Как работает передатчик радиоволн. Как работает радиоприемник. Виды радиоволн и частотные диапазоны

Возможности 09.04.2019
Возможности

Портативные радиостанции, автомобильные рации наземного применения

Радиостанция (рация): принцип работы

В широком смысле радиостанция обозначает техническое устройство или комплекс устройств, которые производят обмен данными посредством радиоволн. Как видно из определения радиостанцией можно назвать довольно большой круг приборов. В данной статье мы затронем непосредственно сухопутное приемопередающее оборудование.

Радиостанция (рация) состоит из двух основных элементов: приемника и передатчика, которые имеют общие узлы. Для лучшего понимания принципа работы рации, рассмотрим более подробно данные элементы.

Приемник радиостанции отвечает за преобразование радиочастотных сигналов в привычные для человеческого слуха акустические колебания. Современная радиостанция использует двойное преобразование частот, с помощью которого улучшается качество воспроизводимого голоса. Сначала принимаем сигнал (С) отфильтровывается и усиливается, далее происходит понижение по частоте и перевод С на специальный дешифратор, который вычленяет из всего потока информационную составляющую. Затем происходит еще одно усиление и вывод уже обработанных звуковых данных на динамик. Это довольно общая схема работы приемника, которая доступным языком объясняет принцип и особенности его функционирования.

Передатчик рации выполняет диаметрально противоположные действия: преобразует данные (чаще всего это голос, но могут быть и текстовые сообщения) и отправляет его с помощью радиоволн к другому абоненту. Приблизительно этот процесс можно описать так: передаваемая информация наслаивается на выбранную частоту и передается посредством антенны в эфир. Строение приемника и передатчика схоже, поэтому здесь мы рассмотрим только один узел, имеющий принципиальное различие. Если приемник при своей работе задействует дешифратор, то передатчик – модулятор. Модулятор преобразует голосовую информацию в радиосигнал по определенным правилам.

Радиостанция (рация) получила широкое распространение в годы Второй мировой войны, когда необходимость в оперативной связи на дальних расстояниях возросла в геометрической прогрессии. К слову, стационарная радиостанция уже использовалась в то время, однако она была довольно громоздкой. А вот в военные годы появилась первая портативная радиостанция (рация). Ее спроектировали инженеры фирмы Motorola. И хотя она и называлась носимой, от современных раций ее разделяет огромная пропасть различных модификаций и изменений.

Радиостанция (рация): классификация

Сухопутная радиостанция (рация) имеет множество различных классификаций, основным из них мы уделим должное внимание.

По мобильности:

  • – удобная рация, помещающаяся в руку, которую можно легко переносить на довольно большие расстояния;
  • – не предназначена для транспортировки, часто выступает как базовая станция.

По типу пользователя:

  • – создана для постоянного использования в определенной сфере; наиболее важными характеристиками является емкость АКБ, удобство и простота использования, минимальный набор необходимых функций, программирование с ПК;
  • – призвана сопровождать охотников или туристов в их походах; пользователь может самостоятельно программировать рацию в зависимости от конкретных нужд.

По принципу работы:

  • – использует в своей работе принцип частотной модуляции; такая рация – классика жанра, преимущественно рынок радиосвязи наполнен именно аналоговыми моделями;
  • – кодирует сигнал с помощью двух цифр: 0 и1; она позволяет вести несколько бесед на одном канале, а также предоставляет внушительный набор дополнительных функций, включая отправку SMS.

По способу защиты:

  • - оболочка такой рации имеет повышенную защиту, что позволяет использовать ее во взрывоопасных условиях, например в шахтах.

Также все рации имеют различные степени защиты от пыли и влаги. Так, некоторые радиостанции могут исправно функционировать даже после длительного погружения под воду.

Радиостанция (рация): частоты

Каждая сухопутная радиостанция (рация) работает в определенном диапазоне частот (ДЧ). Условно все частоты можно разделить на 2 большие категории: безлицензионные (не требуют регистрации рации и разрешают свободное пользование) и лицензионные (требуют получение специальной лицензии). Основные рабочие частоты (Ч) современных раций.

CB (27 МГц) – гражданские частоты. Радиостанция (рация), работающая на данной Ч, с выходной мощностью до 10 Вт не требует регистрации или лицензирования (на территории РФ). Часто используются дальнобойщиками или таксопарками.

UHF (400 - 520 МГц) – городской диапазон, поэтому если вы хотите общаться по рации в городе и территориальный разброс абонентов небольшой, то лучше использовать именно эти Ч. На открытой местности прием\передача существенно ухудшаются, так как радиоволнам сложно преодолевать естественные природные барьеры (леса, крутые рельефы и прочее).

LPD (433,075-434,775 МГц) – безлицензионный диапазон для маломощных радиостанций.

PMR (446,000 - 446,100 МГц) – еще один частотный диапазон, не требующий лицензии, широко распространен в Европе. Отличительной особенностью является применение на открытой местности, поскольку волны практически не способны огибать препятствия. Радиостанция (рация), работающая в частотах PMR не должна иметь мощность более 0,5Вт. Это наиболее популярный диапазон, использующийся для повседневного активного общения.

VHF (136 - 174 МГц) – наиболее универсальный диапазон, так как одновременно хорошо работает и на открытой местности, и в условиях плотной городской застройки.

Радиостанция (рация): как выбрать

Для начала пользователь должен определиться со сферой применения рации и основными задачами, которые она должна решать. Например, если вы хотите отправиться на рыбалку и просто переговариваться со своими товарищами, находящимися на противоположном берегу, то вам совершенно необязателен расширенный функционал или получение лицензии.

В то же время шахтерам, трудящимся во взрывоопасных условиях, будет крайне необходима такая особенность, как искробезопасность радиостанции.

Как только пользователь определился с задачами, он может приступать к выбору радиостанции. Основные характеристики, на которые стоит обращать внимание:

  • Частотный диапазон
  • Выходная мощность
  • Дальность работы
  • Время работы без подзарядки (емкость АКБ)
  • Размер

Прочие характеристические особенности рации являются второстепенными.

В примере, рассматривается радиоприемник Альпинист, модель — 321 \фото № 1\. На лицевой панели расположены:

  • переключатель диапазонов для длинных и средних волн;
  • ручка включения радиоприемника с регулятором громкости

и ручка настройки.

На задней стенке приемника расположены гнезда для подключения:

    внешней антенны;

    заземления;

    наушников

и гнездо для подключения разъема с проводом от блока питания \фото №2\. Радиоприемник относится к третьему классу, выпуск — 1982 год.

Узлы и детали — приемника Альпинист

Для осмотра деталей и внутренней конструкции приемника, необходимо открутить всего лишь два болта \фото №3, фото №4\, головки болтов которых выполнены под плоскую отвертку.

На печатной плате расположены основные узлы и детали приемника Альпинист-321 \фото №5\. Сам корпус приемника изготовлен из полистирола. К узлам радиоприемников относятся электромонтажные схемы печатных плат:

    блока питания;

    блока УКВ;

    блока УНЧ;

    блока КСДВ

К деталям приемника \радиодеталям\, относятся:

    резисторы;

    конденсаторы;

    и деталей, смонтированых на печатной плате, необходимых для стабилизации и выпрямления тока. То-есть, в дополнение к силовому трансформатору, — обычно такая схема состоит из нескольких:

    • резисторов;

      транзисторов

    и конденсатора.

    Указание деталей — на плате приемника

    На четырех фотоснимках \фото №№ 6,7,8,9\ приемника Альпинист-321, авторучкой указаны катушки входных контуров:

      для длинных волн \L3\;

      для средних волн \L1\

    и две катушки связи:

    Все катушки намотаны на ферритовом стержне магнитной антенны. Магнитная антенна, для данного приемника, необходима для принятия радиоволн двух диапазонов — длинных и средних волн.

    И чтобы это выглядело более понятливо, сопоставим фотоснимки \6,7,8,9\ с конструкцией магнитной антенны радиоприемника:

    конструкция магнитной антенны

    На фотоснимке №10 дано изображение оси ручки настройки. При помощи верньерного устройства \механики передаточного отношения\, передается сила для совершения вращения шкива КПЕ — конденсатора переменной емкости.

    Привод верньерного устройства передает свое движение указателю шкалы, где при визуальном наблюдении за шкалой мы наблюдаем установленную нами частоту принимаемого сигнала. \фото №11\.

    Переключателем диапазонов осуществляется переключение принимаемого сигнала для длинных и средних волн \фото №12\.

    Настраивание приемника на необходимую нам частоту осуществляется двухсекционным блоком КПП. Подобные блоки, по своей конструкции могут выглядеть как с воздушным так и с твердым диэлектриком. Для данного приемника диэлектрик — воздушный, емкость которого составляет от 9 до 280 пикофарад \фото №№ 13,14\.

    В целом, данная радиодеталь называется — конденсатором переменной емкости , в конструкции которого входят — подвижная и неподвижная части пластин:

      ротор — подвижная часть;

      статор — неподвижная часть

    конструкции.

    Указание деталей на схеме

    На схеме, конденсатор переменной емкости выглядит следующим образом \фото №№ 15,16\:

    То-есть, для данной схемы мы можем заметить, что два конденсатора соединены пунктирной линией и являются в общем — двухсекционным конденсатором.

    Осью регулятора громкости при его вращении, изменяется сопротивление в цепи \фото №№ 17,18\. В общих чертах, регулятор громкости выполняет функцию реостата.

    В радиосхемах \фото №№ 19,20\, регулятор громкости имеет графическое обозначение как переменный резистор , при помощи которого осуществляется плавное регулирование сопротивления в цепи. От переменного резистора \фото №19\ как можно заметить, — отходит пунктирная линия к замыкающему и размыкающему ключу \фото №20\. Из данного обозначения следует, что регулятором громкости осуществляется не только регулирование звука но и осуществляется включение и отключение приемника.

    В следующем фрагменте схемы \фото №21\ указан отсек с элементами питания на 9 В. Данный отсек, как видно по схеме, — имеет разъемное контактное соединение со схемой приемника.

    На печатной плате \фото №№ 22,23\ указаны авторучкой — подстроечные конденсаторы переменной емкости . Корпус конденсатора выполнен из керамики с твердым диэлектриком. Емкость подстроечных конденсаторов небольшая и обычно составляет от 1,5 до 20 пикофарад, настройка которых осуществляется в заводских условиях. Если посмотреть внимательно, рядом с конденсаторами указаны их названия — С1,С2. Далее, смотрим по схеме.

    Соответственно, такие подстроечные конденсаторы переменной емкости в схеме обозначены следующим образом \фото №№ 24,25\, емкость которых составляет от 5 до 20 пикофарад \как указано в схеме\. Указанные конденсаторы \С1,С2\, как видно по схеме, соединены с входными контурами магнитной антенны.

    На двух фотоснимках печатной платы \фото №№ 26,27\ указаны подстроечные резисторы с плавной регулировкой. Регулировка таких резисторов проводится также, на заводе, — при изготовлении приемника.

    4. Принцип работы передатчика

    Сигнал с датчиков или любых других источников аналоговой информации поступает на быстродействующие аналоговые ключи. Работой, которых управляет схема временного разделения каналов, состоящая из дешифратора 1, счётчика 1 и генератора импульсов 1.Схема работает следующим образом:

    Генератор импульсов 1 выдаёт короткие импульсы расстояния, между которыми равны времени преобразования А.Ц.П. Эти импульсы подсчитываются трёхразрядным асинхронным счётчиком импульсов граф которого имеет такой вид

    Такой счётчик легко реализовать на трёх синхронных D-триггерах. Трёх разрядный двоичный код со счётчика 1 поступает на дешифратор 1, который в зависимости от кода подключает соответствующие каналы.

    Таким образом, на вход А.Ц.П. поступают последовательно аналоговые сигналы с соответствующих аналоговых входов. А.Ц.П. синхронизируется побитовым генератором. Это генератор коротких импульсов, расстояние между которыми равно длительности элементарного символа в коде. А.Ц.П., как правило, содержит на выходе параллельный регистр, у которого выходы находятся в так называемом третьем состоянии (высокий импенданс) . Чтобы обеспечить вывод данных нужен сигнал разрешения он поступает от генератора импульсов 1. После вывода параллельного кода выводы этого регистра автоматически переходят обратно в третье состояние.

    С А.Ц.П. выходит 9 разрядный параллельный код командного слова, который поступает на преобразователь кода из параллельного в последовательный. Такой преобразователь может быть выполнен на параллельно-последовательном регистре, который синхронизируется также от побитового генератора.

    В качестве синхрослова используется 63 разрядная М-последовательность. Синхрослово должно быть в начале кадра. Схема формирования синхрослова может быть выполнена на основе формирователя М-последовательности и на основе П.З.У. Первый вариант схемы (рис.1) работает таким образом:

    Имеется формирователь М-последовательности (Ф.М.П.), который легко реализуется с помощью линейных переключательных схем на основе сдвигающих регистров. Принцип формирования в данном проекте рассматривать не будем, он очень подробно рассмотрен в литературе . В качестве синхросигнала для Ф.М.П. используется побитовый генератор импульсов. Генерация последовательности начинается, когда приходит сигнал высокого уровня со схемы сравнения (сигнал пуск). Такой сигнал возможен только в том случае если подключен первый канал и начат вывод из А.Ц.П. первого кодового слова. Для формирования 63 разрядной М-последовательности необходимо 64 импульса. Схема подсчёта этих импульсов выполнена на счётчике 2 и дешифраторе 2. Как только счётчик насчитывает 64 импульса на соответствующем выходе дешифратора появляется сигнал высокого уровня (сигнал останов.), который останавливает Ф.М.П. Так как счётчик 2 будет постоянно считать импульсы с побитового генератора импульсов, то в момент начала формирования М-последовательности его надо вернуть в исходное состояние (сбросить). Для этого сигнал пуск со схемы сравнения подаётся на ключ, который подключает сигнал высокого уровня на небольшое время к входу сброса счётчика. Сигнал останов. также переводит регистр-преобразователь кода из третьего состояния в рабочее и с его выхода начинает выходить М-последовательность в последовательном двоичном коде. Как только все 63 разряда синхрослова выйдут из регистра, он автоматически переходит в третье состояние.

    Второй вариант схемы (рис.2) формирования М-последовательности основан на использовании П.З.У. Принцип работы такой:

    Аналогично схеме с генератором М-последовательности имеется сигнал пуск. Он поступает на П.З.У. и переводит его в режим считывания. В П.З.У. заранее запрограммирована нужная 63 разрядная М-последовательность. Также на П.З.У. поступает сигнал синхронизации от битового генератора, как и в предыдущей схеме. Синхрослово выходит в параллельном коде из П.З.У. и поступает на преобразователь кода в виде регистра. После вывода П.З.У. выходит из режима считывания и ждёт сигнал пуск. Сигнал пуск также переводит преобразователь кода в рабочее состояние, и начинается вывод синхрослова в последовательном коде под действием сигнала синхронизации, поступающего от битового генератора. Эта схема наиболее простая так как требуется меньше сигналов управления по сравнению со схемой на формирователе. Также малогабаритнее, дешевле и надёжнее так как используется меньше радиоэлементов и микросхемы П.З.У. такой малой емкости очень дёшевы. В работе я рассмотрел простейший вариант схемы. Вообще, как правило, такие схемы формирования делаются на микропроцессорном комплекте или микроконтроллерах, тогда всё управление можно осуществлять программным путём через порты ввода-вывода.

    Синхрослово поступает на сумматор, где суммируется с кодовыми словами. Чтобы не было наложения синхрослова на кодовые слова необходимо задержать кодовые слова на время равное длительности синхрослова. Это делается с помощью цифровой линии задержки или блока памяти.

    В результате образуется кадр, состоящий из синхрослова и 7кодовых слов, разделённых по времени. Далее,сигнал поступает на в.ч. каскад (рис.3) где он поступает на фазовый манипулятор, с помощью которого манипулируется поднесущая. Сформированным фазоманипулированным сигналом на поднесущей осуществляется фазовая модуляция несущего колебания.

    На в.ч. каскад


    На в.ч. каскад






    С обратной связью наиболее характерно для управления бортовой аппаратурой космических аппаратов. 4. Разработка функциональной схемы радиолинии 4.1 Спектр сигнала КИМ-ЧМ-ФМ Сигнал КИМ-ЧМ-ФМ является одним из наиболее часто применяемых сигналов при организации цифровой связи по радиоканалам большой длительности. Символы сигнала КИМ заполняются прямоугольными колебаниями (меандром) разной...




    ... : 2.4 Расчет энергетического потенциала Энергетическим потенциалом радиолинии называется отношение средней мощности сигнала к спектральной плотности шума, пересчитанное ко входу приемника. В задании курсового проектирования задана линия с расстоянием между приемником и передатчиком 200 км. Зададимся, что это линия Земля - управляемый объект. Линия связи подобного типа предназначена для...

    Применяется посимвольный прием. Рисунок 1. Функциональная схема радиолинии КИМ-ФМ Необходимо знать - скорость передачи информации R (двоичных единиц в секунду), энергетический потен­циал радиолинии, закон изменения несущей частоты из-за нестабильности передатчика и движения передающего и принимающего пунктов. Предполагается также, что символы в КИМ сигнале могут считаться независимыми, а...

    Российские летательные аппараты, совершившие посадку на Венеру в 1982 г., послали на Землю цветные фотографии с изображением острых скал. Благодаря парниковому эффекту, на Венере стоит ужасная жара. Атмосфера, представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. В результате скапливается большое количество тепловой энергии. Цифровая радиолиния с...

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    хорошую работу на сайт">

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Принципы действия радиопереда тчика и радиоприёмника

    радиопередатчик радиоприемник напряженность

    Радиопереда тчик (радиопередающее устройство) - устройства для формирования радиосигналов, предназначенных для передачи информации на расстояние с помощью радиоволн. Формируют радиосигналы с заданными характеристиками, необходимыми для работы конкретных радиотехн. систем, и излучают их в пространство.

    Функционально радиопередатчик состоит из следующих частей:

    Любая система радиосвязи включает в себя радиопередающие устройства, функции которого включаются в преобразовании энергии постоянного тока источников питания в электромагнитные колебания и управлении этими колебаниями.

    Передача энергии с помощью радиосвязи широко используется при управлении автоматическими объектами.

    Основными устройствами радиосвязи являются радиопередатчик и радиоприемник. Радиопередатчик предназначен для создания высокочастотного сигнала, некоторые параметры которого (частота, амплитуда или фаза) изменяются по закону, соответствующему передаваемой информации. Частота высокочастотного сигнала называется несущей. Первые радиопередатчики искрового принципа действия на основе катушки Румкорфа были очень просты по конструкции -- излучателем радиоволн служил искровой разряд, а модулятором являлся телеграфный ключ. С помощью такого радиопередатчика информация передавалась в кодированной дискретной форме -- например азбукой Морзе или иным условным сводом сигналов. Недостатками такого радиопередатчика была относительно высокая мощность, требуемая для эффективного излучения радиоволн искровым разрядом, а также очень широкий радиочастотный диапазон излучаемых им волн. В результате одновременная работа нескольких близко расположенных искровых передатчиков была практически невозможной из-за интерференции их сигналов.

    Современный радиопередатчик состоит из следующих конструктивных частей:

    · задающий генератор частоты (фиксированной или перестраиваемой) несущей волны;

    · модулирующее устройство, изменяющее параметры излучаемой волны (амплитуду, частоту, фазу или несколько параметров одновременно) в соответствии с сигналом, который требуется передать (часто задающий генератор и модулятор выполняют в одном блоке -- возбудитель);

    · усилитель мощности, который увеличивает мощность сигнала возбудителя до требуемой за счёт внешнего источника энергии;

    · устройство согласования, обеспечивающее максимально эффективную передачу мощности усилителя в антенну;

    · антенна, обеспечивающая излучение сигнала.

    Радиоприёмник -- устройство, соединяемое с антенной и служащее для осуществления радиоприёма .

    Радиоприёмник (радиоприёмное устройство) -- устройство для приёма электромагнитных волн радиодиапазона (то есть с длиной волны от нескольких тысяч метров до долей миллиметра) с последующим преобразованием содержащейся в них информации к виду, в котором она могла бы быть использована.

    Классификация радиоприёмников

    Радиоприёмные устройства делятся по следующим признакам:

    · по основному назначению: радиовещательные, телевизионные, связные, пеленгационные, радиолокационные, для систем радиоуправления, измерительные и др.;

    · по роду работы: радиотелеграфные, радиотелефонные, фототелеграфные и т.д.;

    · по виду модуляции, применяемой в канале связи: амплитудная, частотная, фазовая;

    · по диапазону принимаемых волн, согласно рекомендациям МККР:

    · мириаметровые волны -- 100-10 км, (3 кГц-30 кГц), СДВ

    · километровые волны -- 10-1 км, (30 кГц-300 кГц), ДВ

    · гектометровые волны -- 1000--100 м, (300 кГц-3 МГц), СВ

    · декаметровые волны -- 100-10 м, (3 МГц-30 МГц), КВ

    · метровые волны -- 10-1 м, (30 МГц-300 МГц), УКВ

    · дециметровые волны -- 100-10 см, (300 МГц-3 ГГц), ДМВ

    · сантиметровые волны -- 10-1 см, (3 ГГц-30 ГГц), СМВ

    · миллиметровые волны -- 10-1 мм, (30 ГГц-300 ГГц), ММВ

    · приёмник, включающий все широковещательные диапазоны (ДВ, СВ, КВ, УКВ) называют всеволновым .

    · по принципу построения приёмного тракта: детекторные, прямого усиления, прямого преобразования,регенеративные, сверхрегенераторы, супергетеродинные с однократным, двукратным или многократным преобразованием частоты;

    · по способу обработки сигнала: аналоговые и цифровые;

    · по применённой элементной базе: на кристаллическом детекторе, ламповые, транзисторные, на микросхемах;

    · по исполнению: автономные и встроенные (в состав др. устройства);

    · по месту установки: стационарные, носимые;

    · по способу питания: сетевое, автономное или универсальное.

    Элемент, с помощью которого осуществляется воздействие на колебания высокой частоты, называется модулятором. Модулятор является неотъемлемой частью радиопередатчика, так как формирует сигнал информации, подлежащий передаче на расстояние. Модулированные высокочастотные колебания усиливаются усилителем мощности и излучаются в окружающее пространство с помощью антенны.

    Уменьшение напряжённости поля, а следовательно, и потока энергии, переносимого радиоволной вдоль поверхности Земли (земной волной), обусловлено проводимостью поверхности в этой области. Вдоль проводящей поверхности возникает поток энергии, направленный в проводящую среду и быстро затухающий по мере распространения в ней. Глубина проникновения радиоволны в земную кору определяется толщиной слоя и, следовательно, увеличивается с увеличением длины волны. Поэтому для подземной и подводной радиосвязи используются длинные и сверхдлинные радиоволны. т.к. чем больше число столкновений, тем большая часть энергии, получаемой электроном из волн, переходит в тепло. Поэтому поглощение больше в ниж. областях ионосферы, где v больше, т.к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и распространяются на большие расстояния. По этому короткие волны используются для передачи

    Короткие волны (3-30 МГц)так же в результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Системы передачи информации с помощью радиотехнических и радиоэлектронных приборов. Понятие, классификация радиоволн, особенности их распространения и диапазон. Факторы, влияющие на дальность и качество радиоволн. Рефракция и интерференция радиоволн.

      реферат , добавлен 27.03.2009

      Радиопередающие устройства, их назначение и принцип действия. Разработка структурной схемы радиопередатчика, определение его элементной базы. Электрический расчет и определение потребляемой мощности радиопередатчика. Охрана труда при работе с устройством.

      курсовая работа , добавлен 11.01.2013

      Основные понятия и классификация приборов для измерения напряженности электромагнитного поля и помех. Измерение напряженности электромагнитного поля. Метод эталонной антенны. Метод сравнения. Измерительные приемники и измерители напряженности поля.

      реферат , добавлен 23.01.2009

      Радиоволны, распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы. Электромагнитные волны с частотами, использующиеся в традиционной радиосвязи. Преимущества работы на коротких волнах.

      презентация , добавлен 13.03.2015

      Структурная схема радиопередатчика подвижной связи с угловой модуляцией. Расчет полосового фильтра, опорного (кварцевого) генератора, ограничителя амплитуд, интегратора. Электрический расчет фазового модулятора. Принципиальная схема радиопередатчика.

      курсовая работа , добавлен 04.05.2013

      Принципы выбора необходимого числа транзисторов и каскадов и их энергетический расчёт. Составление структурной и электрической принципиальной схем радиопередатчика. Расчёт умножителя частоты, LC-автогенератора с параметрической стабилизацией частоты.

      курсовая работа , добавлен 26.05.2014

      Назначение радиоприемников для приема и воспроизведения аналоговых и цифровых сигналов. Классификация приемных устройств по принципу действия. Построение приемников УКВ-диапазона. Схема супергетеродинного приемника. Расчет смесителя УКВ-радиоприемника.

      дипломная работа , добавлен 05.06.2012

      Структурная схема устройства. Миниатюрный микромощный радиопередатчик: классификация по назначению; выбор номенклатуры задаваемых показателей надежности; установление критериев отказов и предельных состояний. Расчет показателей ремонтопригодности.

      курсовая работа , добавлен 04.03.2011

      Классификация источников индустриальных радиопомех. Среда их распространения. Подавление индустриальных радиопомех. Проявление их в радиопередатчике. Создание линиями передач и их оборудованием наибольшей напряженности поля индустриальных радиопомех.

      реферат , добавлен 22.10.2009

      Устройство общих схем организации радиосвязи. Характеристика радиосистемы передачи информации, в которой сигналы электросвязи передаются посредством радиоволн в открытом пространстве. Особенности распространения и области применения декаметровых волн.

    Страницы истории

    Радио (лат. radio - излучаю, испускаю лучи radius - луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.


    Принцип работы

    Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемый сигнал модулируетболее высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).Полученный модулированный сигнал излучается антенной в пространство.
    На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).


    Частотные диапазоны
    Частотная сетка, используемая в радиосвязи, условно разбита на диапазоны:

    • Длинные волны(ДВ)- f = 150-450 кГц (л = 2000-670 м)
    • Средние волны(СВ)- f = 500-1600 кГц (л = 600-190 м)
    • Короткие волны(КВ)- f = 3-30 МГц (л = 100-10 м)
    • Ультракороткие волны(УКВ)- f = 30 МГц- 300 МГц (л = 10-1 м)
    • Высокие частоты (ВЧ- сантиметровый диапазон)- f = 300 МГц- 3 ГГц (л = 1-0,1 м)
    • Крайне высокие частоты (КВЧ- миллиметровый диапазон)- f = 3 ГГц- 30 ГГц (л = 0,1-0,01 м)
    • Гипервысокие частоты (ГВЧ- микрометровый диапазон)- f = 30 ГГц- 300 ГГц (л = 0,01-0,001 м)


    В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

    • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
    • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
    • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т.н.зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью- более длинные (3 МГц). Короткие волны могут распространяться на больши м е расстояния при малой мощности передатчика.
    • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.
    • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи ит.д.
    • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
    • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.


    Распространение радиоволн

    Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).
    Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называется
    многолучёвостью . Вследствие многолучёвости и изменений параметров среды, возникают замирания (англ. fading )- изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

    Особые эффекты

    эффект антиподов- радиосигнал может хорошо приниматься в точке земной поверхности, приблизительно противоположной передатчику.
    Описанные примеры:

    • радиосвязьЭ.Кренкеля(RPX), находившегося наЗемле Франца-Иосифа12 января 1930г. сАнтарктикой(WFA).
    • радиосвязь плотаКон-Тики(приблизительно 6° ю.ш. 60° з.д.) сОсло, передатчик 6 Ватт.
    • эхо от волны, обошедшей Землю (фиксированная задержка)
    • редко наблюдаемый и малоизученный эффект LDE (Мировое эхо, эхо с большой задержкой).
    • эффект Доплераизменение частоты (длины волны) в зависимости от скорости приближения (или удаления) передатчика сигнала относительно приёмника. При их сближении частота увеличивается, при взаимном удалении уменьшается.


    Радиосвязь можно разделить на радиосвязь без применения ретрансляторов по длинам волн:

    • СДВ-связь
    • ДВ-связь
    • СВ-связь
    • КВ-связь
    • КВ-связь земной (поверхностной) волной
    • КВ-связь ионосферной (пространственной волной)волной
    • УКВ-связь
    • УКВ связь прямой видимости
    • тропосферная связь
    • С применением ретрансляторов:
    • Спутниковая связь,
    • Радиорелейная связь,
    • Сотовая связь.


    Использование широковещательной потоковой передачи

    Содержимое, передаваемое потоком с широковещательной передачей, больше всего подходит для сценариев, напоминающих просмотр телевизионной программы, при этом управление и потоковая передача содержимого выполняется из пункта источника или сервера. Этот тип пункта публикации наиболее часто используется для передачи прямых потоковых данных от кодировщиков, удалённых серверов или других широковещательных пунктов публикации. Если клиент подключается к широковещательному пункту публикации, то он получает широковещательные данные, трансляция которых уже началась. Например, если в 10:00 начинается трансляция совещания в компании, то клиенты, подключившиеся в 10:18, пропустят только первые 18 минут совещания. Клиенты могут запускать и останавливать поток, однако они не могут приостановить его, перемотать вперёд, назад или пропустить.
    Кроме того, на широковещательном пункте публикации можно выполнять потоковую передачу файлов и списков воспроизведения файлов. Если источником файлов служит широковещательный пункт публикации, то сервер передаёт файл или список воспроизведения как широковещательный поток. При этом в проигрывателе нельзя управлять воспроизведением, как в случае с потоком по запросу. Пользователи получают широковещательные данные прямого закодированного потока. Клиенты начинают воспроизводить уже передаваемый поток.
    Обычно широковещательный пункт публикации начинает потоковую передачу сразу после запуска и продолжает её до тех пор, пока он не будет остановлен или пока не закончится содержимое.
    Содержимое с широковещательного пункта публикации можно предоставлять как одноадресный или многоадресный поток. Поток с широковещательного пункта публикации можно сохранить как файл архива, а затем предложить его конечным пользователям в качестве повтора исходных широковещательных данных по запросу.

    Гражданская радиосвязь

    Решениями ГКРЧ России (Государственной комиссии по радиочастотам) для гражданской связи физическими и юридическими лицами на территории Российской Федерации выделены 3 группы частот:

    • 27МГц (Си-Би, «Citizens’ Band», гражданский диапазон), с разрешённой выходной мощностью передатчика до 10Вт. Автомобильныерациидиапазона 27 МГц широко используются для организации радиосвязи в службах такси, для связи водителей-дальнобойщиков;
    • 433МГц (LPD, «Low Power Device»), выделено 69 каналов длярацийс выходной мощностью передатчика не более 0,01Вт;
    • 446МГц (PMR, «Personal Mobile Radio»), выделено 8 каналов длярацийс выходной мощностью передатчика не более 0,5Вт.


    Радио используется в компьютерных сетях AMPRNet, в которых соединение обеспечивается любительскими радиостанциями.

    Радиолюбительская связь

    Радиолюбительская связь- многогранное техническоехобби, выражающееся в проведении радиосвязей в отведённых для этой цели диапазонах радиочастот. Данное хобби может иметь направленность в сторону той или иной составляющей, например:

    • конструирование и постройка любительской приёмно-передающей аппаратуры и антенн;
    • участие в различных соревнованиях по радиосвязи (радиоспорт);
    • коллекционированиекарточек-квитанций, высылаемых в подтверждение проведённых радиосвязей и/илидипломов, выдаваемых за проведение тех или иных связей;
    • поиск и проведение радиосвязей с радиолюбительскими станциями, работающими из отдалённых мест или из мест, с которых крайне редко работают любительские радиостанции ( DXing );
    • работа какими-то определёнными видами излучения (телеграфия, телефония соднополоснойиличастотной модуляцией,цифровые виды связи);
    • связь на УКВ с использованием отражения радиоволн от Луны (EME), от зонполярного сияния(«Аврора»), отметеорных потоков, с ретрансляцией через радиолюбительскиеИСЗ;
    • работа малой мощностью передатчика (QRP), на простейшей аппаратуре;
    • участие в радиоэкспедициях- выход в эфир из отдалённых и труднодоступных мест и территорий планеты, где нет активных радиолюбителей.


Рекомендуем почитать

Наверх