Что такое сообщение в системе электросвязи. Классификация и состав современных сетей электросвязи. Состав и структура общегосударственной системы связи

Скачать Viber 16.04.2019
Скачать Viber

Понятие и виды электросвязь

1. Современные виды электросвязи

Все виды электросвязи можно условно разделить на четыре группы передачи:

· звуковых сообщений

· неподвижных оптических сообщений;

· подвижных оптических изображений;

· сообщений между ЭВМ.

· передачи сообщений, только при развитии IP - телефонии.

Телеграфная связь и передача данных служат для передачи дискретных сообщений в виде текстов (телеграмм) и цифровых данных соответственно. Причем передача данных обеспечивает более скоростную и качественную передачу сообщений.

Факсимильная связь и ее разновидность (передача газетных полос) обеспечивают передачу оптических сообщений в виде неподвижных изображений (в том числе и цветных).

Телефонная связь и системы звукового вещания предназначены для передачи звуковых сообщений. Телефонная связь обеспечивает ведение переговоров между людьми (абонентами), а звуковое вещание -- одностороннюю и высококачественную передачу звуковых сообщений (радиопрограмм), предназначенных одновременно для многих слушателей.

Телевизионное вещание и видеотелефонная связь обеспечивают одновременную передачу оптических и звуковых сообщений. При этом телевидение обеспечивает одностороннюю передачу массовых сообщений, а видеотелефонная связь -- двустороннюю передачу индивидуальных сообщений, позволяя вести переговоры, при которых собеседники видят друг друга. Этот вид электросвязи получил широкое распространение, из-за относительно высокой стоимости Каждый вид электросвязи реализуется с помощью определенной системы, обеспечивающей передачу на расстояние конкретных сообщений. Поэтому в электросвязи существуют системы: телефонной, телеграфной, факсимильной, видеотелефонной связи, передачи газет, передачи данных, а также звукового и телевизионного вещания. Состав и схемы этих систем определяются характером и видом передаваемых сообщений.

Телефонные, телеграфные, видеотелефонные системы и системы передачи данных обеспечивают одновременную двухстороннюю передачу сообщений между абонентами, то есть позволяют вести переговоры. Для этого каждый абонент должен иметь как передатчик, так и приемник, связанные между собой двумя каналами связи, один из которых обеспечивает передачу сигналов в одном направлении, а другой в другом (обратном) направлении.

Системы звукового и телевизионного вещания, а также передачи газет обеспечивают одностороннюю передачу сообщений, предназначенных одновременно для большого числа абонентов. Каждый слушатель или группа слушателей, находящиеся у одного приемника, пользуется "своей" системой связи, состоящей из передатчика, канала связи и приемника. При этом передатчик является общим элементом одновременно для многих систем. Общее число систем соответствует числу приемников.

История развития пожарной автоматики

На смену морально и технически устаревшим пожарным извещателям АТИМ, АТП, ДТЛ, ДИ-1, КИ-1, РИД-1, ИДФ-1, ИДФ-1М, ПОСТ-1 и приемно-контрольного оборудования СКПУ-1, СДПУ-1, ППКУ-1М, ТОЛЮ/100...

Многоканальная система передачи информации

Необходимо отметить, что для рассматриваемой СПДИ выполняются необходимые условия функционирования многоканальной системы электросвязи, а именно и. Целесообразно запас рассматриваемого канала связи по пропускной способности Ск>Iс =1...

Модернизация телефонной сети в сельской местности Республики Казахстан

Модернизируемая сельская сеть предполагает: использование цифровых АТС большей, чем в настоящее время, емкости в сочетании с необслуживаемыми абонентскими выносами. Современные сети строятся с использованием удаленных концентраторов...

Основы инфокоммуникационных технологий

Электросвязь -- передача информации с помощью электрических сигналов по проводам, волоконно-оптическому кабелю или радиоволн. Принцип электросвязи основан на преобразовании сигналов сообщения (звук...

Понятие и виды электросвязь

Системы для передачи непрерывных сообщений. Системы телефонной связи предназначены для передачи на расстояние звуковых (акустических) сообщений, создаваемых голосовыми связками и воспринимаемых органом слуха (ухом) человека...

Понятие и виды электросвязь

Витая пара является самой дешёвой и распространённой средой передачи данных. Она состоит из двух изолированных медных проводов, свитых друг с другом. Витая пара широко используется внутри зданий для объединения компьютеров в локальные сети...

Понятие и виды электросвязь

Классификация решений профессиональной мобильной радиосвязи (ПМР) определяется различием потребностей заказчиков, а также их отраслевой спецификой. Как и вся коммуникационная инфраструктура предприятия...

Разработка компонентов инфраструктуры сервисного обслуживания встроенной памяти гибкой автоматизированной системы на кристалле

В настоящее время значительная часть подобных конфигурируемых проектов разрабатывается в виде печатной платы как комбинация микросхем программируемой и жесткой логики, аналоговых блоков, микроконтроллеров...

Расчет экономической эффективности внедрения новых служб

Современные лазерные гироскопы

Современный лазерный гироскоп представляет собой сложную оптико-электронную систему, основным элементом которой является КОКГ. Конструкция лазерного гироскопа выполняется в виде монолитного блока из высококачественного кварца или ситалла...

Стандартизация оборудования в области радиосвязи

Организацией, обеспечивающей стандартизацию оборудования связи в глобальном масштабе при ООН, является Международный союз электросвязи (МСЭ)...

Эксплуатация трассовых радиолокаторов и радиолокационных комплексов

«Цепи и сигналы электросвязи» – базовый курс в системе подготовки современного инженера в области электрорадиотехники и радиоэлектроники. Его целью является изучение фундаментальных закономерностей, связанных с получением сигналов, их передачей по каналам связи, обработкой и преобразованием в радиотехнических цепях.

Круг вопросов, которые охватывает данный курс, весьма обширен. В него входят, во-первых, вопросы теории сигналов:

· спектральный и корреляционный анализ информационных и управляющих сигналов;

· особенности спектрального и корреляционного анализа узкополосных радиосигналов, введение понятий комплексного и аналитического сигналов;

· основы теории дискретных и цифровых сигналов;

· статистический анализ случайных сигналов и помех, изучаемый в едином комплексе с детерминированными сигналами.

Во-вторых, в курс «Цепи и сигналы электросвязи» входит теория преобразования перечисленных выше сигналов в линейных цепях – апериодических и частотно-избирательных.

В-третьих, в него входят основные положения теории нелинейных и параметрических устройств и преобразования в них сигналов.

Большое значение приобрели вопросы теории цифровой обработки сигналов, оптимальной обработки сигналов на фоне помех и основные положения теории синтеза радиотехнических цепей – аналоговых и цифровых.

Таким образом, в результате изучения дисциплины студент должен знать:

· основные понятия: информация, сообщение, сигнал,

· структуру построения системы электросвязи,

· виды электросвязи,

· назначение и структуру канала связи,

· сущность основных физических процессов при передаче информации с помощью электрических сигналов,

· виды сигналов, их параметры,

· физические характеристики сигналов,

· математические модели, отображающие периодические сигналы,

· спектры периодических сигналов,

· спектры непериодических сигналов;

а также уметь:

· пояснить структуру одноканальной системы связи,

· пояснить принцип действия основных видов преобразователей сообщения в сигнал и сигнала в сообщение,

· исследовать спектральный состав сигналов,

· математически и графически представить различные виды сигналов,

· построить временные и спектральные диаграммы по параметрам сигналов,

· провести лабораторные исследования спектров периодических и непериодических сигналов.

Изучение курса необходимо начать с основных понятий электросвязи – информации, сообщения и сигнала.

Понятия информации и сообщения употребляются довольно часто. Эти близкие по смыслу значения сложны и дать их точное определение нелегко. Слово «информация» происходит от латинского «informatio» – разъяснение, ознакомление, осведомленность. Обычно под информацией понимают совокупность сведений, данных о каких-либо событиях, явлениях или предметах. Мы живем в информационном мире. Все, что мы видим, слышим, помним, знаем, переживаем, – все это различные формы информации. Совокупность сведений, данных становится знанием лишь после их интерпретации с учетом ценности и содержания этих сведений. Следовательно, информацию в широком смысле можно определить как совокупность знаний об окружающем нас мире. В таком понимании информация является важнейшим ресурсом научно-технического и социально-экономического развития общества. В отличие от материального и энергетического ресурсов, информационный ресурс не уменьшается при потреблении, накапливается со временем, сравнительно легко и просто с помощью технических средств обрабатывается, хранится и передается на значительные расстояния.



Таким образом, под информацией понимается вся совокупность сведений о событиях, процессах и фактах, имеющих место в живой и неживой природе и предназначенных для обработки, хранения и передачи.

Для передачи или хранения информации используют различные знаки (символы), позволяющие выразить (представить) ее в некоторой форме. Этими знаками могут быть слова и фразы в человеческой речи, жесты и рисунки, формы колебаний, математические знаки и т.п. Так, при телеграфной передаче сообщением является текст телеграммы, представляющий собой последовательность отдельных знаков – букв и цифр. При разговоре по телефону сообщением является непрерывное изменение во времени звукового давления, отображающее не только содержание, но и интонацию, тембр, ритм и иные свойства речи. При передаче движущихся изображений в телевизионных системах сообщение представляет собой изменение во времени яркости элементов изображения. Поэтому форма, в которой человек получает информацию, может быть разной.

Сообщение – это форма представления информации.

Передача сообщений на расстояние осуществляется с помощью какого-либо материального носителя (бумаги, магнитной ленты и т.д.) или физического процесса (звуковых или электромагнитных волн, тока и т.д.).

Физический процесс, отображающий передаваемое сообщение и распространяющийся в определенном направлении называется сигналом .

В качестве сигнала можно использовать любой физический процесс, изменяющийся в соответствии с передаваемым сообщением. В современных системах связи чаще всего используют электрические сигналы. Физической величиной, определяющей такой сигнал, является ток или напряжение.

Электрическое колебание, содержащее сообщение называется электрическим сигналом .

Сигналы формируются путем изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс (изменения параметров носителя) принято называть модуляцией. Все преобразования сигналов будут рассмотрены в следующих разделах курса.

Совокупность технических средств, для передачи сообщений от источника к потребителю называется системой связи .

Рассмотрим принцип построения простейшей одноканальной системы связи, приведенной на рисунке 1. Разберем назначение отдельных элементов схемы, представленной на этом рисунке.

Источником сообщений и получателем в одних системах связи может быть человек, в других – различного рода устройства.

Преобразователь сообщения в сигнал – преобразует звуковой сигнал или сигнал изображения в электрический сигнал.

В передатчике первичный сигнал (обычно низкочастотный) превращается во вторичный (высокочастотный) сигнал , пригодный для передачи по используемому каналу. Это преобразование осуществляется посредством модуляции.

Линией связи называется физическая среда и совокупность аппаратных средств, используемых для передачи сигналов от передатчика к приемнику. В системах электрической связи – это, прежде всего, кабель или волновод, в системах радиосвязи – область пространства, в которой распространяются электромагнитные волны от передатчика к приемнику. При передаче канальный сигнал может искажаться, так как на него могут накладываться помехи .

Приемник обрабатывает принятое колебание , представляющее собой сумму пришедшего искаженного сигнала и помехи , и восстанавливает по нему переданный сигнал (он также будет несколько искаженным).

Преобразователь сигнала в сообщения преобразует сигнал в сообщение , которое с некоторой погрешностью отображает переданное сообщение a . Другими словами, приемник должен на основе анализа колебания определить, какое из возможных сообщений передавалось. Поэтому приемное устройство является одним из наиболее ответственных и сложных элементов системы связи.

По виду передаваемых сообщений различают следующие системы связи:

· передача речи (телефония);

· передача текста (телеграфия);

· передача неподвижных изображений (факсимильная связь);

· передача подвижных изображений (телевидение), телеизмерение, телеуправление;

· передача данных.

По назначению телефонные и телевизионные системы делятся на:

· вещательные, отличающиеся высокой степенью художественности воспроизведения сообщений;

· профессиональные, имеющие специальное применение (служебная связь, промышленное телевидение и т.п.).

В системе телеизмерения физическая величина, подлежащая измерению (температура, давление, скорость и т.п.), с помощью датчиков преобразуется в первичный электрический сигнал, поступающий в передатчик. На приемном конце переданную физическую величину или ее изменения выделяют из сигнала и наблюдают или регистрируют с помощью записывающих приборов. В системе телеуправления осуществляется передача команд для автоматического выполнения определенных действий. Нередко эти команды формируются автоматически на основании результатов измерения, переданных телеметрической системой.

Внедрение высокоэффективных ЭВМ привело к необходимости быстрого развития систем передачи данных, обеспечивающих обмен информацией между вычислительными средствами и объектами автоматизированных систем управления. Этот вид электросвязи по сравнению с телеграфной отличается более высокими требованиями к скорости и верности передачи информации.

Теперь разберем понятие канала связи. Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки A системы до точки B (рисунок 2). Точки A и B могут быть выбраны произвольно, главное, чтобы между ними проходил сигнал. Часть системы связи, расположенная до точки A, является источником сигнала для этого канала. Если сигналы, поступающие на вход канала и снимаемые с его выхода, являются дискретными (по уровням), то канал называется дискретным .

Если входные и выходные сигналы канала являются непрерывными (по уровню), то и канал называется непрерывным . Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот.

Следует отметить, что некоторые блоки на схеме рисунка 2 не обозначены, так как их структура зависит от вида системы связи и типа канала.

Типы каналов, по которым передаются сигналы, многочисленны и разнообразны. Различают каналы проводной связи (воздушные, кабельные, оптические и др.) и каналы радиосвязи .

Кабельные линии связи являются основой магистральных сетей дальней связи, по ним осуществляется передача сигналов в диапазоне частот от десятков кГц до сотен МГц. Весьма перспективными являются волоконно-оптические линии связи. Они позволяют в диапазоне 600 – 900 ТГц обеспечить очень высокую пропускную способность (сотни телевизионных каналов или сотни тысяч телефонных каналов).

Наряду с проводными линиями связи широко используются радиолинии различных диапазонов (от сотен кГц до десятков ГГц). Эти линии более экономичны и незаменимы для связи с подвижными объектами. Широкое распространение для многоканальной радиосвязи получили радиорелейные линии (РРЛ) метрового, дециметрового и сантиметрового диапазонов на частотах от 60 МГц до 15 ГГц. Все большее применение находят спутниковые линии связи – РРЛ с ретранслятором на искусственном спутнике Земли (ИСЗ). Для этих линий (систем) связи отведены диапазоны частот 4 – 6 и 11 – 275 ГГц. Большая дальность при одном ретрансляторе на спутнике, гибкость и возможность организации глобальной связи – важные преимущества спутниковых систем.

Главная > Лекция

Тема 1. Введение. Общие сведения о системах электросвязи

ЛЕКЦИЯ 1 СИСТЕМЫ ЭЛЕКТРОСВЯЗИ

1.1 Основные понятия и определения теории электросвязи. 1.2 Классификация систем электросвязи. 1.3 Семиуровневая модель взаимодействия открытых систем. 1.1 Основные понятия и определения теории связи В дисциплине “ТЕОРИЯ ЭЛЕКТРИЧЕСКОЙ СВЯЗИ” изучаются основные закономерности и методы передачи информации по каналам связи; рассматриваются способы математического представления сообщений, сигналов и помех, методы формирования сигналов и их преобразования в каналах связи, вопросы анализа помехоустойчивости и пропускной способности систем связи, оптимального приема сообщений и оптимизации систем связи. Экономические преобразования в обществе, творческая дея-тельность человека, поведение живых существ, действие любых ав-томатических устройств неразрывно связаны с хранением, перера-боткой и передачей информации. Слово “информация” в переводе с латинского означает осведомление о чем-либо, сведения, а в своем наиболее раннем употреблении это понятие означает знание челове-ком тех или иных явлений природы и общества. Однако такое тол-кование понятия “информация” не может служить его строгим опре-делением. Существуют различные определения этого понятия. В на-иболее общем философском определении под информацией понимают специфическую форму связи материальных систем, имеющую в своей основе отражение, как объективное свойство материи. В техническом смысле под информацией понимаются сведения о каком-либо событии или предмете, поступающие к получателю в ре-зультате его взаимодействия с окружающей средой. Информация, представленная в формализованном виде и предназначенная для обработки вычислительными устройствами или уже обработанная ими называется данными . Под сообщением понимается форма представления информации (например, текст, речь, изображение, цифровые данные и т.д.). Множество возможных сообщений с их вероятностными характеристи-ками называется ансамблем сообщений . Во многих практических слу-чаях (телеграфия, системы передачи данных и т.д.) это множество конечно. Выбор сообщений из ансамбля осуществляет источник сооб-щений . Сигналом называется физический процесс, однозначно отображающий передаваемое сообщение. С информационной точки зрения сигналы подразделяются на детерминированные и случайные. По виду временной функции сигналы подразделяютсяна непрерывные и дискретные, . К непрерывным (аналоговым) сигналам относятся такие, которые могут принимать в некотором интервале любые уровни. Если сигнал принимает только дискретные значения, то он называется дискретным . Если эти уровни можно обозначить цифрами, то такой сигнал называется цифровым . Детерминированными сигналами называются такие, изменение которых во времени можно полностью заранее определить. Если же заранее предсказать изменение сигнала во времени нельзя, то сигнал называется случайным .

Рис. 1.1 Примеры сигналов

Сигнал характеризуется такими параметрами, как длительность (Т с ), ширина спектра F c и динамический диапазон (D c ). Ширина спектра характеризует скорость изменения сигнала в интервале его существования. Динамический диапазон определяется отношением наибольшей мгновенной мощности сигнала к минимальной. Более общей характеристикой сигнала является его объем V c =T c F c D c . Чем больше объем сигнала, тем больше информации можно передать. . По виду передаваемого сообщения а) телефонный (речь) б) телеграфный (текст), в) фототелеграфный (неподвижное изображение), г) передача данных, д) сигнал звукового вещания е) телевизионный. - Телефонный сигнал формируется микрофоном.
Гц рекомендуемый канал МККТТ: 0,3…3,4 кГц.
=25…35 дБ. - Телеграфный сигнал
Скорость передачи:
[Бод],
Бод. Полоса частот
[Гц]. - Передача данных Как телеграфный сигнал, отличается только скорость передачи. Бод. - Фототелеграфный сигнал используется для передачи неподвижных изображений
(оборот/минута). Гц. - Сигнал звукового вещания =35…40 дБ, =65 дБ для симфонического оркестра,
кГц. - Телевизионный сигнал =40 дБ,
МГц. Процесс превращения сообщения в сигнал в передающем устройстве может состоять из следующих трех операций: преоб-разования, кодирования и модуляции . Эти три операции могут быть независимыми либо совмещенными. Преобразованием называется перевод неэлектрических величин, определяющих передаваемое сообщение, в первичный электрический сигнал. Так, в телефонии эту функцию выполняет микрофон, преобразующий звуковые волны в электрические колебания. В большинстве случаев сигнал является низкочастотным колебанием, непригодным для непосредственной передачи. Кодирование – это преобразование сообщения в определен-ные сочетания элементарных дискретных символов, называемых кодовыми комбинациями или словами. Целью кодирования, как правило, является согласование источника сообщений с каналами связи, обеспечивающее либо максимально возможную скорость передачи информации, либо заданную помехоустойчивость. Согла-сование осуществляется с учетом статистических свойств источ-ника сообщений и характера воздействия помех. Коды – это системы соответствий между сообщениями и комбина-циями символов (дискретных сигналов), при помощи которых эти сообщения могут быть зафиксированы, переданы на расстояние или использованы для дальнейшей обработки. Символы, из которых фор-мируются кодовые комбинации, называют элементами кода . Число различающихся между собой элементов называют основанием кода . Так, элементами двоичного кода ( ) являются символы “1” и “0”. Число N различных кодовых комбинаций называют объемом или мощностью кода . Число элементов (n ), образующих кодовую комбинацию, называют значимостью кода . Коды, кодовые комбинации которых состоят из одинакового чис-ла элементов равной длительности, называют равномерными . Мощ-ность такого кода составляет
. В системах передачи дан-ных и телеуправления используются преимущественно равномерные коды. В таких кодах границы между кодовыми комбинациями обычно определяют подсчетом числа элементов. Модуляцией называют изменение параметра сигнала в соответ-ствии с передаваемым сообщением. Модуляцию дискретными сигнала-ми называют манипуляцией . Параметрами, подлежащими модуляции, могут быть амплитуда, частота и фаза. Возможны и комбинированные методы модуляции, при которых модулируются два или несколько параметров сигнала. От вида модуляции в значительной мере зави-сят помехоустойчивость и пропускная способность системы связи. Устройство, предназначен-ное для кодирования сигнала, называется кодером . Устройство, ре-шающее обратную задачу – декодером . Совокупность кодера и деко-дера называют кодеком . Полученными при кодировании символами обычно осуществляют модуляцию сигнала. Устройства, осуществляющие модуляцию и демодуляцию сигнала называют модемом . Структурная схема канала передачи дискретных сигналов изображена на рис. 1.2.
а)
б)

Рис. 1.2. Структурная схема канала передачи а) симплексная связь, б) дуплексная связь

Совокупность модулятора, демодулятора и канала связи называют дискретным каналом . Совокупность кодека, модема и канала связи называют каналом передачи данных . При передаче дискретных сообщений каждый элемент кода (кодо-вый символ) отображают отрезком сигнала длительностью , назы-ваемым единичным элементом. Для пояснения особенностей различ-ных видов модуляции рассмотрим приведенные на рис.1.3 эпюры модулированных двоичных сигналов при передаче сообщения 101100. Если в качестве переносчика используется постоянный ток, то модуляция может быть осуществлена изменением величины тока (рис.1.3,а) либо его направления (рис.1.3,б) (кодово-импульсная модуляция КИМ или ИКМ). Наибольшее применение нашли в настоящее время цифровые системы связи, в которых элементы сигнала пред-ставляют собой ограниченные на конечном отрезке времени (от 0 до ) гармонические колебания; такие системы связи и сигна-лы называют простыми.
В системах передачи данных широко исполь-зуются простые двоичные системы с амплитудной, частотной или фазовой манипуляцией. При амплитудной манипуляции (рис.1.3,в) передаче “1” соот-ветствует наличие единичного элемента переменного тока длительностью
, передаче “0” – пауза (КИМ-AM), т.е. При частотной модуляции (рис.1.3,г) (КИМ-ЧМ) При фазовой модуляции (рис.1.3,д) (КИМ-ФМ) При использовании в качестве переносчика периодической последовательности импульсов различают амплитудно-импульсную модуляцию – АИМ; широтно-импульсную модуляцию – ШИМ; фазо-импульсную модуляцию – ФИМ; частотно-импульсную модуляцию – ЧИМ (рис.1.3,е,ж,з,и). Границы между передаваемыми единичными элементами (моменты изменения полярности, амплитуды, частоты или фазы переносчика) называются значащими моментами . Количество единичных элементов, передаваемых за 1 с, называется скоростью модуляции и определяется по формуле . За единицу ее из-мерения принят Бод – скорость, соответствующая одному единично-му элементу в секунду. Для систем, использующих коды с основанием , скорость передачи данных определяют по формуле
Кроме сигналов, несущих для получателя информацию, в среде распространения присутствуют посторонние электромагнитные процессы. Помехи мо-гут возникнуть как в среде, используемой для распространения сигнала, так на-зываемые, внешние помехи, так и в электрических цепях, выполняющих преоб-разование сигнала, так называемые, внутренние помехи. Они могут иметь са-мые различные формы протекания во времени (гладкие, импульсные) и, в том числе, очень близкие к формам полезных сигналов. Таким образом, вместе с полезным сигналом в приемнике действуют помехи, интенсивность которых может оказаться соизмеримой с сигналом, в результате чего сигналы оказыва-ются частично или полностью замаскированными. Каналом связи называют совокупность линейных, коммутирующих и других технических средcтв, обеспечивающих независимую передачу сигналов между двумя абонентами по общей линии связи. Классификация каналов связи приведена на рис. 1.4. Линия связи представляет собой физическую среду (пара проводов кабеля, волновод, область пространства), в которой распространяется сигнал. Линии связи, как правило, много канальные. Каналы связи можно характеризовать, как и сигнал такими параметрами, как время передачи к ), полосой пропускания (F к ) и динамическим диапазоном (D к ) . Обобщенной характеристикой канала является его объем V к = T к F к D к . Необходимым условием неискаженной передачи сигнала является V c < V к . Обычно сигнал соглашается с каналом по всем трем параметрам

Т с ≤ Т к ; F c ≤ F к ; D c ≤ D к .

Каналы связи подразделяются на симплексные и дуплексные. Симплексные каналы обеспечивают передачу в одном направлении, дуплексные – в обоих. Системой связи называют совокупность узлов, станций и линий связи, соединенных в определенном порядке, соответствующем организации управления объектами характеру выполняемых задач. В простейшей одно канальной системе это совокупность технических средств для передачи сообщений от источника к потребителю. Система связи включает в себя первичную и вторичную сети. Первичная сеть представляет совокупность сетевых узлов, станций и соединяющих линий связи. На узловых станциях организуются каналы связи и групповые тракты, а также осуществляется транзитное соединение канала. Вторичные сети используют каналы связи, формируемые первичной сетью. Сетью связи называют совокупность узлов (центров) коммутации, соединенных линиями связи, вместе с алгоритмами и программами обмена информацией и управления. Различают базовую и абонентскую (терминальную) сети. Базовая сеть включает узлы коммутации и соединяющие их магистральные линии. Транспортная сеть, обеспечивающая объединение всех сетевых средств, выполняет функцию передачи сигналов. Абонентская сеть обеспечивает подключение абонентов к ресурсам базовой сети. Часть сети, которая соединяет между собой каналы разных зоновых сетей на всей территории страны, составляет магистральную первичную сеть . 1.2 Классификация систем электросвязи
Системы электросвязи классифицируются по назначению, по типу применяемого сигнала, по способу осуществления соединения, по степени интеграции решаемых задач и по способу обмена информацией. По назначению различают сети телефонной, телеграфной, факсимильной связи, сети передачи данных и телетекса. Па типу применяемого сигнала системы связи подразделяются на аналоговые и цифровые. В аналоговых сетях используется непрерывный сигнал. Особенностью его является то, что два сигналы могут отличаться один от другого как угодно мало. В цифровых сетях используется сигнал, который состоит из различных элементов. Такими элементами являются 1 и 0. Единица обычно обозначается импульсом или отрезком гармонического колебания с определенной амплитудой. Нуль обозначается отсутствием переданного напряжения. Совокупность 1 и 0 составляет сообщение - кодовую комбинацию. По способу осуществления соединения системы подразделяются на сети с коммутацией каналов, коммутацией сообщений и коммутацией пакетов. В сетях с коммутацией каналов соединения абонентов осуществляется по типу автоматической телефонной станции. Основной их недостаток -- это большое время вхождения в связь из-за занятости каналов или вызываемого абонента. Обмен информацией в сетях с коммутацией сообщений осуществляется по типу передачи телеграмм. Отправитель составляет текст сообщения, указывает адрес, категорию срочности и секретности и это сообщение записывается в запоминающее устройство (ЗУ). При освобождении канала сообщение автоматически передается на следующий промежуточный узел или непосредственно абоненту. На промежуточном узле сообщения также записывается в ЗУ и при освобождении следующего участка передается дальше. Преимуществом таких сетей является отсутствие отказа в приеме сообщения. Недостаток заключается в сравнительно большом времени задержки сообщения за счет его сохранения в ЗУ. Поэтому такие сети не используют для передачи информации, которая требует доставки в реальном времени. В сетях с коммутацией пакетов обмен информацией осуществляется также как в сетях с коммутацией сообщений. Однако сообщение делится на короткие пакеты, которые быстро находят себе маршрут к адресату. В результате время задержки пакетов будет меньшим. По степени интеграции решаемых задач различают интегральные цифровые сети и цифровые сети интегрального обслуживания. В цифровых интегральных сетях интеграция осуществляется на уровне технических устройств. Одно устройство решает несколько задач. Например, решает задачу уплотнения канала и коммутации. В цифровых сетях интегрального обслуживания интеграция осуществляется на уровне служб. Сигналы телефонии, телетекса, передачи данных и другие передаются цифровым способом с помощью одних и тех же устройств. В таких сетях отсутствует разделение на первичные и вторичные сети. По способу обмена информацией сети подразделяются на синхронные, асинхронные и плезиохронные. В синхронных сетях генераторы управляющих сигналов на конечных и промежуточных пунктах постоянно синхронизированы независимо от того передается информация или нет. В асинхронных сетях синхронизация осуществляется только на время приема сообщения. Плезиохронный метод функционирования допускает отсутствие постоянного подстраивания местных генераторов. Прием сообщений обеспечивается за счет применения высокостабильных местных генераторов с автоподстройкой под сигналы единой частоты через довольно продолжительные интервалы времени. Сеть телефонной связи предназначена для передачи на расстояние речевых (акустических) сообщений Сеть телеграфной связи предназначена для двусторонней передачи дискретных сообщений (телеграмм). Сети передачи данных предназначены для обмена информацией между ЭВМ как и телеграфные сети используют дискретные сигналы. В отличие от телеграфии в сетях передачи данных обеспечивается большая скорость и качество передачи сообщений. Гарантируется заданная вероятность доставки при любой практически необходимой скорости передачи сообщений. Это достигается благодаря использованию дополнительных устройств повышения качества передачи сообщений, которые конструктивно объединяются с передатчиками и приемниками систем передачи данных, образовывая приемо-передающие устройства, которые называются аппаратурами передачи данных (АПД). Сеть факсимильной связи предназначена для передачи не только содержания, но и внешнего вида самого документа. Оконечное устройство факсимильных сетей представляет собой цифровой факсимильный аппарат, который работает по телефонной сети со скоростями 2,4-4,8 кбит/с или по сетям передачи данных со скоростями 4,8; 9,6; и 48 кбит/с. В нем осуществляется статистическое кодирование информации с коэффициентом сжатия около 8, что позволяет передавать страницу текста за 2 мин при скорости 2,4 кбит/с и соответственно за 30 с при скорости 9,6 кбит/с. Телетекс – это буквенно-цифровая система передачи деловой корреспонденции, которая построена по абонентскому принципу. Основная идея телетекса - объединение всех возможностей современной печатной машинки с передачей сообщений при условии сохранения содержания и формы текста. Эта система немного напоминает телекс (абонентский телеграф), но отличается от нее большим набором знаков (256 за счет 8- элементного кода), большей скоростью передачи (2400 бит/с), высокой достоверностью, возможностью редактировать подготовленную к передаче документацию и другие дополнительные особенности. Передача информации в системе телетекс осуществляется по телефонным сетям. Важной особенностью и принципиальным преимуществом телетекса сравнительно с телексом является отсутствие необходимости в дополнительной работе на клавиатуре во время передачи текста. Это преимущество достигается благодаря тому, что подготовленный на оконечном устройстве текст, запоминается в его оперативном запоминающем устройстве, откуда информация передается по каналу связи. Принятое сообщение может быть воспроизведено на экране дисплея или отпечатано. Система телетекс имеет много общего с системой передачи данных, а именно: цифровой метод передачи, скорость передачи 2,4 кбит/с, применяемые методы повышения борьбы с ошибками и управление соединением. Расхождение между этими системами состоят в том, что в телетексе используется разговорный язык, передачи данных - формализованные языки. На базе сетей телетекса и факса создаются службы электронной почты , т.е. службы передачи письменной корреспонденции по сетям электросвязи, которые обеспечивают получение “твердой копии” оригинала. Раздельное использование приведенных выше вторичных сетей сдерживает развитие систем телекоммуникаций. Внедрение цифровых сетей разрешает на единой цифровой основе обеспечить передачу сигналов разных служб, т.е. организовывать цифровую сеть интегрального обслуживания. Под цифровой сетью интегрального обслуживания понимают совокупность архітектурно-технологічних методов и аппаратно-программных средств доставки информации территориальное изъятым пользователям, которые разрешают на цифровой основе предоставлять пользователям разные услуги. Эта сеть разрешает передавать телефонные, телеграфные и другие сигналы с помощью одного универсального терминала. Этот терминал должен содержать телефон, дисплей и клавиатуру для набора текста. Абонент такой сети может наблюдать на дисплее за изображением и разговаривать с другим абонентом по телефону. Подробнее цифровые сети интегрального обслуживания будут описаны дальше. 1.3 C емиуровневая модель взаимодействия открытых систем Телекоммуникационные сети состоят из большого количества разного оборудования и программ: операционных систем и модулей применения. Разнообразные требования к телекоммуникационным сетям, привели к разнообразию сетевого оборудования и программ. Оборудования отличается не только по основным, а и по вспомогательными функциям. Непрерывно увеличивается количество видов сервиса, который предоставляется пользователям. Разнообразие увеличивается также за счет того, что много устройств и программ состоит из разных наборов, составных частей. Кроме того, в мире есть очень много фирм, которые занимаются разработкой и изготовлением телекоммуникационного оборудования и программного обеспечения. Это в свою очередь приводит к разнообразию технических решений. В современном мире телекоммуникационные системы, как правило, не являются замкнутыми системами: взаимодействуют локальные сети в середине фирм и между фирмами; индивидуальные пользователи обмениваются информацией на территории городов, районов, областей, государства, земного шара. Все это требует совместимости оборудования, телекоммуникационных сетей на разных уровнях. Все разработчики и производители поняли, что возможность легкого взаимодействия с оборудованием других конкурирующих фирм повышает ценность изделий, так как их можно использовать большим количеством работающих сетей. Совместимость обеспечивается только тогда, когда все производители реализуют одинаковые стандарты. Стандарты телекоммуникационных систем делятся на: международные; национальные; специальных комитетов и объединений; отдельных больших фирм. Рассмотрим в этом подразделе только некоторые из них. Телекоммуникационные системы - это довольно сложные системы как по своей структуре, так и по функциям, которые они выполняют. Сети телекоммуникаций могут охватывать как отдельный офис, так и весь земной шар. Организация взаимодействий между устройствами в сети является сложной задачей. Как известно, для решения сложных задач используется универсальный прием - декомпозиция одной сложной задачи на несколько, более простых - модулей. При декомпозиции часто используют многоуровневый подход. В этом случае множество модулей разбивают на уровни. Уровни образовывают иерархию, т.е. существует вышележащий и нижележащий уровни. Множество модулей, которые составляют каждый уровень, сформировано таким образом, при котором для выполнения своих задач они обращаются с запросами только к модулям, которые непосредственно граничат с нижележащим уровнем. С другой стороны, результаты работы всех модулей, которые принадлежат какому-то уровню, могут быть переданные только модулям соседнего вишележащего уровня. При приведенном способе декомпозиции нужно четко определить функции каждого уровня, а также так называемого интерфейса между уровнями. Интерфейс – это набор функций, взаимодействия соседних уровней. Оборудование, которое расположено в узлах сети, может быть представлено в виде описанной многоуровневой модели. Процедура взаимодействия пары узлов сети может быть описана в виде набора правил взаимодействия каждой пары одинаковых уровней оборудования этих узлов. Правила, которые определяют последовательность и структуру (формат) сообщений, которыми обмениваются компоненты сети, лежащие на одном уровне, но в разных узлах, называются протоколом . Протоколы определяют правила взаимодействия одного уровня в разных узлах, а интерфейс - модулей соседних уровней выше и нижчележащих в одном узле. Полный набор протоколов всех уровней, которые достаточны для организации взаимодействия узлов в сети, называется стеком телекоммуникационных протоколов . Протоколы могут быть реализованы как программно, так и аппаратно. Протоколы низших уровней реализуются аппаратными средствами в комбинации с программными, и чем выше уровень, тем больше часть программных средств. Протоколы высших уровней - это, как правило, чисто программные протоколы. Протоколы разных уровней независимые. А это означает, что протокол любого уровня может быть изменен независимо от протокола второго уровня. Протоколов взаимодействия систем телекоммуникаций можно придумать множество, но тогда разные системы не будут открытыми к взаимодействию. Стыковка их будет сложной задачей. Единый выход – это стандартизация модели взаимодействия систем телекоммуникаций. В начале 80-х годов несколько международных организаций - разработали так называемую модель взаимодействия открытых систем (ВОС) (Open System Interconnection, OSI). В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовий, транспортный, сетевой, канальный и физический (рис. 1.6). Например, телекоммуникационная система должна передать текст определенного объема (говорят текстовый файл) из пункта В. Передача текстовых файлов - это прикладная задача. Абонент обращается с запросом к прикладному уровню. На основе этого запроса программное обеспечение прикладного уровня формирует сообщение стандартной формы - формата. Оно состоит из заголовка “7” и поля данных - полезной информации (рис. 1.6). Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладного уровня оборудования адресата, чтобы сообщить его, какую работу необходимо выполнить.

Например, заголовок должен иметь информацию о местонахождении файла и об операции, которую необходимо с ним выполнить. Поле данных может быть пустым, или содержать информацию, которую необходимо записать в файл, отправленный из пункта В. После отправки в пустом файле, например, останется имя (код) того, кто его передал. После формирования сообщения прикладной уровень направляет его представительному уровню. Протокол представительного уровня на основе информации, которая содержится в заголовке прикладного уровня, выполняет определенные действия и прибавляет к сообщению собственную служебную информацию - заголовок представительного уровня, в котором содержатся указания для протокола представительного уровня оборудования получателя. Полученное, сообщение передается сеансовому уровню и т.д. В конце концов, сообщение достигает нижнего, физического уровня, который передает его по каналу связи оборудованию получателя. Когда сообщение поступает на оборудование получателя информации, оно принимается на физическом уровне и последовательно перемещается вверх от уровня к уровню, каждый уровень анализирует и обрабатывает заголовок своего уровня, потом изымает его и передает сообщение высшему уровню. В модели OSI различают два вида протоколов: протоколы с установлением соединения и протоколы без установления соединения. В первом случае перед обменом данными отправитель и получатель сначала должны установить соединение и выбрать некоторые параметры протокола, которые будут использованы при обмене данными. После завершения обмена данными отправитель и получатель должны разорвать соединение. Во втором случае отправитель передает сообщение без любых предыдущих действий. Рассмотрим основные функции, которые выполняются на каждом из семи уровней модели OSI. На физическом уровне обеспечивается интерфейс между оборудованием и физической средой – каналом связи, и выполняются функции управления потоком импульсов. На физическом уровне выполняются такие основные функции: обеспечение физического стыка - вид соединения оборудования с каналом связи, назначение контактов; передача сигналов по сети; усиление или регенерация сигналов для обмена между сетью и оборудованием; преобразование сигналов, модуляция, демодуляция. Канальный уровень выполняет основную функцию - обеспечение доступа к сети. Кроме управления доступом к среде передачи на канальном уровне реализуются механизмы обнаружения и коррекции ошибок. Для этого формируются кодовые комбинации, которые называются кадрами. В начале и конце кадра размещают специальную последовательность бит для его выделения. Канальный уровень не только обнаруживает ошибки, но и исправляет их за счет повторной передачи поврежденных кадров. Следует отметить, что в некоторых протоколах функция исправления ошибок отсутствует. Сетевой уровень выполняет функции управления потоком кадров маршрутизации. Сообщение сетевого уровня называются пакетами. Транспортный уровень обеспечивает транспортирование данных верхних уровней с требуемой надежностью. В модели ВОС определено пять классов обеспечения надежности транспортирования пакетов, которые называют классами сервиса транспортного уровня. Например, если качество каналов связи высокое, то используется облегченный класс сервиса без многократных проверок, предоставление подтверждений в получении пакетов и др., когда средства низших уровней очень ненадежные, то нужно использовать сервис с максимумом средств для выявления и исправление ошибок. Как правило все протоколы, начиная с транспортного и выше, реализуются программными средствами. Они являются компонентами сетевых операционных систем. Сеансовий уровень обеспечивает управление диалогом, он фиксирует, какая из сторон в данный момент активная, а также предоставляет средства синхронизации. Средства синхронизации позволяют вставлять закодированные символы контрольных точек. В случае отказа есть возможность возвратиться к последнему контрольному пункту, а не начинать передачу с начала сеанса. Сеансовий уровень не всегда используется. Представительный уровень программно выполняет функцию представления данных для прикладного уровня. На этом уровне может быть организовано шифрование и дешифровка данных. Это обеспечит секретность обмена данными для всех прикладных служб. Прикладной уровень это уровень применения телекоммуникационной системы. Например, разветвленная сеть учета и обслуживание клиентов по оплате услуг электросвязи в почтовых отделениях, или пунктах предоставления сервисных услуг. Для реализации этих задач разработано специальное программное обеспечение. Служб прикладного уровня очень много. Для прикладного уровня единицей данных являются сообщения. Из всех семи уровней, первые три нижние уровни - физический, канальный и сетевой тесно связаны с технической реализацией сетей и их оборудованием. Поэтому переход к новой телекоммуникационной технологии, как правило, связан с полной заменой этих протоколов. Протоколы верхних трех уровней - сеансовий, представительный и прикладной мало зависят от технических особенностей построения сети. Эти уровни зависят от применений. Транспортный уровень является промежуточным между двумя группами уровней. Следует отметить, что стандартизированная модель OSI является одной из важнейших моделей телекоммуникационных систем. Однако, может быть и много других моделей таких систем. Главным преимуществом системы OSI является ее открытость. Это означает, что можно строить сети с аппаратными и программными средствами разных производителей, если они используют одинаковые стандарты протоколов.

Лекция № 1.

КОНСПЕКТ ЛЕКЦІЙ

Дисципліна «Теорія електричного зв’язку»

для спеціальності: 5.05090301 – «Монтаж, обслуговування і ремонт

станційного обладнання»


Лекция № 1. Основные понятия и определения системы электросвязи.

Лекция № 2. Структурная схема системы электросвязи.

Лекция № 3. Каналы электросвязи.

Лекция № 4. Помехи и искажения.

Лекция № 5. Сигнал и его математическая модель.

Лекция № 6. Ряд Фурье и спектр периодического сигнала.

Лекция № 7. Теорема В.А.Котельникова.

Лекция № 8. Первичные сигналы электросвязи.

Лекция № 9. Нелинейные и параметрические элементы и цепи.

Лекция № 10. Общие понятия о модуляции.

Лекция № 11. Амплитудная модуляция (АМ) гармонической несущей.

Лекция № 12. Частотная и фазовая модуляции гармонической несущей.

Лекция № 13. Дискретная модуляция гармонической несущей.

Лекция № 14. Импульсная модуляция.

Лекция № 15. Импульсно – кодовая модуляция (ИКМ).

Лекция № 16. Общие понятия о детектировании сигналов.

Лекция № 17. Амплитудное детектирование.

Лекция № 18. Детектирование сигналов импульсных и дискретных модуляций.

Лекция № 19. Общие сведения о конструкции длинных линий.

Лекция № 20. Схема замещения и первичные параметры линий.

Лекция № 21. Вторичные параметры линий.

Лекция № 22. Режимы работы линии.

Лекция № 23. Особенности передачи электромагнитной энергии по проводным

линиям связи.

Лекция № 24. Волноводы.

Лекция № 25. Волоконно – оптические линии связи.

Лекция № 26. Распространение радиоволн и антенны.

Лекция № 27. Основы теории помехоустойчивости.

Лекция № 28. Оптимальный прием дискретных сигналов.

Лекция № 29. Потенциальная помехоустойчивость приема дискретных сигналов.

Лекция № 30. Оптимальный прием непрерывных сигналов.

Лекция № 31. Неоптимальный прием сигналов.

Лекция 32. Элементы теории информации.

Лекция 33. Основные параметры корректирующих кодов.

Лекция 34. Принципы построения корректирующих кодов.

Список используемой литературы.


Система электросвязи – это совокупность технических средств и среды распространения сигналов, обеспечивающих передачу сообщений от источника к потребителю (потребителям). Для удовлетворения потребностей современного общества созданы сотни систем электросвязи различного назначения и число их продолжает расти. Все они необходимы для обмена информацией.

Информация (лат. informatio – разъяснение, изложение) – это новые сведения об окружающем нас мире, которые мы получаем в результате взаимодействия с ним. Информация – одна из важнейших категорий естествознания (на ряду с веществом, энергией и полем).


Сообщение – это форма представления информации. Это условные знаки, с помощью которых мы получаем те или другие сведения (информацию). Например: при телеграфной передаче сообщением является текст телеграммы, представляющей собой последовательность различных букв и знаков; при разговоре сообщение представляет собой последовательность звуков; при телевизионных передачах сообщение – изменение во времени яркости и цветности элементов изображения.

Сигнал (лат. signum – знак) – это процесс изменения во времени физического состояния какого – либо объекта, служащий для отображения, регистрации или передачи сообщений. Сигнал – это материальный носитель (переносчик) сообщений. В современной технике нашли применение электрические, электромагнитные, световые, механические, звуковые сигналы. Для передачи сообщений необходимо применить тот переносчик, который способен наилучшим образом преодолеть расстояние от источника к потребителю. В системах электросвязи в качестве переносчика, используемого для передачи сообщений на расстояние, является обычно переменный электрический ток, электромагнитное поле, световые волны. Это не случайно, поскольку:

Скорость распространения в пространстве этих переносчиков приближается к предельной скорости распространения любых физических процессов, равной скорости света в вакууме - 3·10 8 м/с;

С помощью этих переносчиков можно передавать огромное количество информации.

Система электросвязи

ОСНОВНЫЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОСВЯЗИ

Информация, сообщение, электрический сигнал

При характеристике систем электросвязи используются понятия: информация, сообщение, сигнал.

Информация (от лат. informatio – разъяснение, изложение) – совокупность сведений о каких-либо событиях, явлениях или предметах, предназначенных для передачи, приема, обработки, преобразования, хранения или непосредственного использования.

Можно выделить три основных вида информации в обществе:

Личную (касается тех или иных событий в личной жизни человека);

Специальную (к ней относится научно-техническая, деловая, производственная, экономическая и др.);

Массовую (предназначена для большой группы людей и распространяется через СМИ: газеты, журналы, радио, телевидение и др.).

Примеры: сведения о времени приезда приятеля, сведения о результате футбольного матча.

Сообщение - форма представления информации, подлежащей передаче.

Сообщения можно разбить на два типа:

Непрерывные (аналоговые) (принимают любые значения в некотором интервале). Пример: речь, музыка, подвижные и неподвижные изображения;

Дискретные (принимают конечное число возможных значений). Пример: текст, данные ЭВМ.

Сигнал (от лат. signum – знак) – физический процесс, отображающий (несущий) передаваемое сообщение. Он всегда является функцией времени, даже если сообщение (например, неподвижное изображение) таковым не является.

По своей физической природе сигналы бывают

электрическими,

световыми,

звуковыми и др.

Электрический сигнал – форма представления сообщения для передачи его системой электросвязи. Электрические сигналы количественно можно характеризовать мощностью, напряжением или током.

Система электросвязи

Система электросвязи – совокупность технических средств и среды распространения, обеспечивающих передачу сообщений от источника к потребителю. В это понятие включаются передающее устройство, линия связи и приемное устройство.

Система связи называется одноканальной , если она обеспечивает передачу сообщения от одного источника к одному получателю по одной линии связи. Одноканальные системы являются малоэффективными, т.к. полоса частот, в которой работает линия связи, намного превышает ширину спектра первичных сигналов.

Рисунок 1.1 – Структурная схема одноканальной системы связи.

Система связи называется многоканальной , если она обеспечивает одновременную и независимую передачу сообщений от нескольких источников к нескольким получателям по одной общей линии связи.

Рисунок 1.2 – Структурная схема многоканальной системы связи.

Рассмотрим назначение структурных элементов схем, представленных на рисунках 1.1 и 1.2.

1 (1 i) – источник сообщения – человек или техническое устройство, формирующее передаваемое сообщение a (a i).

2 (2 i) – преобразователь сообщения в сигнал – устройство, которое преобразует сообщение в первичный сигнал (низкочастотный) u(t) (u i (t)). Примеры: передающая часть телеграфного аппарата, микрофон, преобразователь свет-сигнал на приборах с зарядовой связью.

3 – преобразователь сигнала (передатчик). В одноканальной системе это устройство, которое преобразует первичный сигнал во вторичный сигнал (высокочастотный) s(t), удобный для передачи по линии связи. В многоканальной системе связи это устройство, в котором первичные сигналы преобразуются в канальные, которые затем объединяются в групповой сигнал, направляемый в линию связи:

где s i (t ) – канальные сигналы – сигналы, однозначно связанные с первичными сигналами u i (t) и обладающие определенными признаками, позволяющими разделить их на приеме;

N – число каналов в системе.

Элементы 2 (2 i) и 3 образуют передающее устройство.

4 - линия связи – среда, используемая для передачи сигналов от передатчика к приемнику. Различают линии связи:

Проводные (электромагнитное поле распространяется вдоль непрерывной направляющей среды). Примеры : воздушные и кабельные линии, волноводы, световоды;

Радиолинии (электромагнитные волны распространяются в свободном пространстве). Примеры : радиорелейные и спутниковые линии.

При прохождении по линии связи электрические сигналы подвергаются воздействию помех n(t) и искажений. Это приводит к тому, что сигнал на выходе линии связи z(t) и принятое сообщение а’ (a’ i) могут отличаться от сигнала на входе линии связи и передаваемого сообщения.

Степень соответствия принятого сообщения переданному называют верностью передачи сообщения.

Канал электросвязи – совокупность технических средств и среды распространения, обеспечивающих передачу первичных сигналов между двумя пунктами. Элементы 3, 4 и 5 образуют канал (каналы) связи.

5 - преобразователь сигнала (приёмник). В одноканальной системе связи это устройство, которое по принятому вторичному сигналу восстанавливает первичный сигнал u’(t). В многоканальной системе это устройство, которое из измененного искажениями и помехами группового сигнала выделяет канальные сигналы s’ i (t), которые затем преобразуются в первичные сигналы u’ i (t).

6 (6 i) – преобразователь сигнала в сообщение – устройство, которое преобразует первичный сигнал в принятое сообщение а’ (a’ i).

Примеры: приемная часть телеграфного аппарата, телефон, громкоговоритель, кинескоп.

Элементы 5 и 6 образуют приемное устройство.

7 (7 i) – получатель сообщения – человек или техническое устройство, воспринимающее сообщение.



Рекомендуем почитать

Наверх