алфавита не повторялись.

Основными задачами кодирования являются повышение помехоустойчивости передаваемых сообщений, удаление избыточности из закодированных сообщений и защита информации от несанкционированного доступа (постороннего прослушивания).

Автоматическое кодирование осуществляется в устройстве называемом кодером , а обратный процесс декодирование происходит в декодере . Устройство, объединяющее кодер и декодер называется кодек .

Система передачи сообщений с кодированием представлена на рисунке 1.

Рисунок 1 - Структурная схема системы передачи с кодированием сигналов

Источник сообщения (ИС) формирует сообщение, которое преобразуется в сигнал в преобразователе сообщения в сигнал (ПСС1). Аналоговый сигнал из ПСС1 поступает в аналого-цифровой преобразователь (АЦП) где аналоговый сигнал преобразуется в цифровой. Цифровой сигнал поступает в кодер источника. В кодере источника из закодированного сообщения удаляют избыточность, что позволяет увеличить скорость передачи информации в канале. Полученная на выходе кодера кодовая последовательность Аi поступает в кодер канала. В кодере канала осуществляется кодирование с целью повышения помехоустойчивости сигнала. Для этого кодирования используются корректирующие (помехоустойчивые) коды. Полученная в кодере канала последовательность Bip поступает в канал связи. Под действием помех N(t), воздействующих в канале возможны искажения принимаемого сигнала, проявляющиеся в изменении элементов кодовой последовательности. Принимаемая из канала последовательность Bip’ поступает в кодер канал. В нем осуществляется декодирование и исправление (коррекция) ошибок. Полученная на выходе последовательность Ai’ поступает в декодер источника, в котором восстанавливается избыточность закодированного сообщения. Затем сигнал поступает в цифро-аналоговый преобразователь (ЦАП), где осуществляется преобразование цифрового сигнала в аналоговый. Затем сигнал поступает в преобразователь сигнала в сообщение (ПСС2), где он преобразуется в форму удобную для получателя. Полученное сообщение воспринимается получателем (ПС).

Параметры кодов

Основание кода (m ) — соответствует количеству элементов, из которых состоит вторичный алфавит, соответствует системе счисления. Например в двоичном коде символы могут принимать два значения «0» и «1» или «.» и «-».

Разрядность кодовой комбинации (n ) — соответствует количеству элементов, из которых состоит кодовая комбинация. Например, для кодовой комбинации 100110 разрядность составляет 6.

Емкость кода (N 0 ) — соответствует количеству возможных кодовых комбинаций при заданном основании и разрядности:

N 0 = m n .

Данный показатель применяют к равномерным кодам.

Количество сообщений, которые необходимо закодировать N а — соответствует количеству символов первичного алфавита. Например для русского алфавита N а = 33.

Для корректирующих кодов вводятся следующие параметры.

Вес кодовой комбинации (W ) — соответствует количеству ненулевых элементов в кодовой комбинации. Например, для кодовой комбинации 11011 вес равен W = 4.

Расстояние Хэмминга (d ij ) — показывает, на сколько разрядов одна кодовая комбинация отличается от другой. Данный параметр определяется как вес кодовой комбинации полученной в результате сложения по модулю два двух рассматриваемых комбинаций

Кодовое расстояние (d 0) — это наименьшее расстояние Хэмминга для заданного кода. Для его определения d 0 производится определение расстояния Хэмминга для всех возможных пар кодовых комбинаций кода, после чего выбирается наименьшее. Например, для кода состоящего из трех кодовых комбинаций 100101, 011010, 100011 кодовое расстояние будет равно

Относительная скорость кода (R к) — показывает относительное число разрешенных комбинаций кода.

R к = log 2 Na / log 2 N 0 .

Избыточность кода (c к ) — показывает относительное число запрещенных комбинации кода.

c к = 1 – R к.

Корректирующая способность кода — определяется кратностями обнаруживаемых (q о ош) и исправляемых (q и ош) ошибок, под которыми понимают гарантированное число обнаруживаемых и исправляемых ошибок в кодовых комбинациях кодом. Например, если q о ош = 1, то код способен обнаружить ошибку в любом разряде принятой комбинации, при условии, что она одна, а если q и ош = 1 то код способен исправить одну ошибку в любом разряде принятой комбинации, при условии, что она одна.

Классификация кодов

Общая классификация кодов представлена схемой (рисунок 2).

Двоичные — это коды, основание которых равно двум (m=2), примерами таких кодов может являться код Морзе, линейный двоичный код.

Многопозиционные — это коды, основание которых больше двух (m>2).

Равномерные — это коды, все кодовые комбинации которых имеют одинаковую разрядность (n=const), примерами таких кодов могут являться циклические коды, МТК-3.

Неравномерные — это коды, кодовые комбинации которых имеют различную разрядность (n?const), примерами таких кодов могут являться код Шеннона-Фано, код Хафмена, код Морзе.

Простые — это коды, в которых все возможные кодовые комбинации используются для передачи сообщения (N 0 =N a). Такие коды не обладают способностью обнаруживать и исправлять ошибки в кодовых комбинациях.

Рисунок 2 - Классификация кодов

Избыточные — это коды, в которых часть кодовых комбинаций используется для передачи сообщений (разрешенные комбинации ), а остальные комбинации не используется для передачи сообщений (запрещенные комбинации ), т. е. у таких кодов N 0 >N a . Такие коды способны обнаруживать и исправлять ошибки в кодовых комбинациях.

Последовательные — это коды, разряды кодовых комбинаций которых передаются последовательно друг за другом. Такие коды используются для передачи сообщений в каналы связи (код Морзе, МТК-3, HDB-3).

Параллельные — это коды, разряды кодовых комбинаций которых передаются одновременно. Такие коды используются в микропроцессорной технике, а также к ним можно отнести многочастотные коды, используемые в координатных АТС.

). Физическое кодирование может менять форму, ширину полосы частот и гармонический состав сигнала в целях осуществления синхронизации приёмника и передатчика, устранения постоянной составляющей или уменьшения аппаратных затрат.

Энциклопедичный YouTube

  • 1 / 5

    Система кодирования сигналов имеет многоуровневую иерархию.

    Физическое кодирование

    Самым нижним уровнем в иерархии кодирования является физическое кодирование, которое определяет число дискретных уровней сигнала (амплитуды напряжения, амплитуды тока, амплитуды яркости).

    Физическое кодирование рассматривает кодирование только на самом низшем уровне иерархии кодирования - на физическом уровне и не рассматривает более высокие уровни в иерархии кодирования, к которым относятся логические кодирования различных уровней.

    С точки зрения физического кодирования цифровой сигнал может иметь два, три, четыре, пять и т. д. уровней амплитуды напряжения, амплитуды тока, амплитуды света.

    Ни в одной из версий технологии Ethernet не применяется прямое двоичное кодирование бита 0 напряжением 0 вольт и бита 1 - напряжением +5 вольт, так как такой способ приводит к неоднозначности. Если одна станция посылает битовую строку 00010000, то другая станция может интерпретировать её либо как 10000, либо как 01000, так как она не может отличить «отсутствие сигнала» от бита 0. Поэтому принимающей машине необходим способ однозначного определения начала, конца и середины каждого бита без помощи внешнего таймера. Кодирование сигнала на физическом уровне позволяет приемнику синхронизироваться с передатчиком по смене напряжения в середине периода битов.

    Логическое кодирование

    Вторым уровнем в иерархии кодирования является самый нижний уровень логического кодирования с разными назначениями.

    В совокупности физическое кодирование и логическое кодирование образуют систему кодирования самого низшего уровня.

    Форматы кодов

    Каждый бит кодового слова передается или записывается с помощью дискретных сигналов, например, импульсов. Способ представления исходного кода определенными сигналами определяется форматом кода. Известно большое количество форматов, каждый из которых имеет свои достоинства и недостатки и предназначен для использования в определенной аппаратуре.

    • Формат БВН (без возвращения к нулю) естественным образом соответствует режиму работы логических схем. Единичный бит передается в пределах такта уровень не меняется. Положительный перепад означает переход из 0 к 1 в исходном коде, отрицательный - от 1 к 0. Отсутствие перепадов показывает, что значения предыдущего и последующего битов равны. Для декодирования кодов в формате БВН необходимы тактовые импульсы, так как в его спектре не содержится тактовая частота. Соответствующий коду формата БВН сигнал содержит низкочастотные компоненты (при передаче длинных серий нулей или единиц перепады не возникают).
    • Формат БВН-1 (без возвращения к нулю с перепадом при передаче 1) является разновидностью формата БВН. В отличие от последнего в БВН-1 уровень не передает данные, так как и положительные и отрицательные перепады соответствуют единичным битам. Перепады сигнала формируются при передаче 1. При передаче 0 уровень не меняется. Для декодирования требуются тактовые импульсы.
    • Формат БВН −0 (без возвращения к нулю с перепадом при передаче 0) является дополнительным к БВН-1 (перепады соответствуют нулевым битам исходного кода). В многодорожечных системах записи цифровых сигналов вместе с кодом в формате БВН надо записывать тактовые импульсы. Возможным вариантом является запись двух дополнительных сигналов, соответствующих кодам в форматах БВН-1 и БВН-0. В одном из двух сигналов перепады происходят в каждом такте, что позволяет получить импульсы тактовой частоты.
    • Формат ВН (с возвращением к нулю) требует передачи импульса, занимающего только часть тактового интервала (например, половину), при одиночном бите. При нулевом бите импульс не формируется.
    • Формат ВН-П (с активной паузой) означает передачу импульса положительной полярности при единичном бите и отрицательной - при нулевом бите. Сигнал этого формата имеет в спектре компоненты тактовой частоты. Он применяется в ряде случаев для передачи данных по линиям связи.
    • Формат ДФ-0 (двухфазный со скачком фазы при передаче 0) соответствует способу представления, при котором перепады формируются в начале каждого такта. При единичных битах сигнал в этом формате меняется с тактовой частотой, то есть в середине каждого такта происходит перепад уровня. При передаче нулевого бита перепад в середине такта не формируется, то есть имеет место скачок фазы. Код в данном формате обладает возможностью самосинхронизации и не требует передачи тактовых сигналов.

    Направление перепада при передаче сигнала единицы не имеет значения. Поэтому изменение полярности кодированного сигнала не влияет на результат декодирования. Он может передаваться по симметричным линиям без постоянной составляющей. Это также упрощает его магнитную запись. Этот формат известен также под названием «Манчестер 1». Он используется в адресно-временном коде SMPTE, широко применяющемся для синхронизации носителей звуковой и видеоинформации.

    Системы с двухуровневым кодированием

    Без возврата к нулю

    Потенциальное кодирование, также называется кодированием без возвращения к нулю (NRZ (англ.) русск. ).

    При передаче нуля он передает потенциал, который был установлен на предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называется потенциальным кодом с инверсией при единице (NRZI).

    NRZ

    Для передачи единиц и нулей используются два устойчиво различаемых потенциала:

    • биты 0 представляются нулевым напряжением 0 (В);
    • биты 1 представляются значением U (В).

    NRZ (перевёрнутый):

    • биты 0 представляются значением U (В);
    • биты 1 представляются нулевым напряжением 0 (В).

    Простейший код, обычный цифровой (дискретный) сигнал (может быть преобразован на обратную полярность или изменены уровни соответствующие нулю и единице).

    Достоинства - простая реализация; не нужно кодировать и декодировать на концах. Высокая скорость передачи при заданной полосе пропускания (для обеспечения пропускной способности в 10Мбит/сек полоса пропускания составит 5 МГц, так как одно колебание равно 2 битам). Для синхронизации передачи байта используется старт-стоповый бит.

    Недостатки - Наличие постоянной составляющей, из за чего невозможно обеспечить гальваническую развязку с помощью трансформатора. Высокие требования к синхронизации частот на приёмном и передающем конце - за время передачи одного слова (байта) приемник не должен сбиться больше, чем на бит (например для слова длиной в байт с битом старта и стопа, то есть всего 10 бит канальной информации, рассинхронизация частот приёмника и передатчика не может превышать 10 % в обе стороны, для слова в 16 бит, то есть 18 бит канальной информации, рассинхронизация не должна превышать 5,5 %, а в физических реализациях и того меньше).

    NRZI

    При передаче последовательности единиц, сигнал, в отличие от других методов кодирования, не возвращается к нулю в течение такта. То есть смена сигнала происходит при передаче единицы, а передача нуля не приводит к изменению напряжения.

    Достоинства метода NRZI:

    • Простота реализации.
    • Метод обладает хорошей распознаваемостью ошибок (благодаря наличию двух резко отличающихся потенциалов).
    • Основная гармоника f0 имеет достаточно низкую частоту (равную N/2 Гц, где N - битовая скорость передачи дискретных данных бит/с), что приводит к узкому спектру.

    Недостатки метода NRZI:

    • Метод не обладает свойством самосинхронизации. Даже при наличии высокоточного тактового генератора приёмник может ошибиться с выбором момента съёма данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита.
    • Вторым серьёзным недостатком метода, является наличие низкочастотной составляющей, которая приближается к постоянному сигналу при передаче длинных последовательностей единиц и нулей (можно обойти сжатием передаваемых данных). Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приёмником и источником, этот вид кодирования не поддерживают. Поэтому в сетях код NRZ в основном используется в виде различных его модификаций, в которых устранены как плохая самосинхронизация кода, так и проблемы постоянной составляющей.

    MLT-3 Multi Level Transmission - 3 (многоуровневая передача) - немного схож с кодом NRZI, но в отличие от последнего имеет три уровня сигнала. Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче «нуля» сигнал не меняется.

    Этот код, так же как и NRZI нуждается в предварительном кодировании. Используется в Fast Ethernet 100Base-TX .

    Гибридный троичный код (англ.) русск.

    Входной бит Предыдущее состояние
    на выходе
    Выходной бит
    0 +
    0
    0
    1 +
    0 +

    4B3T [убрать шаблон]

    Таблица кодирования:

    MMS 43 coding table
    Input Accumulated DC offset
    1 2 3 4
    0000 + 0 + (+2) 0−0 (−1)
    0001 0 − + (+0)
    0010 + − 0 (+0)
    0011 0 0 + (+1) − − 0 (−2)
    0100 − + 0 (+0)
    0101 0 + + (+2) − 0 0 (−1)
    0110 − + + (+1) − − + (−1)
    0111 − 0 + (+0)
    1000 + 0 0 (+1) 0 − − (−2)
    1001 + − + (+1) − − − (−3)
    1010 + + − (+1) + − − (−1)
    1011 + 0 − (+0)
    1100 + + + (+3) − + − (−1)
    1101 0 + 0 (+1) − 0 − (−2)
    1110 0 + − (+0)
    1111 + + 0 (+2) 0 0 − (−1)

    Таблица декодирования.

    1.5 Кодирование сигналов

    1.5.1 Основные виды и способы обработки

    и кодирования данных

    Этап подготовки информации связан с процессом формирования структуры информационного потока. Такая структура должна обеспечивать возможность передачи информации от объекта к субъекту (от источника к потребителю) по каналам коммуникаций посредством определенных сигналов или знаков, а также возможность однозначного понимания этих сигналов и обеспечения их записи на соответствующие носители информации. Для этого осуществляется кодирование сигналов.

    Кодирование информации – одна из базовых тем курса теоретических основ информатики, отражающая фундаментальную необходимость представления информации в какой-либо форме. При этом слово "кодирование" понимается не в узком смысле – как способ сделать сообщение непонятным для всех, кто не владеет ключом кода, а в широком – как представление информации в виде сообщения на любом языке. В канале связи сообщение, составленное из символов (букв) одного алфавита, может преобразоваться в сообщение из символов (букв) другого алфавита.

    Код – правило (алгоритм), сопоставляющее каждое конкретное сообщение (информацию) со строго определенной комбинацией различных символов (или соответствующих им сигналов).

    Кодирование – процесс преобразования сообщения (информации) в комбинацию различных символов или соответствующих им сигналов, осуществляющийся в момент поступления сообщения от источника в канал связи.

    Кодовое слово – последовательность символов, которая в процессе кодирования присваивается каждому из множеств передаваемых сообщений.

    Декодирование – процесс восстановления содержания сообщения по данному коду.

    Необходимым условием декодирования является взаимно однозначное соответствие кодовых слов во вторичном алфавите кодируемым символам первичного алфавита.

    Устройство, обеспечивающее кодирование, называют кодировщиком.

    Система кодирования – совокупность правил кодового обозначения объектов – применяется для замены названия объекта на условное обозначение (код) в целях обеспечения удобной и более эффективной обработки информации, т. е. кодирование – это отображение информации с помощью некоторого языка. Любой язык состоит из алфавита, включающего в себя буквы, цифры и другие символы, и правил составления слов и фраз (синтаксических правил).

    Первичный алфавит – символы, при помощи которых записано передаваемое сообщении; вторичный – символы, при помощи которых сообщение трансформируется в код.

    Код характеризуется длиной (числом позиций в коде) и структурой (порядком расположения символов, используемых для обозначения классификационного признака).

    Неравномерные (некомплектные) коды – это коды, с помощью которых сообщения кодируются комбинациями с неравномерным количеством символов; равномерные (комплектные) – коды, с помощью которых сообщения представлены комбинациями с равным количеством символов.

    5) Для хранения в ЭВМ информация кодируется. При выборе языка создатели руководствовались следующими соображениями:

    Буквы алфавита должны надежно распознаваться (нельзя допустить, чтобы одна буква была принята за другую);

    Алфавит должен быть как можно проще, т. е. содержать поменьше букв;

    Синтаксис языка (правила построения слов и фраз) должен быть строгим, однозначным, не допускающим неопределенности.

    6) Таким свойством обладают математические теории, в них все строго определено.

    7) 1.5.2 Кодирование текста

    Не возникает никаких проблем при кодировании информации, представимой с помощью ограниченного набора символов – алфавита. Достаточно пронумеровать все знаки этого алфавита и затем записывать в память компьютера и обрабатывать соответствующие номера. Самым простым алфавитом является тот, в котором всего две буквы, два символа.

    При кодировании текста для каждого его символа отводится обычно 1 байт. Именно по этой причине ячейка памяти в компьютере сделана так, что может хранить сразу восемь бит (1 байт), т. е. целый символ. Это позволяет использовать 2 8 = 256 различных символов, так как в ЭВМ надо кодировать все буквы: английские – 52 буквы (прописные и строчные), русские – 66 букв, 10 цифр, знаки препинания, арифметических операций и т. п.:

    9) Хорошо видно, что если у числа разрядность равна n, то количество n-разрядных чисел равно 2 n:

    13) Чтобы закодировать порядка 256 букв и символов, требуется использовать 8-разрядные числа.

    Соответствие между символом и его кодом может быть выбрано совершенно произвольно. Однако на практике необходимо иметь возможность прочесть на одном компьютере текст, созданный на другом, поэтому таблицы кодировок стараются стандартизовать. Практически все использующиеся сейчас таблицы основаны на "американском стандартном коде обмена информацией" ASCII. Он определяет значения для нижней половины кодовой таблицы – первых 127 кодов (32 управляющих кода, основные знаки препинания и арифметические символы, цифры и латинские буквы). В результате, эти символы отображаются верно, какая бы кодировка не использовалась на конкретном компьютере. Хуже обстоит дело с национальными символами и типографскими знаками препинания. А особенно не повезло языкам, использующим кириллицу (русскому, украинскому, белорусскому, болгарскому и т. д.).

    Например, для русского языка сейчас широко используются пять таблиц кодировок:

    CP866 (альтернативная DOS) – на PC-совместимых компьютерах при работе с операционными системами DOS и OS/2, а также в любительской международной сети Фидо (Fidonet);

    CP1251 (Windows-кодировка) – на PC-совместимых компью-терах при работе под Windows 3.1 и Windows 95;

    KOI-8r – самая старая из использующихся до сих пор кодировок. Применяется на компьютерах, работающих под UNIX, является фактическим стандартом для русских текстов в сети Internet;

    Macintosh Cyrillic – предназначена для работы со всеми кириллическими языками на Макинтошах.

    ISO-8859. Эта кодировка задумывалась как международный стандарт для кириллицы, однако на территории России практически не применяется.

    14) Сейчас, когда объем памяти компьютеров чрезвычайно вырос, уже нет необходимости очень сильно "экономить" при кодировании текста. Можно позволить себе роскошь "тратить" для хранения текста вдвое больше памяти (выделяя для каждого символа не 1, а 2 байт). При этом появляется возможность разместить в кодовой таблице – каждый на своем месте – не только буквы европейских алфавитов (латинского, кириллицы, греческого), но и буквы арабского, грузинского и многих других языков и даже большую часть японских и китайских иероглифов, поскольку два байта могут хранить число от 0 до 65 535. Двухбайтная международная кодировка Unicode, разработанная несколько лет назад, теперь начинает внедряться на практике. В компьютере все составные части соединяются между собой с помощью шины (магистрали), т. е. пучка проводов.

    15) Теперь нам должно стать понятно, почему шина содержит 8, 16 или 32 провода. Если в шине 8 проводов, то по ней можно передать одновременно 8 бит, т. е. 1 байт (1 символ) информации. Такой компьютер называется восьмиразрядным, (первые персональные компьютеры IBM).

    16) Если в шине 16 проводов, то по ней можно передать одновременно 2 байт информации; если 32 провода – 4 байт, если 64 провода – 8 байт.

    18) 1.5.3. Два способа кодирования изображения

    Изображение на экране компьютера (или при печати с по-мощью принтера) составляется из маленьких точек – пикселов. Их так много, и они настолько малы, что человеческий глаз воспринимает картинку как непрерывную. Следовательно, качество изображения будет тем выше, чем плотнее расположены пиксели (т. е. чем больше разрешение устройства вывода) и точнее закодирован цвет каждого из них.

    В простейшем случае каждый пиксел может быть или черным, или белым. Значит, для его кодирования достаточно одного бита. Однако при этом полутона приходится имитировать, чередуя черные и белые пиксели (заметим, что примерно так формируют полутоновое изображение на принтерах и при типографской печати). Чтобы получить реальные полутона, для хранения каждого пикселя нужно отводить большее количество разрядов. В этом случае черный цвет по-прежнему будет представлен нулем, а белый – максимально возможным числом. Например, при восьмибитном кодировании получится 256 разных значений яркости – 256 полутонов.

    Сложнее обстоит дело с цветными изображениями, так как здесь нужно закодировать не только яркость, но и оттенок пикселя. Изображение на мониторе формируется путем сложения в различных пропорциях трех основных цветов: красного, зеленого и синего. Значит просто нам нужно хранить информацию о яркости каждой из этих составляющих.

    Для получения наивысшей точности цветопередачи достаточно иметь по 256 значений для каждого из основных цветов (вместе это дает 256 3 – более 16 млн. оттенков). Во многих случаях можно обойтись несколько меньшей точностью цветопередачи. Если использовать для представления каждой составляющей по 5 бит (тогда для хранения данных пикселя будет нужно не 3, а 2 байт), удастся закодировать 32 768 оттенков.

    На практике встречаются (и нередко) ситуации, когда гораздо важнее не идеальная точность, а минимальный размер файла: бывают изображения, где изначально используется небольшое количество цветов. В этих случаях поступают так: собирают все нужные оттенки в таблицу и нумеруют, после чего хранят уже не полный код цвета каждого пикселя, а номера (индексы) цветов в таблице. Чаще всего используют 256-цветные таблицы. В разных компьютерах могут быть приняты разные стандартные таблицы цветов, поэтому не исключено, что открыв полученный от кого-нибудь графический файл, можно увидеть совершенно немыслимую картинку.

    При печати на бумаге используется несколько иная цветовая модель: если монитор испускает свет, то оттенок получается в результате сложения цветов, а краски поглощают свет – цвета вычитаются. Поэтому в качестве основных используют голубую, сиреневую и желтую краски. Кроме того, из-за неидеальности красителей к ним обычно добавляют четвертую краску – черную. Для хранения информации о каждой краске чаще всего используют 1 байт.

    Растровые изображения очень хорошо передают реальные образы. Они замечательно подходят для фотографий, картин и в случаях, когда требуется максимальная "естественность". Такие изображения легко выводить на монитор или принтер, поскольку эти устройства тоже основаны на растровом принципе. Однако есть у них и ряд недостатков. Растровое изображение высокого качества (с высоким разрешением и большой глубиной цвета) может занимать десятки, и даже сотни мегабайт памяти. Для их обработки нужны мощные компьютеры, но и они нередко "задумываются" на десятки минут. Любое изменение размеров неизбежно приводит к ухудшению качества: при увеличении пикселы не могут появиться "из ничего", при уменьшении – часть пикселов будет просто выброшена.

    Есть другой способ представления изображений – объектная (векторная) графика. В этом случае в памяти хранится не сам рисунок, а правила его построения, т. е., например, не все пикселы круга, а команда "построить круг радиусом 30 с центром в точке с координатами (50, 135) и закрасить его красным цветом". Быстродействия современных компьютеров вполне достаточно, чтобы перерисовка происходила почти мгновенно.

    На первый взгляд, все становится гораздо более сложным. Зачем же это нужно? Во-первых, и это самое главное, векторное изображение можно как угодно масштабировать, выводить на устройства, имеющие любое разрешение, – и всегда будет получаться результат с наивысшим для данного устройства качеством, ведь картинка каждый раз "рисуется" заново, используя столько пикселов, сколько возможно.

    Во-вторых, в векторном изображении все части (так называемые "примитивы") могут быть изменены независимо друг от друга: любой из них можно увеличить, повернуть, деформировать, перекрасить, даже стереть, но остальных объектов это никоим образом не коснется.

    В-третьих, даже очень сложные векторные рисунки, содержащие тысячи объектов, редко занимают более нескольких сотен килобайт, т. е. в десятки, сотни, а то и тысячи раз меньше аналогичного растрового.

    Но почему, если все так хорошо, векторная графика не вытеснила растровую? Сам принцип ее формирования предполагает использование объектов с исключительно ровными четкими границами, а это сразу выдает их искусственность, поэтому область применения векторной графики довольно ограничена – это чертежи, схемы, стилизованные рисунки, эмблемы и другие подобные изображения.


    Вычислительной техники, а также принципы функционирования этих средств и методы управления ими. Из этого определения видно, что информатика очень близка к технологии, поэтому ее предмет нередко называют информационной технологией. Предмет информатики составляют следующие понятия: а) аппаратное обеспечение средств вычислительной техники; б) программное обеспечение средств вычислительной техники...




    ... » (Zero Administration Initiative), которая будет реализована во всех следующих версиях Windows. SMS- сервер управления системами У SMS две задачи - централизовать управление сетью и уп­ростить распространение программного обеспечения и его модернизацию на клиентских системах. SMS подойдет и ма­лой, и большой сети - это инструмент управления сетью на базе Windows NT, эффективно использующий...

    Стандарты открытых кабельных систем Стандарты открытых кабельных систем, механизм кодирования http://www.сайт/lan/standarti_otkritih_kabeljnih_sistem http://www.сайт/@@site-logo/logo.png

    Стандарты открытых кабельных систем

    Стандарты открытых кабельных систем, механизм кодирования

    Основные понятия: методы кодирования, схема передачи, спектр сигнала, однополосный и двухполосный сигналы

    Информационные системы локальных сетей иногда сравнивают с транспортной инфраструктурой. Кабели - это магистрали, разъемы - стыки дорог, сетевые карты и устройства - терминалы. Сетевые протоколы вызывают ассоциацию с правилами движения, которые к тому же определяют тип, конструкцию и характеристики транспортных средств.

    Стандарты открытых кабельных систем, называемых также структурированными, определяют параметры и правила построения среды для передачи сигналов. Среда передачи - это электропроводные и оптоволоконные кабели, соединенные в каналы с помощью разъемов. При беспроводной связи передача сигналов осуществляется посредством радиоволн, в том числе, инфракрасных. Однако свободное пространство пока не рассматривается в качестве среды для локальных сетей.

    Стандарты определяют частотный и динамический диапазоны элементов - кабелей, разъемов, линий и каналов.

    Другая группа стандартов, разрабатываемая организациями стандартизации, в частности, Институтом инженеров электротехники и электроники (IEEE), и общественными организациями, например, ATM Forum и Gigabit Ethernet Alliance, определяет параметры физического уровня сетевых протоколов. К ним относятся тактовая частота, метод кодирования, схема передачи и спектр сигнала.

    Открытая система обмена информацией OSI (Open System Interconnect), определяющая стандарты связи и передачи данных в любых сетях, разбивает все функции взаимодействия систем на семь уровней.

    Нижний или физический уровень обеспечивает преобразование данных в электромагнитные сигналы, предназначенные для определенной среды передачи, и наоборот. Сигналы, передаваемые с физического уровня на второй или канальный уровень, не зависят от среды передачи. Сетевые протоколы, работающие на первом и втором уровнях, задают параметры сигналов, отправляемых по магистралям.

    Некоторые аналогии, приводимые в статье, позволяют лучше понять взаимосвязь тактовой частоты, спектра сигнала и скорости передачи данных.

    Если представить себе, что тактовая частота - это обороты двигателя автомобиля, то скорость передачи данных - это скорость движения. Преобразование одного в другое обеспечивается кодированием или коробкой передач.

    Механизм кодирования

    Цифровая передача данных требует выполнения нескольких обязательных операций:

    • синхронизация тактовой частоты передатчика и приемника;
    • преобразование последовательности битов в электрический сигнал;
    • уменьшение частоты спектра электрического сигнала с помощью фильтров;
    • передача урезанного спектра по каналу связи;
    • усиление сигнала и восстановление его формы приемником;
    • преобразование аналогвого сигнала в цифровой.

    Рассмотрим взаимосвязь тактовой частоты и битовой последовательности. Битовый поток передается со скоростью, определяемой числом бит в единицу времени. Другими словами биты в секунду - это число дискретных изменений сигнала в единицу времени. Тактовая частота, измеряемая в герцах, это число синусоидальных изменений сигнала в единицу времени.

    Данное очевидное соответствие породило ошибочное представление об адекватности значений герц и бит в секунду. На практике все сложнее. Скорость передачи данных, как правило, выше тактовой частоты. Для увеличения скорости передачи сигнал может идти параллельно по нескольким парам. Данные могут передаваться битами или байтами. Кодированный сигнал может иметь два, три, пять и более уровней. Некоторые методы кодирования сигналов требуют дополнительного кодирования данных или синхронизации, которые уменьшают скорость передачи информационных сигналов.

    Как видно из таблицы, однозначного соответствия МГц и Мбит/с не существует.

    Таблица 1. Соотношение между категорией канала, диапазоном частот и максимальной скоростью передачи данных

    Каждый протокол требует определенную ширину спектра или, если хотите, ширину информационной магистрали. Схемы кодирования усложняют для того, чтобы эффективнее использовать информационные магистрали. Как и в аналогии с двигателем, совсем необязательно раскручивать его до максимальных оборотов, целесообразнее включить передачу.

    Первая передача - коды RZ и манчестер-II

    Код RZ

    RZ - это трехуровневый код, обеспечивающий возврат к нулевому уровню после передачи каждого бита информации. Его так и называют кодирование с возвратом к нулю (Return to Zero). Логическому нулю соответствует положительный импульс, логической единице - отрицательный.

    Информационный переход осуществляется в начале бита, возврат к нулевому уровню - в середине бита. Особенностью кода RZ является то, что в центре бита всегда есть переход (положительный или отрицательный). Следовательно, каждый бит обозначен. Приемник может выделить синхроимпульс (строб), имеющий частоту следования импульсов, из самого сигнала. Привязка производится к каждому биту, что обеспечивает синхронизацию приемника с передатчиком. Такие коды, несущие в себе строб, называются самосинхронизирующимися.

    Недостаток кода RZ состоит в том, что он не дает выигрыша в скорости передачи данных. Для передачи со скоростью10 Мбит/с требуется частота несущей 10 МГц. Кроме того, для различения трех уровней необходимо лучшее соотношение сигнал / шум на входе в приемник, чем для двухуровневых кодов.

    Наиболее часто код RZ используется в оптоволоконных сетях. При передаче света не существует положительных и отрицательных сигналов, поэтому используют три уровня мощности световых импульсов.

    Код Манчестер-II

    Код Манчестер-II или манчестерский код получил наибольшее распространение в локальных сетях. Он также относится к самосинхронизирующимся кодам, но в отличие от кода RZ имеет не три, а только два уровня, что обеспечивает лучшую помехозащищенность.

    Логическому нулю соответствует переход на верхний уровень в центре битового интервала, логической единице - переход на нижний уровень. Логика кодирования хорошо видна на примере передачи последовательности единиц или нулей. При передаче чередующихся битов частота следования импульсов уменьшается в два раза.

    Информационные переходы в средине бита остаются, а граничные (на границе битовых интервалов) - при чередовании единиц и нулей отсутствуют. Это выполняется с помощью последовательности запрещающих импульсов. Эти импульсы синхронизируются с информационными и обеспечивают запрет нежелательных граничных переходов.

    Изменение сигнала в центре каждого бита позволяет легко выделить синхросигнал. Самосинхронизация дает возможность передачи больших пакетов информацию без потерь из-за различий тактовой частоты передатчика и приемника.

    Большое достоинство манчестерского кода - отсутствие постоянной составляющей при передаче длинной последовательности единиц или нулей. Благодаря этому гальваническая развязка сигналов выполняется простейшими способами, например, с помощью импульсных трансформаторов.

    Частотный спектр сигнала при манчестерском кодировании включает только две несущие частоты. Для десятимегабитного протокола - это 10 МГц при передаче сигнала, состоящего из одних нулей или одних единиц, и 5 МГц - для сигнала с чередованием нулей и единиц. Поэтому с помощью полосовых фильтров можно легко отфильтровать все другие частоты.

    Код Манчестер-II нашел применение в оптоволоконных и электропроводных сетях. Самый распространенный протокол локальных сетей Ethernet 10 Мбит/с использует именно этот код.

    Вторая передача - код NRZ

    Код NRZ (Non Return to Zero) - без возврата к нулю - это простейший двухуровневый код. Нулю соответствует нижний уровень, единице - верхний. Информационные переходы происходят на границе битов. Вариант кода NRZI (Non Return to Zero Inverted) - соответствует обратной полярности.

    Несомненное достоинство кода - простота. Сигнал не надо кодировать и декодировать.

    Кроме того, скорость передачи данных вдвое превышает частоту. Наибольшая частота будет фиксироваться при чередовании единиц и нулей. При частоте 1 Гц обеспечивается передача двух битов. Для других комбинаций частота будет меньше. При передаче последовательности одинаковых битов частота изменения сигнала равна нулю.

    Код NRZ (NRZI) не имеет синхронизации. Это является самым большим его недостатком. Если тактовая частота приемника отличается от частоты передатчика, теряется синхронизация, биты преобразуются, данные теряются.

    Для синхронизации начала приема пакета используется стартовый служебный бит, например, единица. Наиболее известное применение кода NRZI - стандарт ATM155. Самый распространенный протокол RS232, применяемый для соединений через последовательный порт ПК, также использует код NRZ. Передача информации ведется байтами по 8 бит, сопровождаемыми стартовыми и стоповыми битами.

    Четвртая передача - код MLT-3

    Код трехуровневой передачи MLT-3 (Multi Level Transmission - 3) имеет много общего с кодом NRZ. Важнейшее отличие - три уровня сигнала.

    Единице соответствует переход с одного уровня сигнала на другой. Изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. Максимальной частоте сигнала соответствует передача последовательности единиц. При передаче нулей сигнал не меняется. Информационные переходы фиксируются на границе битов. Один цикл сигнала вмещает четыре бита.

    Недостаток кода MLT-3, как и кода NRZ - отсутствие синхронизации. Эту проблему решают с помощью преобразования данных, которое исключает длинные последовательности нулей и возможность рассинхронизации.

    Редуктор - кодирование данных 4B5B

    Протоколы, использующие код NRZ, чаще всего дополняют кодированием данных 4B5B. В отличие от кодирования сигналов, которое использует тактовую частоту и обеспечивает переход от импульсов к битам и наоборот, кодирование данных преобразует одну последовательность битов в другую.

    В коде 4B5B используется пяти-битовая основа для передачи четырех-битовых информационных сигналов. Пяти-битовая схема дает 32 (два в пятой степени) двухразрядных буквенно-цифровых символа, имеющих значение в десятичном коде от 00 до 31. Для данных отводится четыре бита или 16 (два в четвертой степени) символов.

    Четырех-битовый информационный сигнал перекодируется в пяти-битовый сигнал в кодере передатчика. Преобразованный сигнал имеет 16 значений для передачи информации и 16 избыточных значений. В декодере приемника пять битов расшифровываются как информационные и служебные сигналы. Для служебных сигналов отведены девять символов, семь символов - исключены.

    Исключены комбинации, имеющие более трех нулей (01 - 00001, 02 - 00010, 03 - 00011, 08 - 01000, 16 - 10000). Такие сигналы интерпретируются символом V и командой приемника VIOLATION - сбой. Команда означает наличие ошибки из-за высокого уровня помех или сбоя передатчика. Единственная комбинация из пяти нулей (00 - 00000) относится к служебным сигналам, означает символ Q и имеет статус QUIET - отсутствие сигнала в линии.

    Кодирование данных решает две задачи - синхронизации и улучшения помехоустойчивости. Синхронизация происходит за счет исключения последовательности более трех нулей. Высокая помехоустойчивость достигается контролем принимаемых данных на пяти-битовом интервале.

    Цена кодирования данных - снижение скорости передачи полезной информации. В результате добавления одного избыточного бита на четыре информационных, эффективность использования полосы частот в протоколах с кодом MLT-3 и кодированием данных 4B5B уменьшается соответственно на 25%.

    При совместном использовании кодирования сигналов MLT-3 и данных 4В5В четвертая передача работает фактически как третья - 3 бита информации на 1 герц несущей частоты сигнала. Такая схема используется в протоколе TP-PMD.

    Пятая передача - код PAM 5

    Рассмотренные выше схемы кодирования сигналов были битовыми. При битовом кодировании каждому биту соответствует значение сигнала, определяемое логикой протокола.

    При байтовом кодировании уровень сигнала задают два бита и более.

    В пятиуровневом коде PAM 5используется 5 уровней амплитуды и двухбитовое кодирование. Для каждой комбинации задается уровень напряжения. При двухбитовом кодировании для передачи информации необходимо четыре уровня (два во второй степени - 00, 01, 10, 11). Передача двух битов одновременно обеспечивает уменьшение в два раза частоты изменения сигнала.

    Пятый уровень добавлен для создания избыточности кода, используемого для исправления ошибок. Это дает дополнительный резерв соотношения сигнал / шум 6 дБ.

    Код PAM 5 используется в протоколе 1000 Base T Gigabit Ethernet (см. Схема передачи Gigabit Ethernet). Данный протокол обеспечивает передачу данных со скоростью 1000 Мбит/с при ширине спектра сигнала всего 125 МГц.

    Как это достигается? Данные передаются по всем четырем парам одновременно. Следовательно, каждая пара должна обеспечить скорость 250 Мбит/с. Максимальная частота спектра несущей при передаче двухбитовых символов кода PAM 5 составляет 62,5 МГц. С учетом передачи первой гармоники протоколу 1000 Base T требуется полоса частот до 125 МГц. Но о несущей, гармониках и полосе частот следует поговорить отдельно.

    Ширина магистрали - требуемая полоса частот

    Скорость движения зависит не только от возможностей автомобиля, но и от качества магистрали. То же самое справедливо и для передачи данных. Рассмотрим возможности информационных магистралей.

    Кодирование сигналов - это способ преобразования тактовой частоты в скорость передачи данных. С какой целью выполняют преобразование? Для того, чтобы увеличить скорость без изменения частотного диапазона канала связи. Кодирование требует использования более сложной приемо-передающей аппаратуры. Это минус. Зато при переходе к более скоростным протоколам можно использовать те же кабели. А это уже большой плюс.

    Например, протокол Fast Ethernet 100 Base T4 обеспечивает работу сети со скоростью 100 Мбит/с на кабелях категории 3 (16 МГц). Gigabit Ethernet 1000 Base T реализован таким образом, чтобы на базе каналов категории 5 (100 Мгц), имеющий некоторый резерв, передавать 1000 Мбит/с.

    Ширина спектра сигнала

    Сигнал, имеющий синусоидальную форму, называется гармоническим. Его параметры определяются частотой и амплитудой. Чем больше форма сигнала отличается от синусоиды, тем больше гармонических составляющих он несет. Частоты гармоник кратны частоте несущей. Стандарты электропитания, например, требуют оценки качества напряжения сигнала вплоть до тридцатой гармоники.

    Диапазон частот сложного сигнала называется спектральной шириной сигнала. Он включает основную составляющую, которая определяет несущую, и гармонические составляющие, которые задают форму импульсов.

    Восстановление формы импульсов производится на аппаратном уровне, поэтому гармонические составляющие убирают с помощью фильтров.

    Спектральная ширина сигнала зависит от тактовой частоты, метода кодирования и характеристик фильтра передатчика.

    Рисунок 6 иллюстрирует, как метод кодирования позволяет уменьшить частоту несущей. Для трех методов кодирования приведены ситуации, требующие максимальную частоту несущей. Один герц несущей передает один бит (1) при манчестерском кодировании, два бита (01) кода NRZ и четыре бита (1111) кода MLT-3. Фактор кодирования (передача) составляет соответственно один, два и четыре.

    Другие комбинации битов требуют меньшей частоты. Например, при чередовании нулей и единиц частота несущей кода MLT-3 уменьшается еще в два раза, длительная последовательность нулей уменьшает частоту несущей до нуля.

    Спектральную ширину сигнала не следует путать с тактовой частотой. Тактовая частота - это метроном, задающий темп мелодии. На рисунке 6 тактовой частоте соответствует скорость чередования битов. Спектральная ширина сигнала в данной аналогии это огибающая сигнала при условии, что она позволяет восстановить исходный импульсный сигнал.

    В аналоговой передаче спектральная ширина - это мелодия, имеющая гораздо более широкий спектр. Если попытаться передать мелодию по телефону, придется пожертвовать спектром. Линия связи, имеющая узкую полосу пропускания, “обрежет” верхние гармоники. При этом, качество звучания мелодии на выходе узкополосного канала связи ухудшится.

    При цифровой передаче для восстановления исходного сигнала требуется меньше гармоник, чем для аналогового. Технология передачи и приема цифровых сигналов позволяет восстановить исходный сигнал по несущей спектра. Однако для уменьшения коэффициента ошибок необходимо присутствие первой гармоники, что удваивает ширину спектра или частотный диапазон.

    Однополосный и двухполосный сигналы

    Сигнал, который не имеет спектральной энергии нулевой частоты, является двухполосным. У двухполосного ширина первой гармоники в два раза больше, чем у однополосного. Спектр сигнала после манчестерского кодирования является двухполосным. Кодирование методами NRZ, MLT-3 и PAM 5 дает однополосный сигнал.

    Как было отмечено выше, код Манчестер-II дает две несущие частоты: 5 МГц и 10 МГц.

    Частота 10 МГц передается с одной гармоникой (несущая и гармоники обозначены на рис. 7 красным цветом). Частота 5 МГЦ (обозначенная зеленым цветом) имеет три гармоники в верхнем диапазоне. Остальные гармоники обрезаются фильтрами.

    Итак, при передаче однополосного сигнала, кодированного методом NRZ, со скоростью10 Мбит/с, требуется 10 МГц. Для двухполосного сигнала, который создается манчестерским десятимегабитным протоколом необходимо 20 МГц полосы пропускания.

    Для спектра несущей протокола ATM 155, в котором реализован метод кодирования сигналов NRZ, а тактовая частота составляет 155,52 МГц, требуется полоса частот 77,76 МГц. С учетом одной несущей полоса сигнала составляет 155,52 МГц.

    Стандартный канал категории 5 максимальной длины обеспечивает полосу 100 Мгц с запасом сигнал / шум 3,1 дБ. Нулевой запас превышения мощности сигнала на шумом при этом будет на частоте 115 МГц. Таким образом, анализ спектра позволяет сделать вывод о недостаточной ширине информационной магистрали.

    Кроме ширины магистрали качество полотна зависит от неровностей. Применительно к кабельным каналам это отношение сигнал / шум, которое зависит в первую очередь от качества стыков - разъемных соединений. Волновая природа шумов и несоответствие категории 5 требованиям протоколов класса D подробно освещается в статье Дефицит категории 5.

    Выводы

    Методы кодирования и сложные схемы, использующие все витые пары, обеспечивают увеличение скоростей передачи данных без пропорционального увеличения диапазона частот среды передачи или ширины информационных магистралей.

    Анализ методов кодирования позволяет сделать вывод о том, что системы категории 5 имеют дефицит ресурсов даже для приложений своего класса. Современные информационные магистрали требуют более тщательной подготовки для перехода от десятимегабитных приложений к высокоскоростным протоколам.

    Извлечение ссылок на картинки.

    Операции с документом

    В широком смысле под кодированием сигнала понимают процесс преобразования сообщения в сигнал. Как правило, сообщение от источника информации выдается в аналоговой форме, т.е. в виде непрерывного сообщения. Однако как при приеме-передаче информации, так и при ее обработке и хранении значительное преимущество дает дискретная форма представления сигнала. Поэтому в тех случаях, когда исходные сигналы в информационных системах являются непрерывными, необходимо предварительно преобразовать их в дискретные. В связи с этим термин «кодирование» относят обычно к дискретным сигналам и под кодированием в узком смысле понимают представление дискретных сообщений сигналами в виде определенных сочетаний символов. Совокупность правил, в соответствии с которыми производятся эти операции, называется кодом .

    Процесс кодирования заключается в представлении сообщений условными комбинациями, составленными из небольшого количества элементарных сигналов (например, посылка и пауза в коде Бодо, «точка» и «тире» в коде Морзе).

    В зависимости от целей кодирования различают следующие его виды:

    • кодирование по образцу - используется всякий раз при вводе информации в компьютер для ее внутреннего представления;
    • криптографическое кодирование (шифрование) - используется при необходимости защиты информации от несанкционированного доступа;
    • эффективное (оптимальное) кодирование - используется для устранения избыточности информации, т.е. для снижения ее объема (например, в архиваторах);
    • помехозащитное (помехоустойчивое) кодирование - используется для обеспечения заданной достоверности в случае, когда на сигнал накладывается помеха (например, при передаче информации по каналам связи).

    Процесс кодирования информации обеспечивает достижение нескольких целей. Во-первых, сообщения представляют в системе символов, обеспечивающей простоту аппаратной реализации информационных устройств. Задача кодирования сообщений для этого случая представляется как преобразование исходного сообщения в используемую (как правило, двоичную) систему счисления. Число используемых при этом различных элементарных сигналов называется основанием кода, а число элементов, образующих кодовую комбинацию, - значностью кода. Если все комбинации кода имеют одинаковую значность, то такой код называется равномерным, в противном случае - неравномерным. Операция кодирования применяется для цифровых сигналов. Для непрерывных сигналов требуется предварительное преобразование аналогового сигнала в цифровой.

    Во-вторых, кодирование используется для наилучшего согласования свойств источника сообщений со свойствами канала связи - оптимальное статистическое кодирование. Под ним понимают коды, которые обеспечивают минимизацию среднего количества кодовых символов на один элемент сообщения.

    В-третьих, кодирование позволит уменьшить влияние помех на процесс приема-передачи (помехоустойчивое кодирование).

    В-четвертых, кодирование обеспечивает защиту информации от несанкционированного доступа.

    Коды как средство тайнописи появились еще в глубокой древности. Например, древнегреческий историк Геродот в V в. до н.э. приводил примеры писем, понятных только адресату. Секретная азбука использовалась и Юлием Цезарем. Над созданием шифров работали такие известные ученые Средневековья, как Ф. Бэкон, Д. Кардано и др.

    При кодировании в двоичной системе счисления используют два элементарных сигнала, которые технически легко сформировать. Например, одним элементарным сигналом может быть посылка напряжения или тока, вдвое превышающая помеху, а другим - отсутствие посылки. На рисунке 2.1 показаны преобразования исходного аналогового сигнала: сначала в цифровой, а затем в двоичный код с числом двоичных символов п = 2 (двоичное кодирование).

    Рис. 2.1. Двоичное кодирование: а - исходный аналоговый сигнал; б - дискретный по времени и квантованный по уровню цифровой сигнал; в - двоичный код отсчетов с числом двоичных символов п = 2



Рекомендуем почитать

Наверх