Максимальная скорость fast ethernet. Что такое Ethernet. Спецификации физической среды Fast Ethernet

Для Андроид 01.04.2019
Для Андроид

Fast Ethernet и Gigabit Ethernet выбраны в качестве технологий построения локальных сетей офисов.

Ethernet (эзернет, от лат. aether -- эфир) -- пакетная технология компьютерных сетей.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат пакетов и протоколы управления доступом к среде -- на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 90-х годов прошлого века, вытеснив такие технологии, как Arcnet, FDDI и Token ring.

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать кабель витая пара и кабель оптический. Метод управления доступом -- множественный доступ с контролем несущей и обнаружением коллизий, скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала -- не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с, а позже был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с. Появилась возможность работы в режиме полный дуплекс.

В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех вариантах.

Fast Ethernet (100 Мбит/с) ()

100BASE-T -- Общий термин для обозначения одного из трёх стандартов 100 Мбит/с ethernet, использующий в качестве среды передачи данных витую пару. Длина сегмента до 200-250 метров. Включает в себя 100BASE-TX, 100BASE-T4 и 100BASE-T2.

100BASE-TX, IEEE 802.3u -- Развитие технологии 10BASE-T, используется топология звезда, задействован кабель витая пара категории-5, в котором фактически используются 2 пары проводников, максимальная скорость передачи данных 100 Мбит/с.

100BASE-T4 -- 100 MБит/с ethernet по кабелю категории-3. Задействованы все 4 пары. Сейчас практически не используется. Передача данных идёт в полудуплексном режиме.

100BASE-T2 -- Не используется. 100 Mбит/с ethernet через кабель категории-3. Используется только 2 пары. Поддерживается полнодуплексный режим передачи, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении -- 50 Mбит/с.

100BASE-FX -- 100 Мбит/с ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 400 метров в полудуплексном режиме (для гарантированного обнаружения коллизий) или 2 километра в полнодуплексном режиме по многомодовому оптическому волокну и до 32 километров по одномодовому.

Gigabit Ethernet

1000BASE-T, IEEE 802.3ab -- Стандарт Ethernet 1 Гбит/с. Используется витая пара категории 5e или категории 6. В передаче данных участвуют все 4 пары. Скорость передачи данных -- 250 Мбит/с по одной паре.

1000BASE-TX, -- Стандарт Ethernet 1 Гбит/с, использующий только витую пару категории 6. Практически не используется.

1000Base-X -- общий термин для обозначения технологии Гигабит Ethernet, использующей в качестве среды передачи данных оптоволоконный кабель, включает в себя 1000BASE-SX, 1000BASE-LX и 1000BASE-CX.

1000BASE-SX, IEEE 802.3z -- 1 Гбит/с Ethernet технология, использует многомодовое волокно дальность прохождения сигнала без повторителя до 550 метров.

1000BASE-LX, IEEE 802.3z -- 1 Гбит/с Ethernet технология, использует многомодовое волокно дальность прохождения сигнала без повторителя до 550 метров. Оптимизирована для дальних расстояний, при использовании одномодового волокна (до 10 километров).

1000BASE-CX -- Технология Гигабит Ethernet для коротких расстояний (до 25 метров), используется специальный медный кабель (Экранированная витая пара (STP)) с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T, и сейчас не используется.

1000BASE-LH (Long Haul) -- 1 Гбит/с Ethernet технология, использует одномодовый оптический кабель, дальность прохождения сигнала без повторителя до 100 километров.

Сегодня технология VPN (Virtual Private Network - виртуальная частная сеть) завоевала всеобщее признание и любой администратор считает своим долгом организовать VPN-каналы для сотрудников, работающих вне офиса

VPN представляет собой объединение отдельных машин или локальных сетей в виртуальной сети, которая обеспечивает целостность и безопасность передаваемых данных. Она обладает свойствами выделенной частной сети и позволяет передавать данные между двумя компьютерами через промежуточную сеть (internetwork), например Internet.

VPN отличается рядом экономических преимуществ по сравнению с другими методами удаленного доступа. Во-первых, пользователи могут обращаться к корпоративной сети, не устанавливая c ней коммутируемое соединение, таким образом, отпадает надобность в использовании модемов. Во-вторых, можно обойтись без выделенных линий.

Имея доступ в Интернет, любой пользователь может без проблем подключиться к сети офиса своей фирмы. Следует заметить, что общедоступность данных совсем не означает их незащищенность. Система безопасности VPN - это броня, которая защищает всю корпоративную информацию от несанкционированного доступа. Прежде всего, информация передается в зашифрованном виде. Прочитать полученные данные может лишь обладатель ключа к шифру. Наиболее часто используемым алгоритмом кодирования является Triple DES, который обеспечивает тройное шифрование (168 разрядов) с использованием трех разных ключей.

Подтверждение подлинности включает в себя проверку целостности данных и идентификацию пользователей, задействованных в VPN. Первая гарантирует, что данные дошли до адресата именно в том виде, в каком были посланы. Самые популярные алгоритмы проверки целостности данных - MD5 и SHA1. Далее система проверяет, не были ли изменены данные во время движения по сетям, по ошибке или злонамеренно. Таким образом, построение VPN предполагает создание защищенных от постороннего доступа туннелей между несколькими локальными сетями или удаленными пользователями.

Для построения VPN необходимо иметь на обоих концах линии связи программы шифрования исходящего и дешифрования входящего трафиков. Они могут работать как на специализированных аппаратных устройствах, так и на ПК с такими операционными системами как Windows, Linux или NetWare.

Управление доступом, аутентификация и шифрование - важнейшие элементы защищенного соединения.

Основы туннелирования

Туннелирование (tunneling), или инкапсуляция (encapsulation), - это способ передачи полезной информации через промежуточную сеть. Такой информацией могут быть кадры (или пакеты) другого протокола. При инкапсуляции кадр не передается в сгенерированном узлом-отправителем виде, а снабжается дополнительным заголовком, содержащим информацию о маршруте, позволяющую инкапсулированным пакетам проходить через промежуточную сеть (Internet). На конце туннеля кадры деинкапсулируются и передаются получателю.

Этот процесс (включающий инкапсуляцию и передачу пакетов) и есть туннелирование. Логический путь передвижения инкапсулированных пакетов в транзитной сети называется туннелем.

VPN работает на основе протокола PPP(Point-to-Point Protocol). Протокол PPP разработан для передачи данных по телефонным линиям и выделенным соединениям "точка-точка". PPP инкапсулирует пакеты IP, IPX и NetBIOS в кадры PPP и передает их по каналу "точка-точка". Протокол PPP может использоваться маршрутизаторами, соединенными выделенным каналом, или клиентом и сервером RAS, соединенными удаленным подключением.

Основные компоненты PPP:

Инкапсуляция - обеспечивает мультиплексирование нескольких транспортных протоколов по одному каналу;

Протокол LCP - PPP задает гибкий LCP для установки, настройки и проверки канала связи. LCP обеспечивает согласование формата инкапсуляции, размера пакета, параметры установки и разрыва соединения, а также параметры аутентификации. В качестве протоколов аутентификации могут использоваться PAP, CHAP и др.;

Протоколы управления сетью - предоставляют специфические конфигурационные параметры для соответствующих транспортных протоколов. Например, IPCP протокол управления IP.

Для формирования туннелей VPN используются протоколы PPTP, L2TP, IPsec, IP-IP.

Протокол PPTP - позволяет инкапсулировать IP-, IPX- и NetBEUI-трафик в заголовки IP для передачи по IP-сети, например Internet.

Протокол L2TP - позволяет шифровать и передавать IP-трафик с использованием любых протоколов, поддерживающих режим "точка-точка" доставки дейтаграмм. Например, к ним относятся протокол IP, ретрансляция кадров и асинхронный режим передачи (АТМ).

Протокол IPsec - позволяет шифровать и инкапсулировать полезную информацию протокола IP в заголовки IP для передачи по IP-сетям.

Протокол IP-IP - IP-дейтаграмма инкапсулируется с помощью дополнительного заголовка IP. Главное назначение IP-IP - туннелирование многоадресного трафика в частях сети, не поддерживающих многоадресную маршрутизацию.

Для технической реализации VPN, кроме стандартного сетевого оборудования, понадобится шлюз VPN, выполняющий все функции по формированию туннелей, защите информации, контролю трафика, а нередко и функции централизованного управления.

В качестве протокола транспортного уровня будет использован протокол TCP.

Протокол TCP взаимодействует с одной стороны с пользователем или прикладной программой, а с другой - с протоколом более низкого уровня, таким как протокол Internet.

Интерфейс между прикладным процессом и протоколом состоит из набора вызовов, которые похожи на вызовы операционной системы, предоставляемые прикладному процессу для управления файлами. Например, в этом случае имеются вызовы для открытия и закрытия соединений, для отправки и получения данных на установленных соединениях.

Интерфейс между протоколом TCP и протоколами более низкого уровня задан в значительно меньшей степени, за исключением того, что должен существовать некий механизм, с помощью которого эти два уровня могут асинхронно обмениваться информацией друг с другом. Обычно полагают, что протокол нижнего уровня задает данный интерфейс. Протокол TCP спроектирован так, чтобы работать с весьма разнообразной средой объединенных компьютерных сетей. Протокол TCP способен передавать непрерывные потоки октетов между своими клиентами в обоих направлениях, пакуя некое количество октетов в сегменты для передачи через системы Internet. В общем случае протокол TCP решает по своему усмотрению, когда производить блокировку и передачу данных.

Протокол TCP имеет защиту от разрушения данных, потери, дублирования и нарушения очередности получения, вызываемых коммуникационной системой Internet. Это достигается присвоением очередного номера каждому передаваемому октету, а также требованием подтверждения (ACK) от программы TCP, принимающей данные. Повреждения фиксируются посредством добавления к каждому передаваемому сегменту контрольной суммы, проверки ее при получении и последующей ликвидации дефектных сегментов.

Чтобы позволить на отдельно взятом компьютере многим процессам одновременно использовать коммуникационные возможности уровня TCP, протокол TCP предоставляет на каждом хост-компьютере набор адресов или портов. Вместе с адресами сетей и хост-компьютеров на коммуникационном уровне Internet они образуют сокет (socket - разъем).

Каждое соединение уникальным образом идентифицируется парой сокетов. Таким образом, любой сокет может одновременно использоваться во многих соединениях.

Соотнесение портов и процессов осуществляется каждым хост- компьютером самостоятельно. Однако оказывается полезным связывать часто используемые процессы (такие как "logger" или сервис с разделением времени) с фиксированными документированными сокетами.

Этот сервис можно впоследствии использовать через известные адреса. Установка и настройка адресов портов для других процессов может включать более динамичные механизмы.

Механизмы управления потоком и обеспечения достоверности, описанные выше, требуют, чтобы программы протокола TCP инициализировали и поддерживали определенную информацию о состоянии каждого потока данных. Набор такой информации, включающий сокеты, номера очереди, размеры окон, называется соединением. Каждое соединение уникальным образом идентифицируется парой сокетов на двух концах.

Если два процесса желают обмениваться информацией, соответствующие программы протокола TCP должны сперва установить соединение (на каждой стороне инициализировать информацию о статусе). По завершении обмена информацией соединение должно быть расторгнуто или закрыто, чтобы освободить ресурсы для предоставления другим пользователям.

Сегодня практически невозможно обнаружить в продаже ноутбук или материнскую плату без интегрированной сетевой карты, а то и двух. Разъём у всех из них один - RJ45 (точнее, 8P8C), но скорость контроллера может отличаться на порядок. В дешёвых моделях - это 100 мегабит в секунду (Fast Ethernet), в более дорогих - 1000 (Gigabit Ethernet).

Если же в вашем компьютере встроенный LAN-контроллер отсутствует, то он, скорее всего, уже «старичок» на базе процессора типа Intel Pentium 4 или AMD Athlon XP, а также их «предков». Таких «динозавров» можно «подружить» с проводной сетью только путём установки дискретной сетевой карты с PCI-разъёмом, так как шины PCI Express во времена их появления на свет ещё не существовало. Но и для PCI-шины (33 МГц) выпускаются «сетевухи», поддерживающие наиболее актуальный стандарт Gigabit Ethernet, хотя её пропускной способности может быть недостаточно для полного раскрытия скоростного потенциала гигабитного контроллера.

Но даже в случае наличия 100-мегабитной интегрированной сетевой карты дискретный адаптер придётся приобрести тем, кто собирается «проапгрейдиться» до 1000 мегабит. Лучшим вариантом станет покупка PCI Express-контроллера, который обеспечит максимальную скорость работы сети, если, конечно, соответствующий разъём в компьютере присутствует. Правда, многие отдадут предпочтение PCI-карточке, так как они значительно дешевле (стоимость начинается буквально от 200 рублей).

Какие же преимущества даст на практике переход с Fast Ethernet на Gigabit Ethernet? Насколько отличается реальная скорость передачи данных PCI-версий сетевых карт и PCI Express? Хватит ли скорости обычного жёсткого диска для полной загрузки гигабитного канала? Ответы на эти вопросы вы найдёте в данном материале.

Участники тестирования

Для тестирования были выбраны три наиболее дешёвые дискретные сетевые карты (PCI - Fast Ethernet, PCI - Gigabit Ethernet, PCI Express - Gigabit Ethernet), так как они пользуются наибольшим спросом.

100-мегабитная сетевая PCI-карта представлена моделью Acorp L-100S (цена начинается от 110 рублей), в которой используется наиболее популярный для дешёвых карточек чипсет Realtek RTL8139D.

1000-мегабитная сетевая PCI-карта представлена моделью Acorp L-1000S (цена начинается от 210 рублей), которая основана на чипе Realtek RTL8169SC. Это единственная карта с радиатором на чипсете - остальным участникам тестирования дополнительное охлаждение не требуется.

1000-мегабитная сетевая PCI Express-карта представлена моделью TP-LINK TG-3468 (цена начинается от 340 рублей). И она не стала исключением - в её основе лежит чипсет RTL8168B, который тоже произведён компанией Realtek.

Внешний вид сетевой карты TP-LINK TG-3468

Чипсеты из этих семейств (RTL8139, RTL816X) можно увидеть не только на дискретных сетевых картах, но и интегрированными на многие материнские платы.

Характеристики всех трёх контроллеров приведены в следующей таблице:

Показать таблицу

Пропускной способности PCI-шины (1066 Мбит/с) теоретически должно быть достаточно для «раскачки» гигабитных сетевых карт до полной скорости, но на практике её может всё-таки не хватить. Дело в том, что этот «канал» между собой делят все PCI-устройства; кроме того, по нему передаётся служебная информация по обслуживанию самой шины. Посмотрим, подтвердится ли это предположение при реальном измерении скорости.

Ещё один нюанс: подавляющее большинство современных жёстких дисков имеют среднюю скорость чтения не более 100 мегабайт в секунду, а часто и ещё меньше. Соответственно, они не смогут обеспечить полную загрузку гигабитного канала сетевой карты, скорость которого составляет 125 мегабайт в секунду (1000: 8 = 125). Обойти это ограничение можно двумя способами. Первый - это объёдинить пару таких жёстких дисков в RAID-массив (RAID 0, striping), при этом скорость может увеличиться практически в два раза. Второй - использовать SSD-накопители, скоростные параметры которых заметно превышают таковые у жёстких дисков.

Тестирование

В качестве сервера использовался компьютер со следующей конфигурацией:

  • процессор: AMD Phenom II X4 955 3200 МГц (четырёхъядерный);
  • материнская плата: ASRock A770DE AM2+ (чипсет AMD 770 + AMD SB700);
  • оперативная память: Hynix DDR2 4 x 2048 Гб PC2 8500 1066 МГц (в двухканальном режиме);
  • видеокарта: AMD Radeon HD 4890 1024 Мб DDR5 PCI Express 2.0;
  • сетевая карта: Realtek RTL8111DL 1000 Мбит/с (интегрирована на материнскую плату);
  • операционная система: Microsoft Windows 7 Home Premium SP1 (64-битная версия).

В качестве клиента, в который устанавливались тестируемые сетевые карты, использовался компьютер со следующей конфигурацией:

  • процессор: AMD Athlon 7850 2800 МГц (двухъядерный);
  • материнская плата: MSI K9A2GM V2 (MS-7302, чипсет AMD RS780 + AMD SB700);
  • оперативная память: Hynix DDR2 2 x 2048 Гб PC2 8500 1066 МГц (в двухканальном режиме);
  • видеокарта: AMD Radeon HD 3100 256 Мб (интегрирована в чипсет);
  • жёсткий диск: Seagate 7200.10 160 Гб SATA2;
  • операционная система: Microsoft Windows XP Home SP3 (32-битная версия).

Тестирование производилось в двух режимах: чтение и запись через сетевое подключение с жёстких дисков (это должно показать, что они могут являться «бутылочным горлышком»), а также с RAM-дисков в оперативной памяти компьютеров, имитирующих быстрые SSD-накопители. Сетевые карты соединялись напрямую при помощи трёхметрового патч-корда (восьмижильная витая пара, категория 5e).

Скорость передачи данных (жёсткий диск - жёсткий диск, Мбит/с)

Реальная скорость передачи данных через 100-мегабитную сетевую карту Acorp L-100S совсем немного не дотянула до теоретического максимума. А вот обе гигабитные карты хоть и обогнали первую примерно в шесть раз, но максимально возможную скорость показать не сумели. Прекрасно видно, что скорость «упёрлась» в производительность жёстких дисков Seagate 7200.10, которая при непосредственном тестировании на компьютере в среднем составляет 79 мегабайт в секунду (632 Мбит/с).

Принципиальной разницы в скорости между сетевыми картами для шины PCI (Acorp L-1000S) и PCI Express (TP-LINK TG-3468) в данном случае не наблюдается, незначительное преимущество последней вполне можно объяснить погрешностью измерений. Оба контроллера работали примерно на шестьдесят процентов от своих возможностей.

Скорость передачи данных (RAM-диск - RAM-диск, Мбит/с)

Acorp L-100S ожидаемо показала такую же низкую скорость и при копировании данных из высокоскоростных RAM-дисков. Оно и понятно - стандарт Fast Ethernet уже давно не соответствует современным реалиям. По сравнению с режимом тестирования «жёсткий диск - жёсткий диск» гигабитная PCI-карта Acorp L-1000S заметно прибавила в производительности - преимущество составило примерно 36 процентов. Ещё более впечатляющий отрыв продемонстрировала сетевая карта TP-LINK TG-3468 - прирост составил около 55 процентов.

Вот тут и проявилась более высокая пропускная способность шины PCI Express - TP-LINK TG-3468 обошла Acorp L-1000S на 14 процентов, что уже не спишешь на погрешность. Победитель немного не дотянул до теоретического максимума, но и скорость в 916 мегабит в секунду (114,5 Мб/с) всё равно выглядит впечатляюще - это означает, что ожидать окончания копирования придётся практически на порядок меньше (по сравнению с Fast Ethernet). К примеру, время копирования файла размером 25 Гб (типичный HD-рип с хорошим качеством) с компьютера на компьютер составит менее четырёх минут, а с адаптером предыдущего поколения - более получаса.

Тестирование показало, что сетевые карты стандарта Gigabit Ethernet имеют просто огромное преимущество (вплоть до десятикратного) над контроллерами Fast Ethernet. Если в ваших компьютерах установлены только жёсткие диски, не объединённые в striping-массив (RAID 0), то принципиальной разницы по скорости между PCI- и PCI Express-картами не будет. В противном случае, а также при использовании производительных SSD-накопителей предпочтение следует отдать картам с интерфейсом PCI Express, которые обеспечат максимально возможную скорость передачи данных.

Естественно, следует учитывать, что и остальные устройства в сетевом «тракте» (свитч, роутер...) должны поддерживать стандарт Gigabit Ethernet, а категория витой пары (патч-корда) должна быть не ниже 5e. Иначе реальная скорость так и останется на уровне 100 мегабит в секунду. К слову, обратная совместимость со стандартом Fast Ethernet сохраняется: к гигабитной сети можно подключить, например, ноутбук со 100-мегабитной сетевой картой, на скорости прочих компьютеров в сети это никак не скажется.

Я не очень торопился перевести свою домашнюю сеть со скорости 100 Мбит/с на 1 Гбит/с, что для меня довольно странно, поскольку я передаю по сети большое количество файлов. Однако когда я трачу деньги на апгрейд компьютера или инфраструктуры, я считаю, что должен сразу же получить прирост производительности в приложениях и играх, которые я запускаю. Многие пользователи любят потешить себя новой видеокартой, центральным процессором и каким-нибудь гаджетом. Однако по каким-то причинам сетевое оборудование не привлекает такого энтузиазма. Действительно, сложно вложить заработанные деньги в сетевую инфраструктуру вместо очередного технологического подарка на день рождения.

Однако требования по пропускной способности у меня очень высоки, и в один момент я понял, что инфраструктуры на 100 Мбит/с уже не хватает. У всех моих домашних компьютеров уже установлены интегрированные адаптеры на 1 Гбит/с (на материнских платах), поэтому я решил взять прайс-лист ближайшей компьютерной фирмы и посмотреть, что мне потребуется для перевода всей сетевой инфраструктуры на 1 Гбит/с.

Нет, домашняя гигабитная сеть вовсе не такая сложная.

Я купил и установил всё оборудование. Я помню, что раньше на копирование большого файла по 100-Мбит/с сети уходило около полутора минут. После апгрейда на 1 Гбит/с тот же файл стал копироваться за 40 секунд. Прирост производительности приятно порадовал, но всё же я не получил десятикратного превосходства, которое можно было ожидать из сравнения пропускной способности 100 Мбит/с и 1 Гбит/с старой и новой сетей.

В чём причина?

Для гигабитной сети все её части должны поддерживать 1 Гбит/с. Например, если у вас установлены гигабитные сетевые карты и соответствующие кабели, но концентратор/коммутатор поддерживает всего 100 Мбит/с, то и вся сеть будет работать на 100 Мбит/с.

Первое требование - сетевой контроллер. Лучше всего, если каждый компьютер в сети будет оснащён гигабитным сетевым адаптером (отдельным или интегрированным на материнскую плату). Это требование удовлетворить проще всего, поскольку большинство производителей материнских плат пару последних лет интегрируют гигабитные сетевые контроллеры.

Второе требование - сетевая карта тоже должна поддерживать 1 Гбит/с. Есть распространённое заблуждение, что для гигабитных сетей требуется кабель категории 5e, но на самом деле даже старый кабель Cat 5 поддерживает 1 Гбит/с. Впрочем, кабели Cat 5e обладают лучшими характеристиками, поэтому они будут более оптимальным решением для гигабитных сетей, особенно если длина у кабелей будет приличная. Впрочем, кабели Cat 5e сегодня всё равно самые дешёвые, поскольку старый стандарт Cat 5 уже устарел. Новые и более дорогие кабели Cat 6 обладают ещё лучшими характеристиками для гигабитных сетей. Мы сравним производительность кабелей Cat 5e против Cat 6 чуть позже в нашей статье.

Третий и, наверное, самый дорогой компонент в гигабитной сети - это концентратор/коммутатор с поддержкой 1 Гбит/с. Конечно, лучше использовать коммутатор (возможно, в паре с маршрутизатором), поскольку концентратор или хаб - не самое интеллектуальное устройство, просто транслирующее все сетевые данные по всем доступным портам, что приводит к появлению большого числа коллизий и замедляет производительность сети. Если вам нужна высокая производительность, то без гигабитного коммутатора не обойтись, поскольку он перенаправляет сетевые данные только на нужный порт, что эффективно увеличивает скорость работы сети по с равнению с концентратором. Маршрутизатор обычно содержит встроенный коммутатор (с несколькими портами LAN), а также позволяет подключать вашу домашнюю сеть к Интернету. Большинство домашних пользователей понимают преимущества маршрутизатора, поэтому гигабитный маршрутизатор - вариант вполне привлекательный.



СОДЕРЖАНИЕ

Fast EtherNet

IEEE 802.3u

Все отличия FastEtherNet и EtherNet сосредоточены на физическом уровне. Уровни MAC и LLC вFastEtherNet остались без изменения.

Для технологии Fast Ethernet разработаны различные варианты физического уровня, отличающиеся не только типом кабеля и электрическими параметрами импульсов, как это сделано в технологии 10 Мб/с Ethernet, но и способом кодирования сигналов, и количеством используемых в кабеле проводников.
Организация физического уровня технологии EtherNet является более сложной, чем классический Ethernet.

Физический уровень включает три элемента:

  • Уровень согласования нужен для того, чтобы уровень MAC, рассчитанный на интерфейс AUI мог работать с физическим уровнем через интерфейс MII
  • Независимый от среди интерфейс (MediaIndependentInterface, MII) поддерживает независимый от используемой физической среды способ обмена данными между MAC-подуровнем и подуровнем PHY. Интерфейс MII располагается между MAC-подуровнем и подуровнями кодирования сигнала, которых в стандарте FastEthernetтри - FX, TX и T4.
  • Устройство физического уровня (PhysicalLayerDevice, PHY) обеспечивает кодирование данных, поступающих от MAC-подуровня для передачи их по кабелю определенного типа, синхронизацию передаваемых по кабелю данных, а также прием и декодирование данных в узле-приемнике.

Поскольку одной из целей разработки было обеспечение максимальной преемственности, было принято решение увеличить скорость за счет сокращения до 10 нс битового интервала (против100 нс в Ethernet). При этом максимально допустимое время оборота сигнала составило 2,6 мкс, поэтому максимальный диаметр сегмента Fast Ethernet составляет 205 м.

Спецификации физической среды Fast Ethernet

  • 100BASE-TX - задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м.
  • 100BASE-T4 - стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Максимальная длина сегмента 100 метров. Практически не используется.
  • 100BASE-T2 - стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении - 50 Мбит/с. Практически не используется.
  • 100BASE-SX - стандарт, использующий многомодовое оптоволокно (2 жилы). Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2000 метров в полном дуплексе.
  • 100BASE-FX - стандарт, использующий одномодовое оптоволокно. Максимальная длина ограничена только величиной затухания в оптоволоконном кабеле и мощностью передатчиков.
  • 100BASE-FX WDM -стандарт, использующий одномодовое оптоволокно. Максимальная длина ограничена только величиной затухания в оптоволоконном кабеле и мощностью передатчиков. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются одной латинской буквой: T (пере-датчик 1550 нм, приемник 1310нм) или R (передатчик 1310нм, приемник 1550нм). В паре могут работать только парные интерфейсы: с одной стороны пер е-датчик на 1310 нм, а с другой -на 1550 нм.

Gigabit Ethernet

Основное новшество состояло в десятикратном (по сравнению с Fast Ethernet) уменьшении длительности битового интервала– до 1 нс.

В связи с ограничениями, накладываемыми методом CSMA/CD на длину кабеля, версия GigabitEtherNetдля разделяемой среды допускала бы длину сегмента всего в 25м. Для увеличения длины сегмента до 200м изменили:

  • Минимальный размер кадра был увеличен с 64 до 512 байт;
  • Соответственно время оборота увеличено до 4095 битовых интервалов.

GMII интерфейс. Среданезависимый интерфейс GMII (gigabit media independent interface) обеспечивает взаимодействие между уровнем MAC и физическим уровнем.

GMII интерфейс является расширением интерфейса MII и может поддерживать скорости 10, 100 и 1000 Мбит/с. Он имеет отдельные 8 битные приемник и передатчик, и может поддерживать как полудуплексный, так и дуплексный режимы.

Спецификации физической среды Gigabit Ethernet

  • 1000BASE-T, IEEE 802.3ab -использует витую пару категорий 5e. В передаче данных участвуют все 4 пары со скоростью 250 Мбит/с по одной паре. Используется метод кодирования PAM5, частота основной гармоники 62,5 МГц.
  • 1000BASE-TX, использует раздельную приёмо-передачу (2 пары на передачу, 2 пары на приём, по каждой паре данные передаются со скоростью 500 Мбит/с), кабеля 6 категории. На основе данного стандарта практически не было создано продуктов, хотя 1000BASE-TX использует более простой протокол, чем стандарт 1000BASE-T
  • 1000BASE-SX, IEEE 802.3z - стандарт, использующий многомодовое оптоволокно. Длина сегмента до 550 метров.
  • 1000BASE-LX, IEEE 802.3z - стандарт, использующий одномодовое или многомодовое оптоволокно. Длина сегмента до 5000 метров.
  • 1000BASE-LX10, IEEE 802.3ah - стандарт, использующий одномодовое оптоволокно. Дальность прохождения сигнала без повторителя до 10 километров.
  • 1000BASE-CX - стандарт для коротких расстояний (до 25 метров), использующий твинаксиальный кабель с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T и сейчас не используется.
  • 1000BASE-LX WDM - расширение стандарта LX, позволяющее по одному оптическому волокну одномодового кабеля передавать сигнал до 40км. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются одной латинской буквой T (передатчик 1550 нм, приемник 1310нм) или R(передатчик 1310нм, приемник 1550 нм).
  • 1000BASE-ZX не стандартизированный, однако использующееся расширение стандарта LX. Позволяет передавать сигнал на расстояние до 80 км по одномодовому оптоволокну.
  • 1000BASE-LH (Long Haul) - стандарт, использующий одномодовое оптоволокно. Дальность прохождения сигнала без повторителя до 100 километров.

10Gigabit Ethernet

Строение физического интерфейса вполне типично, он состоит из трех уровней: PCS (Physical Coding Sublayer), отвечающий за управление передаваемыми битовыми последовательностями, PMA (Physical Medium Attachment) -преобразование группы кодов в последовательный поток бит и обратно, плюс синхронизация, и PMD (Physical Media Dependent), преобразующий биты в оптические сигналы. Традиционно, они выполнены логически независимыми друг от друга частями.

Спецификации физической среды 10Gigabit Ethernet

  • 10GBASE-SR - Технология 10 Гигабит Ethernet для коротких расстояний (до 300метров), используется многомодовое оптоволокно.
  • 10GBASE-LR и 10GBASE-ER - эти стандарты поддерживают расстояния до 10 и 40 (80) километров соответственно. 10GBASE-LR использует лазеры 1310 нм, а 10GBASE-ER лазеры 1550 нм.
  • 10GBASE-LX4 -использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому оптоволокну, IEEE 802.3 Clause 48 PCSи технологию «грубый» WDM. Данная спецификация позволяет поддерживать два типа оптоволокна. При использовании многомодового оптоволокна длина участка может достигать до 300 м, при скорости 10 Гбит/с, а при использовании одномодового оптоволокна расстояние увеличивается до 10 километров. Это достигается использованием 4-х лазерных источников, работающих на уникальных длинах волн в диапазоне 1300 нм.
  • 10GBASE-LRM (Long Reach Multimode) также известный как IEEE 802.3aq, использует IEEE 802.3 Clause 49 64B/66BPCSи 1310 нм лазерные излучатели. Это обеспечивает передачу данных, используя многомодовый оптический кабель, со скоростью 10.3125 Гбит/с. 10GBASE-LRM поддерживает расстояния в 220 метров, при использовании многомодового оптического кабеля
  • 10GBASE-ZR. Некоторые производители создали сменные интерфейсные устройства, для работы на расстоянии до 80 км. Так как эти устройства не определены стандартом IEEE 802.3ae, изготовители создали свою спецификацию 10GBASE-ZR, описанную в спецификации OC-192/STM-64 SDH/SONET.

Скорость передачи данных в сетях, построенных по этому стандарту - 100 Мбит/c.

Логика работы сетей Fast Ethernet и Ethernet совершенно одинаковая. Все отличия лежат на физическом уровне построения сети.

В 10 раз увеличилась скорость передачи сигнала, значит, в 10 раз должен уменьшиться максимальный диаметр одного разделяемого сегмента (чтобы избежать в нём поздних коллизий).

Признаком свободного состояния среды в Fast Ethernet является передача специального символа простоя источника (а не отсутствие сигнала, как в стандарте классической Ethernet).

Коаксиальный кабель исключён из списка разрешённых сред передачи. Стандарт Fast Ethernet установил три спецификации:

– 100Base-TX - неэкранированная или экранированная витая пара (две пары в кабеле).

– 100Base-T4 - неэкранированная витая пара (четыре пары в кабеле).

– 100Base-FX - волоконно-оптический кабель (с двумя волокнами).

Максимальные длины для кабельных сегментов приводятся в таблице:

Таблица 1.6.2 Стандарты Fast Ethernet

Полудуплексный канал работает на передачу и приём по очереди, а дуплексный - одновременно.

Правило 4 хабов для Fast Ethernet превращается в правило одного или двух хабов (в зависимости от класса хаба).

100Base-tx

Среда передачи - 2 витых пары в одной общей оболочке.

100Base-t4

Среда передачи - 4 витых пары в одной общей оболочке.

Три пары используются для параллельной передачи сигнала со скоростью 33,3 Мбит/с (всего получается 100 Мбит/с), четвёртая пара всегда “слушает” сеть на предмет обнаружения коллизий.

100Base-fx

Среда передачи - оптоволоконный кабель с двумя волокнами.

Gigabit Ethernet

Скорость передачи данных в сетях, построенных по этому стандарту - 1000 Мбит/c.

Поддерживаются кабели, используемые в Fast Ethernet: волоконно-оптический, витая пара.

Для предотвращения поздних коллизий длина сегмента кабеля должна уменьшиться в 10 раз по сравнению со стандартом Fast Ethernet, но это было бы неприемлемо. Вместо этого в технологии Gigabit Ethernet увеличена длина минимального пакета с 64 байтов до 512 байт и, кроме того, разрешено передавать несколько пакетов подряд (общий размер - не более 8192 байт). Конечно, это увеличивает ожидание паузы для начала передачи, но на скорости 1000 Мбит/c эта задержка не слишком существенна.

Для поддержки заявленной скорости передачи, в технологии Gigabit Ethernet применяются и некоторые другие технические решения, но структура сети остаётся прежней:

– дерево разделяемых сред;

– для соединения узлов в одном домене коллизий используются хабы;

– коммутаторы и маршрутизаторы соединяют домены коллизий.

Скорость передачи данных в сетях, построенных по этому стандарту - 10 000 Мбит/c.

Технология построения сети 10G Ethernet принципиально отличается от других Ethernet-технологий.

Сети 10G Ethernet - это сети с коммутацией пакетов .

Если в сетях с разделяемыми средами пакет, переданный одной станцией, поступает на все другие станции, то в коммутируемых сетях пакет следует от передающей станции к станции назначения по маршруту, который уточняется по мере продвижения пакета от одного маршрутизатора к другому.

Сеть с разделяемыми средами, построенная только на хабах и коммутаторах, должна иметь строго иерархическую структуру: на схеме соединений не должно быть циклов.

Сеть, приведённая на рисунке 1.6.2, имеет иерархическую структуру. Между любыми двумя узлами существует ровно один путь, например, путь от А к Б пролегает через узлы: А–2–1–3–5–Б:

Рисунок 1.6.2 Сеть с иерархической структурой

На следующем рисунке 1.6.3 показана сеть с циклом. Между узлами А и Б теперь имеются два пути: А–2–1–3–5–Б и А–5–Б:

Рисунок 1.6.3 Сеть с циклом

Сети с коммутацией пакетов могут иметь ячеистую структуру, в которой между двумя станциями может существовать два и более вариантов прохождения пакета.

Ячеистые сети более надежны: если один маршрут перестаёт работать по техническим причинам, для доставки пакета выбирается другой.

Сети с коммутацией пакетов имеют бóльшую пропускную способность по сравнению с сетями на разделяемых средах (пакеты не транслируются во все стороны, а следуют строго к пункту назначения; станции передают, не дожидаясь тишины в сети).

В качестве проводящей среды в сетях 10G Ethernet используют оптоволоконный кабель и кабель с витыми парами.

Длина сегмента оптического кабеля может достигать 40 км, а длина сегмента витой пары - 100 м. Причина ограничения длины кабеля теперь не в поздних коллизиях (при коммутации пакетов коллизий не бывает), а в затухании сигнала при его прохождению по кабелю.



Рекомендуем почитать

Наверх