Старая песня о главном. Аппаратная калибровка мониторов

На iOS - iPhone, iPod touch 08.03.2019
На iOS - iPhone, iPod touch

В блоге Web Kit.

Последние несколько лет наблюдается значительное улучшение технологии производства дисплеев. Сначала это было обновление до экранов с более высоким разрешением, начавшееся с мобильных устройств, а затем перешедшее на настольные компьютеры и ноутбуки. Веб-разработчики должны были понять, что значит для них высокое значение в DPI, и знать, как разрабатывать страницы, использующие такое высокое разрешение. Следующее революционное улучшение дисплеев происходит прямо сейчас: улучшение цветопередачи. В настоящей статье я хотел бы разъяснить, что это значит, и как вы, разработчики, можете выявлять такие дисплеи и обеспечивать лучшее взаимодействие для ваших пользователей.

Возьмём типичный компьютерный монитор - тип, который вы используете уже более десяти лет, - дисплей sRGB. Последние разработки Apple, включая Retina iMac (конец 2015 г.) и iPad Pro (начало 2016 г.), могут показывать больше цветов, чем дисплей sRGB. Такие дисплеи называются дисплеями с широким цветовым охватом (разъяснение терминов «sRGB» и «цветовой охват» будет дано далее).

Почему это полезно? Система с широким цветовым охватом часто обеспечивает более точное воспроизведение оригинального цвета. Например, у моего коллеги по имени Хобер есть броские кроссовки.

Ярко-оранжевые кроссовки Хобера

К сожалению, то, что вы видите выше, не передаёт, насколько на самом деле впечатляющие эти кроссовки! Проблема в том, что цвет материала кроссовок не может быть представлен на дисплее sRGB. Камера, которой сделана эта фотография (Sony a6300), имеет матрицу, воспринимающую более точно цветовую информацию, и соответствующие данные имеются в оригинальном файле, однако дисплей не может показать их. Здесь показан вариант фотографии, на которой каждый пиксель, имеющий цвет, выходящий за границу типичного дисплея, заменён светло-голубым:


Те же ярко-оранжевые кроссовки Хобера, но здесь все пиксели, выходящие за границу цветового охвата, заменены голубыми

Как можно видеть, цвет материала кроссовок и значительной части травы выходит за границу дисплея sRGB. Фактически, точно представлены цвета лишь менее чем у половины пикселей. Будучи веб-разработчиком, вам необходимо считаться с этим. Предположите, что продаёте такие кроссовки через онлайн-магазин. Ваши клиенты не будут точно знать, какой цвет они заказали, и могут быть удивлены, когда их покупка придёт к ним.

Эта проблема уменьшается при использовании дисплея с широким цветовым охватом. Если у вас есть одно из устройств, упомянутых выше, или подобное, то вот вариант фотографии, которая покажет вам больше цветов:


Те же ярко-оранжевые кроссовки Хобера, но добавлен цветовой профиль

На дисплее с широким цветовым охватом можно видеть кроссовки более яркого оранжевого цвета, зелёная трава также более разнообразная по цвету. Если у вас, к сожалению, не такой дисплей, то вы, скорее всего, видите что-то очень близкое по цвету к первой фотографии. В этом случае лучшее, что я могу предложить, это окрасить изображение, выделив его теряемые вами по цвету участки.

Во всяком случае, это хорошая новость! Дисплеи с широким цветовым охватом являются более яркими и обеспечивают более точное отображение реальности. Очевидно, есть желание убедиться, что вы сможете предоставить вашим пользователям такое формирование изображений, в котором данная технология будет полезна.

Ниже представлен следующий пример, на этот раз со сгенерированным изображением. Пользователи на дисплее sRGB видят внизу однородный по цвету красный квадрат. Однако это, в некотором роде, трюк. На самом деле, на изображении даны два оттенка красного, один из которых можно увидеть только на дисплеях с широким цветовым охватом. На таком дисплее вы увидите бледный логотип WebKit внутри красного квадрата.


Красный квадрат с бледным логотипом WebKit

Иногда различие между нормальным изображением и изображением с широким цветовым охватом очень тонкое. Иногда оно выражено значительно более резко.

WebKit надеется реализовать эти свойства, когда мы будем уверены, что они оправдывают себя.

Широкий цветовой охват в HTML

Хотя CSS работает с большинством представлений HTML-документов, имеется одна важная область, в которой это цветовое пространство не действует: элемент холста. Как 2D-, так и WebGL-холсты принимают, что они работают в цветовом пространстве sRGB. Это значит, что даже на дисплеях с широким цветовым охватом невозможно создать полноцветовой холст.

Как решение предлагается добавление опционального флажка к функции getContext , задающего то цветовое пространство, на которое должен быть настроен по цвету холст. Например:
// NOTE: Proposed syntax. Not yet implemented. canvas.getContext("2d", { colorSpace: "p3" });
При этом появляются некоторые моменты, подлежащие рассмотрению, например, как создавать холсты, имеющие повышенную глубину цвета. Например, в WebGL можно использовать half-float-текстуры, дающие точность 16 бит на один цветовой канал. Однако даже если такие более глубокие текстуры использованы в WebGL, вы будете ограничены точностью 8 бит, встраивая это WebGL-изображение в документ.

Необходимо дать разработчику метод задания глубины цветового буфера для элемента холста.

Этого достигают более сложным способом, комбинируя функции getImageData/putImageData (или эквивалент readPixels в WebGL). При сегодняшних 8 битах на каждый буфер канала не происходит потеря точности при вводе в холст и выводе из него. Преобразование также может происходить эффективно, как по производительности, так и по памяти, поскольку данные холста и программы имеют один тип. Если глубина цвета разная, то это может оказаться уже невозможным. Например, half-float-буфер WebGL не имеет эквивалентного типа в JavaScript, что означает либо вынужденное некоторое преобразование данных при чтении или записи, а также использование дополнительной памяти при их хранении, либо необходимость работы с исходным буфером массива и выполнения громоздких математических операций с битовыми масками.

Такие обсуждения идут в настоящее время на сайте WhatWG и будут продолжены скоро в W3C. И снова приглашаем вас присоединяться.

Выводы

Дисплеи с широким цветовым охватом вышли на рынок и являются будущим вычислительных устройств. По мере роста количества пользователей этих великолепных дисплеев разработчики будут всё более заинтересованы в освоении ошеломляющей палитры предлагаемых цветов и в предоставлении пользователям всё более привлекательного взаимодействия с сетью.

Программное обеспечение WebKit даёт разработчикам большие возможности по улучшению цветовых характеристик путём согласования цвета и обнаружения цветового охвата, имеющихся сегодня у Safari Technology Preview, а также у macOS Sierra и iOS 10 betas. Мы также заинтересованы в начале реализации более совершенных цветовых характеристик, таких как задание широкого цветового охвата в CSS, введение профилей в элементы холста и использование увеличенной цветовой глубины.

SRGB Добавить метки

Напомню, в прошлый раз я рассмотрел такие маркетинговые уловки, как откровенно завышенные контрастность и нереальная частота развертки, а также гипертрофированный цветовой охват. А сейчас мы перейдем к другой наиболее популярной теме: 4K-разрешению.

Первый коммерческий телевизор, поддерживающий разрешение Ultra HD, появился в российской рознице в 2012 году. Это был Sony BRAVIA KD-84X9005 - 84-дюймовая модель стоимостью 1 000 000 рублей. С тех пор производители телевизоров совершили приличный рывок. За три года в продаже появилось большое количество подобных устройств. В том числе и за вполне адекватную цену. Три года маркетинговая машина раскручивала свои виртуальные шестерни. Да так, что на второй план отошли такие «фишки», как поддержка 3D и наличие SmartTV.

Редакция сайт сама все больше и больше внимания уделяет решениям на основе разрешения Ultra HD. Так, на нашем сайте постоянно выходят обзоры 4K-телевизоров. Мощные игровые видеокарты тестируются в том числе и в разрешении 2160p. Очевидно, что эпоха Ultra HD рано или поздно, но вступит в свои права. Но это совершенно не означает, что сегодня, наслушавшись сладостных маркетинговых зазывалок, необходимо сразу же бежать в магазин за новым телевизором.

Маркетинговая чепуха. Что стоит за «новыми технологиями» в телевизорах. Часть 2

А был ли мальчик?

Что такое Ultra HD? Самое простое объяснение - это очень высокое разрешение размером 3840x2160 точек. Есть у Ultra HD два равноправных синонима: 4K и 2160p. Однако уже в самом определении понятия заложен маркетинг. Попробую наглядно объяснить.

Популярные форматы разрешений

22 октября 2012 года отраслевая организация Consumer Electronics Association (CEA) утвердила название и минимальные характеристики Ultra HD. Произошло это путем анонимного голосования совета рабочей группы. Согласно официальному документу, современные Ultra HD проекторы, мониторы и телевизоры должны иметь не менее 8 млн активных пикселей: не менее 3840 по горизонтали и не менее 2160 по вертикали. При этом соотношение сторон должно быть не меньше 16:9. Плюс у устройства должен быть хотя бы один цифровой вход, способный принять видеосигнал с разрешением 3840x2160 точек. То есть HDMI 1.4, HDMI 2.0 или DisplayPort. Такие телевизоры, проекторы и мониторы получают шильдик Ultra HD Ready.

Логотип, символизирующий о поддержке Ultra HD

Однако Ultra HD - это технология, а не только обозначенная выше характеристика разрешения экрана. Ее развитием уже приличное время занимается японская телевещательная компания NHK (Nippon Hōsō Kyōkai), по праву считающаяся первопроходцем в UHD-телевидении. Свои эксперименты с 4K японцы начали еще в 2003 году, но только в августе 2012 года (то есть до утверждения CEA названия и минимальных характеристик Ultra HD) Международный Союз Электросвязи (МСЭ), отметивший в этом году свое 150-летие, опираясь на данные NHK, опубликовал единый технический стандарт для телевидения формата Ultra HD, который получил название ITU-R Recommendation BT.2020 (Rec. 2020). Именно он на протяжении всего этого времени считается главным ориентиром не только для производителей оборудования, но и для телевещательных компаний. Для большей наглядности я привел основные характеристики Rec. 2020 в таблице ниже. Как видите, они значительно превосходят параметры нынешнего сертификата Rec. 709, принятого в далеком 1990 году и разработанного специально для HD-телевидения. Между двумя стандартами наблюдается огромная разница, прежде всего, в качестве сигнала.

Сравнение цветового охвата у популярных телевизионных форматов

А что же современные 4K-панели? Большинство из них работают с Rec. 709. Также в продаже существуют телевизоры , цветовой охват которых соответствует 98% DCI-P3 и 90% DCI-P3. Но не Rec. 2020. В прошлой части «чепухи» я уже рассказал, как производители хвастаются увеличенным цветовым охватом своих решений, реализуемым за счет аппаратных и программных алгоритмов. Однако на практике выясняется, что от него либо нет никакого толку, либо встроенная логика устройства подстраивает картинку, предоставляемую источником, под «вымышленную» палитру и заметно искажает цвета. Одновременно с оборудованием, поддерживающим Rec. 2020, должен появиться и соответствующий контент. Здесь должны постараться не только такие корпорации, как NHK, но и ведущие кинокомпании.

Ultra HD - это не просто разрешение 3840x2160 точек. Это целая технология и серьезные требования к качеству сигнала

Вот и получается, что современные 4K-телевизоры, с одной стороны, с согласия CEA имеют шильдик Ultra HD Ready, но при этом не в полной мере соответствуют более серьезному стандарту МСЭ. На мой взгляд, это самый обыкновенный маркетинг. Получается, что обычным HDTV-телевизорам элементарно добавили матрицу с более высоким разрешением. Устройства же с реальным Ultra HD (читай - с Rec. 2020) появятся лишь в обозримом будущем, хотя стоит признать, что уже есть сподвижки в этом направлении.

Panasonic TC-65CX850U - телевизор с цветовым охватом 98% от DCI-P3

И так сойдет

Продолжим разговор о том, что Ultra HD - это не только разрешение. Первые коммерческие 4K-телевизоры уже тогда имели некоторые проблемы, которые, тем не менее, не помешали маркетологам развернуть свою навязчивую кампанию. Дело в том, что в UHD-решениях тех лет использовался интерфейс HDMI 1.4, который умел передавать сигнал высокого разрешения лишь при развертке 30 Гц. Это сейчас многие современные модели оснащены портом HDMI 2.0, и проблема частично решена. Однако в продаже по-прежнему можно найти модели только с HDMI 1.4 (в том числе и линейки 2014 года). Если вы все же решились на покупку подобного устройства, то всенепременно берите модель с HDMI 2.0 - это залог того, что аппаратная часть «ящика» не устареет ближайшие несколько лет.

Телевизор с разрешением Ultra HD должен быть оснащен разъемом HDMI 2.0

Яркий тому пример - бюджетные 4K-телевизоры. Сразу же оговорюсь: под словом «бюджетные» в нынешних реалиях подразумеваются модели стоимостью 50-60 тысяч рублей. Например, Philips 49PUS7809. Этот «ящик» имеет лишь порты HDMI 1.4, а также не поддерживает работу с кодеком H.265/HEVC. Встроенный плеер не умеет работать с контентом 4K-качества. Наконец, по-умолчанию 49PUS7809 запускается с разрешением Full HD. Активировать заявленные 2160p можно в настройках, но даже после этого в ряде случаев 4K-разрешение не работает на должном уровне. Однако сам производитель почему-то об этом умалчивает, акцентируя внимание потенциального покупателя на, цитирую, «непревзойденном качестве изображения в высоком разрешении 4K Ultra HD. » Маркетинг? Маркетинг! Самое забавное в том, что за подобный ценник можно приобрести очень хороший и функциональный Full HD телевизор. Как следствие, не гнаться за псевдо-4K.

Пример недорогой модели телевизора Philips 49PUS7809. Посмотрите, какой высокий балл у нее на «Яндекс.Маркете». Правда, у этого 4K-телевизора нет поддержки ни HDMI 2.0, ни кодека H.265/HEVC

Старая песня о главном

Даже спустя три года можно говорить о том, что общедоступного контента 4K-качества очень мало, пусть и наблюдается небольшой прогресс. Все больше консьюмерсокого оборудования поддерживает, например, съемку видео в Ultra HD. Популярные зарубежные сервисы (NETFLIX, Amazon instant video, ASTRA, PlayMemories Online и Privilege Movies 4K) обозначают свое присутствие на этом рынке. Когда подобные онлайн-кинотеатры появятся в России - хороший вопрос. Маркетологов подобные нестыковки не волнуют. На презентациях демонстрируют великолепные, специально подготовленные видеоролики. На деле же художественных произведений в формате Ultra HD, как говорится, кот наплакал. Главное - повторять мантру о том, что «формат 4K позволяет рассмотреть в четыре раза больше деталей по сравнению с обычным форматом HD. »

«Посмотрите, как много замечательных фильмов уже доступно в формате 4K» - говорит нам Sony. Посмотрел, 68 фильмов за четыре года. Для сравнения: по версии «Кинопоиска» в октябре 2015 года в российском кинопрокате вышло 43 картины

Важную роль в продвижении 4K-контента должны сыграть внешние носители информации. Однако формат Ultra HD Blu-ray приняли лишь в этом году, 24 августа. Плюс первые коммерческие BD-плееры появятся только в 2016 году. Поэтому нашим соотечественникам в ближайшее время придется надеяться на апскейлинг видео более низкого разрешения до формата 4K.

Кто бы что ни говорил, но контента Ultra HD по-прежнему очень мало

Если обойтись несколькими словами, то апскейлинг - процесс «растягивания» внутренней логикой телевизора видео меньшего разрешения до 2160p. Маркетинг проявляется и здесь. Производители не стесняются заявлять, что их продукция великолепно масштабирует изображение. Вот, что пишут на официальном сайте компании Philips: «Телевизор Ultra HD в 4 раза превосходит разрешение обычного телевизора Full HD. Благодаря 8 миллионам пикселей и уникальной технологии Ultra Resolution качество изображения не будет зависеть от исходного контента . » Реалии таковы, что достичь этого невозможно в принципе. Всегда будет заметна разница в качестве между нативным 4K и масштабированным 4K. Остается только узнать, насколько хорошо у того или иного телевизора проходят процессы обработки. Например, Panasonic VIERA TX-65AXR900 великолепно справляется с этой работой. А вот у Samsung SUHD UE65JS9000TXRU есть некоторые проблемы.

Телевизор Panasonic VIERA TX-65AXR900. Одна из немногих 4K-моделей, великолепно справляющаяся с апскейлингом видео до разрешения Ultra HD

В четыре раза круче

Допустим, что проблема с отсутствием контента в кратчайшие сроки решится. На протяжении всего материала я то и дело цитировал заявления производителей телевизоров, которые утверждают, что 4K в четыре раза четче Full HD. Это одно из самых распространенных маркетинговых утверждений. И вроде бы все логично: разрешение Ultra HD в четыре раза больше разрешения Full HD. Да вот только многие путают большое разрешение с лучшим качеством изображения. Путаница касается не только телевизоров с большими диагоналями, но и крохотных смартфонов. В определении четкости изображения элементарно не учитывается дистанция, с которой зритель смотрит на экран.

Оптимальное расстояние просмотра телевизора в зависимости от диагонали экрана и разрешения

Существует несколько методик определения оптимального расстояния просмотра телевизора в зависимости от диагонали экрана и разрешения. И даже специальные калькуляторы . Не вижу смысла спорить о правильности или неправильности тех или иных схем, но перед Full HD «ящиком» с диагональю 55’’ необходимо сидеть на расстоянии где-то 2-2,5 метров. Для Ultra HD дистанция сокращается уже до значения 1-1,5 метров. В итоге зрителю достаточно сеть подальше, чтобы детализация изображения заметно снизилась. Так, на расстоянии 2,5-3 метров Ultra HD не будет отличаться от Full HD.

Четкость 4K-изображения напрямую зависит от расстояния просмотра

В самом начале статьи я обратил ваше внимание на самый первый коммерческий 4K-телевизор от Sony. Во время его тестирования при просмотре заготовленного видео формата Ultra HD нам рекомендовали садиться на расстоянии 1,6-2 метров. Первоначально это казалось утопией, но на деле смотреть видео на полотне BRAVIA KD-84X9005 оказалось также удобно, как читать газету. По факту дистанция между экраном и человеком оказалась меньше размера диагонали самого устройства (2,13 м). Отсюда следует простой вывод: покупать 4К-телевизор с диагональю меньше 55-60 дюймов нет никакого смысла. Сидя на расстоянии 2-3 метров, вы элементарно не ощутите эффекта от наличия ультравысокого разрешения.

У меня только один вопрос: зачем?

Развлечения в формате Ultra HD

В последнее время участились вопросы, касающиеся покупки UHD-телевизора для игр. Маркетологи усердно трудятся и на этом поприще. Вроде бы все логично: 4K-разрешение позволяет сидеть очень близко перед телевизором. Достаточно лишь обзавестись сопутствующим оборудованием. Но вот только консоли последнего поколения - Sony Play Station 4 и Microsoft Xbox One - не подойдут. Они даже разрешение 1080p не всегда могут «вытянуть». Появились слухи, что в скором времени могут быть презентованы 4K-версии этих приставок, но это касается не самих игр, а воспроизведения мультимедийного контента. В частности, при помощи сервиса NETFLIX.

Телевизор Ultra HD и игровой компьютер - очень дорогой тандем

Получается, что единственный вариант играть на UHD-телевизоре - это купить мощный компьютер. К тому же производители видеокарт вовсю продвигают идеи «православного» 4K-гейминга. К сожалению, справиться с современными компьютерными играми при настройках, близких к максимальным, в разрешении Ultra HD на сегодняшний день могут лишь единицы графических адаптеров, да и то с большой натяжкой. Постоянные посетители сайт, интересующиеся компьютерным железом, убеждались в этом не раз . Для игр в 4K потребуется собрать очень мощный компьютер, стоимость которого легко может перевалить за отметку 2000 долларов США.

Маркетинг 2-в-1

Ultra HD и изогнутые экраны - это самые популярные «инновации» последних двух лет. Они весьма тесно переплетаются друг с другом. Основной посыл для устройств подобного типа звучит очень просто: изогнутая поверхность и 4K позволяют сильнее погрузиться в происходящее на экране. Например, вот так об этом говорит компания Samsung: «Революционный SUHD-телевизор Samsung с изогнутым экраном позволяет погрузиться в фантастическую виртуальную реальность и ощутить себя в центре событий, происходящих на экране. »

С теоретической точки зрения цветовое пространство есть математическая модель, отображающая определенную палитру цветов, то есть обозначенный диапазон оттенков благодаря координатам самих цветов. Для примера можно рассмотреть сформированную по аддитивной схеме RGB палитру, описание которой строится по трехмерному образцу. Подобная схема допускает определение цвета персональным набором, состоящим из трех условных точек.

CIE xyz – максимально большая модель цветового представления в пространстве абсолютного цветового спектра, различаемого человеческим глазом. В 1931 году Комиссия по электроосвещению выбрала CIE xyz международным образцом цветового пространства. И сегодня утвержденный эталон используется с целью сравнения и оценивания других существующих моделей.

Не следует забывать тот факт, что передать всю гамму цветов, доступную людям со стопроцентным зрением, не может ни одно специализированное для воспроизведения разноцветных изображений устройство, будь то компьютер или же принтер. Более того, охватывающие разными устройствами цвета зачастую не совпадают, это приводит к тому, что один и тот же оттенок на разных устройствах видится несколько иначе. Решить данную проблему помогает эксплуатация цветового пространства в виде обычной палитры, охват которой находится в соответствии с выбранным устройством. Применение привычных отображающих цвет пространств в работе с разноцветными снимками гарантирует нахождение в рамках диапазона оттенков последнего устройства вывода, если же неизбежен выход за рамки диапазона, то это поможет еще на начальном этапе получить информацию об отсутствии соответствия этих пространств, что позволит своевременно принять меры.

Используемые в работе пространства палитры

В работе с цифровой фотографией чаще всего используются sRGB и Adobe RGB. Несколько реже применяется ProPhoto RGB.

sRGB - многофункциональное цветовое пространство, выдвинутое компаниями Microsoft и Hewlett-Packard еще 10 лет назад, с целью унифицировать передачу цвета. sRGB –пространство, охват которого равен 35% цветовых оттенков, представленных CIE, положительный момент в том, что все современные мониторы поддерживают его. sRGB - общепринятый шаблон для демонстрации изображений в мировой паутине, абсолютно все веб-браузеры применяют по умолчанию данное пространство. Сохраненное на вашем мониторе изображение в sRGB гарантировано отобразит цвета на ином устройстве без особых искажений, при этом выбор программы для просмотра в данном случае не важен. Цветовая палитра sRGB, как правило, удовлетворяет нужды большинства любителей фото, это относится также к фотосъемке, обработке и печати фотоснимков.

Adobe RGB

В 1998 году американские разработчики с Adobe Systems представили еще одну модель отображающего цвет пространства Adobe RGB. Нужно отметить, что в отличие от sRGB при распечатке фото на качественных принтерах здесь можно наблюдать максимальное соответствие палитре. Его цветовой охват составляет около 50% объема цветовых оттенков CIE, однако на первый взгляд сложно найти различия между Adobe RGB и sRGB.

Стоит отметить, что безграмотное применение Adobe RGB вместо sRGB по причине превалирования в охвате цветов, зачастую не улучшает качество фотоснимков, а даже усугубляет изображение. Согласно теории, цветовой охват Adobe RGB наиболее расширен по сравнению с sRGB (в основном это относится к сине-зеленым тонам), однако это теряет актуальность, если в 99% случаев отличия не видны на мониторе и при печати, даже применение высококачественного специализированного аппарата и программного обеспечения не помогут разглядеть несходство картинок.

Adobe RGB – версия представления цвета узкого профиля, используется исключительно для профессиональной печати фотографий. Для просмотра и редактирования фотографий в Adobe RGB, необходимо специализированное оборудование, в том числе понадобиться принтер или минифотолаборатория, поддерживающая определенный профиль. Если просмотр осуществлять в программах, которые не поддерживают Adobe RGB, таких как интернет-браузер, то все цвета, не входящие в шаблон sRGB, будут недоступны, что обеспечит более тусклое изображение. Если рассматривать печать в лабораториях, то в большинстве случаев Adobe RGB будет преобразовано в sRGB, в результате цвета потеряют свою яркость и насыщенность, чем, если бы с самого начала изображение оставить в sRGB.

ProPhoto RGB

Матрица цифровика воспринимает широкий диапазон цветов, его размах сложно передать даже при помощи Adobe RGB. В связи с этим в 2003 году штатовская компания Kodak предложила еще одно цветовое пространство ProPhoto RGB, охват которого составляет 90% цветов CIE и соответствует ресурсам матрицы. Однако ценность ProPhoto RGB микроскопична для фотолюбителя, так как нет такого принтера или монитора, цветовой охват которого был бы оптимален для того, чтобы воспользоваться достоинством суперширокого цветового пространства.

DCI-P3

В 2007 году Организация инженеров кино предложила очередное цветовое пространство – DCI-P3 и использование его как эталона для цифровых проекторов. Установленная норма имитирует цветовое многообразие кинопленки. Охват его намного больше sRGB, присутствует некоторое соответствие с Adobe RGB, но больше уходит в красную часть спектра. Тем не менее, DCI-P3 интересен в основном кинематографам, не касаясь напрямую фотографий. Из всего многообразия компьютерных мониторов корректное отображение DCI-P3, по всей видимости, удается только дисплеям Apple iMac Retina.

К выбору отображающего цвет пространства требуется подходить практично, не руководствуясь превосходством какого-либо пространства с теоретической точки зрения. Тем не менее, чаще всего выбор охвата пространства можно сравнить только с уровнем снобизма самого фотографа. Дабы избежать подобного, можно рассмотреть ступенчато сам цифровой фотопроцесс, конкретно те стадии, которые так или иначе связаны с выбором нужного цветового пространства.

Сама съемка

Чаще всего фотограф обладает камерой, позволяющей сделать выбор между sRGB и Adobe RGB. По умолчанию в аппаратах установлено первое, и вносить изменений в этот раздел настроек настоятельно не рекомендуется, причем в этом случае не играет роли, идет ли съемка в RAW или в JPEG.

Фотограф, снимающий в JPEG, вероятнее всего, экономит время и силы, во избежание долгой возни со снимками в индивидуальном порядке. В этом случае Adobe RGB уж точно не нужен.

Съемки в RAW нивелируют необходимость выбора цветового пространства, так как в RAW-файл отсутствует подобная категория, он содержит лишь данные цифровой матрицы, которые впоследствии при конвертации сузятся до установленного цветового диапазона. Рекомендуется сохранить в настройках sRGB, даже при намерении конвертировать снимки в Adobe RGB или ProPhoto RGB. Такие меры помогут избежать новых трудностей при необходимости воспользоваться внутрикамерным JPEG.

Шаблон отображающего цвет пространства указывается именно в момент конвертации RAW-файла в TIFF или JPEG. Прежде происходит обработка RAW-файла в указанных пространствах и соответствует охвату цветов фотоматрицы, что позволяет RAW-файлам свободно перебирать многообразие цветов во время их редактирования. В конце обработки происходит автоматический подгон цветов на снимке, выбывших за границы палитры, под схожие им оттенки в установленном специалистом цветовом пространстве.

В исключительных случаях допускается конвертация RAW-файлы в sRGB, если необходимо получить максимально универсальные результаты, которые можно будет воспроизвести на ином оборудовании. В основном, цвета в sRGB способны удовлетворить специалиста, так как многие склоняются к тому, что Adobe RGB является избыточным. Тем не менее, каждый фотограф вправе работать с тем пространством, которое считает наиболее подходящим, если он видит негативное влияние на качество фотоснимков использование sRGB.

Для наиболее расширенной свободы в процессе обработки сюжетов в программе Фотошоп иногда применяется файлы конвертируются в Adobe RGB. Такое решение оправдано в случае намерения глубокой коррекции цветов снимка. Чаще всего специалисты проводят работу с оттенками в RAW-конвертере, что объясняется простотой, удобством и высоким качеством.

ProPhoto RGB – это некая математическая абстракция, на практике ее целесообразность гораздо ниже Adobe RGB, поэтому специалисты рекомендуют не применять ее.

Следует отметить, что в случае необходимости отредактировать снимки в программе Фотошоп, цветовое пространство которого отличается от sRGB, не следует игнорировать использование разряда в 16 бит на канал. Что касается постеризации в широком пространственном охвате цветов, то она видна при одинаковой разрядности на более ранних этапах, нежели в sRGB, что обусловлено одинаковым количеством бит для кодирования расширенных цветовых рамок.

Что следует учесть при печати

Применение Adobe RGB во время печати будет оправдано, если сам фотограф является специалистом в управлении цветовой палитры, владеет достаточными знаниями относительно цветовых профилей, к тому же процесс фотопечати проходит под его контролем, при этом он сотрудничает с хорошей фотолабораторией, способной принимать файлы в Adobe RGB и имеющей в наличии специализированное оборудование для их последующей распечатки. Не следует игнорировать тестирование, конвертируя фотоизображение в sRGB и в Adobe RGB, после этого нужно провести их распечатку на определенном оборудовании. Маловероятно, что будет видна разница, поэтому не стоит усложнять ситуацию, ведь цветовой палитры sRGB вполне достаточно для многих изображений

.

Всемирная паутина

Изображения для сети непременно следует преобразовывать в sRGB, в ином случае отображение цветов в браузере может исказиться.

Мы находимся на самом острие революции цветопередачи телевизоров. Будь это DCI P3 или Rec.2020, более насыщенные и правдоподобные цвета в скором времени найдут дорогу к контенту и телевизорам поблизости от вас. Ниже - то, что надо об этом знать.

Одним из недооцененных и часто игнорируемых аспектов производительности телевизора является реалистичность цвета. Чем цвет точнее, тем изображение жизнеподобнее.

Несмотря на приход ТВ высокой четкости, мы все еще застряли с цветами, во многом благодаря старым ограничениям технологии ЭЛТ. Сегодня телевизоры способны на лучший цвет, но сдерживаются контентом и спецификациями HD стандарта.

Но скоро все изменится. Грядущие стандарты цвета имеют своей задачей улучшить цвет и, наконец, вытащить его в 21 век.

Если вы не читали Часть 1 этой статьи, я очень советую вам. В ней рассказывается об основах того, как телевизоры создают цвет в наши дни.

В этой же части статьи я буду говорить о том, в каком направлении улучшение цветопередачи будет происходить завтра. Чтобы получить реалистичный цвет, улучшению должны подвергнуться две вещи: цветовая палитра и глубина цвета (разрядность, битность). Давайте начнем с того, что проще - с цветовой палитры.

Цветовой охват

Цветовой охват или «цветовая палитра» телевизора (или телевизионного сигнала) - это все цвета, которые возможно создать. Зеленейший зеленый, синейший синий, краснейший красный (плюс желтый, голубой, маджента и пр.). Самый легкий способ представить это - в виде треугольника. Посмотрите на изображение в начале статьи. Давайте, я подожду.

Самый маленький триугольник - цветовое пространство «Rec. 709», также известное, как «HDTV». Ваш глаз способен видеть цвета, находящиеся далеко за пределами возможностей современных телевизоров (очевидно). Два часто используемых примера - красный цвет пожарной машины (ниже) и красновато-лиловый цвет (баклажан) . Их нельзя точно воспроизвести в рамках палитры Rec.709.


Расширение цветовой палитры (площадь треугольника увеличивается) позволяет телевизору отображать эти цвета, как и многие другие; позволяет, простите за каламбур, показать более красный красный. Мы поговорим о стандартах чуть ниже, но два больших треугольника на схеме (DCI P3 и Rec.2020) представляют два основных цветовых пространства, которые потенциально к нам придут. Как вы видите, они позволяют использовать гораздо большее количество цветов.

Глубина (битность) цвета

Еще один аспект цвета - это его глубина, понимание которой чуть сложнее. Для начала, палитра телевизора не бесконечна. Будучи цифровым, каждый его цвет представлен числом. В данный момент HD телевизоры используют 8-битную нумерацию. Это значит, что для каждого цвета доступно 256 градаций (тут я допускаю вольности, но давайте не будем чересчур усложнять).

Таким образом, синий цвет под номером «20» настолько темный, что почти черный (но все еще синий), а синий «220» - это ярко-синий.

Может показаться, что диапазон невелик, но на деле этого достаточно - с его помощью можно получить 16,7 млн. цветов (256 зеленого * 256 синего * 256 красного). Но даже с таким количеством доступных цветов, у вас все еще может возникнуть «полошение» (внешне эффект соответствует названию - полосы вместо плавного цветового перехода), из-за которого вы потеряете промежуточные оттенки.

В настоящий момент телевизоры (и 4K Blu-ray) движутся в сторону 10-битного кодирования цвета. Оно означает 1024 градации на каждый цвет и гораздо большее число «оттенков серого», позволяет получить доступ в общей сложности к более, чем миллиарду цыетов.

Взяв вместе более высокую разрядность цвета и более широкую цветовую палитру, мы получаем огромный прорыв в плане реализма.


И, наконец, есть наши глаза

На протяжении многих лет я, как и многие другие обзорщики, говорил о том, что телевизоры на квантовых точках обладают более насыщенными, более реалистичными цветами, даже если объективные измерения показывают такую же точность цвета, как и у других ТВ.

Один разработчик телевизоров сказал об этом так: RGB светодиоды (а также светодиоды в сочетании с лазерами и квантовыми точками) похожи на картину, нарисованную более качественной, более чистой краской. Он имел в виду следующее: конечно, любая краска позволит вам нарисовать картину, но можно получить более реалистичную картину, если использовать более качественную краску.

Оказывается (и неудивительно), что на это есть своя причина. Человеческий глаз (и мозг) видит чистые цвета более яркими. Чем «чище» красный, тем он кажется более ярким. Поэтому красный с широким спектром, типичный для большинства телевизоров, не будет казаться столь же концентрированным, как красный цвет от лазера, светодиода или квантовой точки. В результате получается более реалистичное представление цветов, которые намеревался показать автор.

Однако, здесь есть возможные проблемы. Чем более чистую длину волны мы используем, тем больше возникает потенциальных вариаций среди пользоватетей. Это самое необыкновенное. Поскольку глаза людей обладают очень тонкими различиями, то чем цвет чище, тем более по-разному мы их будем видеть.

Другими словами, на телевизоре будущего идеальный красный я могу увидеть таким же, как цвет пожарной машины или яблока. Для вас же он будет выглядеть очень похоже, но несколько менее реалистично. Мы оба будем правы, поскольку именно так видят наши глаза (и мозги).


Тут все возвращается к шумихе по поводу знаменитого белого/золотого/синего/черного одеяния. У нас нет способа узнать, как каждый видит тот или иной цвет, поэтому никто, в любом случае, не может оказаться неправ. Так уж мы видим, и это врожденное индивидуальное свойство.

Означает ли это, что мы можем получить телевизор с превосходными отзывами от одного обзорщика и плохими от другого (и это мнение разнесут по магазинам и барам по всей стране)? Может быть. Но скорее произойдет то, что производители ТВ найдут ту золотую середину, где почти все будут видеть «действительно хороший» цвет и не пойдут дальше, туда, где некоторые увидят «превосходный цвет», а другие - «так-себе цвет».

Для мира телевизоров это новая область, поэтому любопытно будет увидеть (в буквальном смысле), чем все обернется.

4K Blu-Ray и стриминг

Самое приятное во всем этом - то обстоятельство, что в диске или в потоке вещания может содержаться дополнительная цветовая информация и при этом обеспечивается обратная совместимость. Никаких отдельных " дисков с расширенным цветом". Запускаете диск на «нормальном» 4K телевизоре, - и он идет с цветами Rec.709. Запускаете на телевизоре с поддержкой расширенного цветового пространства, - получите расширенный цвет.

В каком-то смысле это напоминает то, как реализован цвет на старых черно-белых телевизорах. Вещание было черно-белым, а данные по цветности передавались таким образом, что черно-белый ТВ их не видел, а цветной умел их извлечь и интегрировать в картинку.

Rec. 2020 или DCI P3

Одна из наиболее злободневных дискуссий посвящена тому, как далеко новые стандарты перенесут нас за пределы того, что мы имеем сейчас. К примеру, есть стандарт Rec.2020, в котором куда больше цвета, чем у нынешнего Rec.709. Но в кулуарах слышны голоса, что спецификация Rec.2020 заходит слишком далеко и что нынешний уровень технологий не позволяет его воплотить. Но для меня это звучит, как что-то хорошее - есть к чему стремиться.

Скорее всего, нам ниспошлют стандарт DCI P3. Это фрагмент стандарта Digital Cinema Initiative, отвечающий за цвет. Другими словами, вы это видите в кинотеатрах. Вероятность того, что внедрят P3, а не Rec.2020, высока по той причине, что цвета P3 уже используются в студиях. А работники студий - народ ленивый, они с большей готовностью дадут вам то, что у них уже есть, чем будут возвращаться и ремастерить кучу фильмов. К тому же, любой фильм, снятый за последние несколько лет, может обладать цветом P3 (либо меньше), но уж точно не больше, поскольку камеры большего не воспринимают.

Хотя DCI P3 более вероятен, технических причин, которые не позволяли бы со-существовать обоим вариантам, вроде бы, нет. Иными словами, P3 сегодня, Rec.2020 - чуть позже. Поскольку предполагается, что речь идет о дополнительных данных, содержащихся на диске, это больше напоминает добавление в фильм новой звуковой дорожки, а не изменение основного формата.

Почему это стало возможно сейчас?

Дискуссии про более широкие цветовые пространства - дело древнее. Сколько-то лет назад, помню, некоторые товарищи увлеклись способом интегрировать более широкие цветовые пространства в обычный HDTV сигнал методом «xvYCC». Увлечение продлилось минут десять, а этот метод, по сути, не использовался ни разу.

Сегодня - другое дело. У нас на подходе новый носитель, формат потокового вещания леко изменить, все форматы цифровые. Компонентный сигнал больше не путается под ногами. Добавление дополнительного потока данных при передаче через широкую «трубу» HDMI 2.0 - дело довольно несложное.

А вот заставить все компоненты системы работать с этим новым сигналом - это, конечно, чуть сложнее, но сейчас это сделать куда легче, чем раньше.

Резюме

Все эти новые цветовые возможности прекрасны тем, что производители телевизоров уже начали их внедрять. процесс этот не так прост, как добавление нового приложения или замена пульта, но новые технологии, делающие расширенные цветовые пространства реальностью, несут и другие бонусы, такие как энергоэффективность. Вероятность того, что следующий телевизор, купленный вами в 2016 году, будет обладать расширенными возможностями воспроизведения цветов, довольно немаленькая. А если рассмотреть перспективу пары лет, то она становится очень даже высокой.

Ожидая выход нового контента с дополнительными слоями информации, уже к концу года можно надеяться на большой скачок в плане улучшения реалистичности цветопередачи. Конечно, относится все это к тем, у кого будут новые телевизоры и 4K Blu-ray плееры, способные с этими слоями работать.

Как это произойдет, небо сразу станет радужным многоцветием чистой благодати.



Рекомендуем почитать

Наверх