Сравнение встроенной графики с дискретной. Встроенная графика Intel HD Graphics. Конфигурация тестовых стендов

Nokia 28.02.2019
Nokia

) мы уже писали: "…AMD явно "подустала" и начала сбавлять
обороты…". И вот, в начале года текущего эта компания выпустила продукт,
способный претендовать на звание нового — Athlon XP 3000+ на ядре Barton. Конечно,
это не долгожданный Hammer, но все же, все же… Для начала — необходимое (впрочем, немногословное) теоретическое введение. Итак
— ядро Barton. В roadmap компании оно было уже довольно давно, так что выход
процессоров на его основе ни для кого неожиданностью не стал. Правда, у многих
поклонников AMD возникло вполне обоснованное ощущение, что появились эти CPU на
рынке, мягко говоря, поздновато. Фактически единственным существенным нововведением,
которое присутствует в Barton, является увеличенный в два раза кэш второго уровня
— его размер вырос с 256 до 512 KB. К слову, напомним, что, как и во всех других
Athlon/Duron, L2-кэш этого процессора "эксклюзивный" (т. е. данные,
находящиеся в L1, не дублируются в L2), поэтому иногда сама AMD предпочитает говорить
не об объеме L1- и L2-кэша по отдельности, а указывать "общий объем кэшируемой
процессором информации", равный, соответственно, сумме объемов обоих кэшей
(в нашем случае 128 + 512 = 640 KB). Между прочим, если принять эту позицию, то
перед нами — десктопный процессор с самым большим кэшем из всех ныне существующих .
Что же касается системной шины с частотой 333 (166 DDR) MHz, то она уже применялась
ранее в CPU на ядре Thoroughbred, поэтому нововведением Barton считаться не может.
Несколько интереснее "почти официально подтвержденная" (так называют
вполне открытые высказывания, которым подчеркнуто не присваивают статуса "официальных")
информация о том, что впоследствии на ядре Barton будут выпущены процессоры с
частотой FSB 400 (200 DDR) MHz. Впрочем, с другой стороны, к тому времени мы почти
наверняка увидим 800 (200 Quad Pumped) MHz FSB на Pentium 4 "Prescott",
так что все "шинные" достижения AMD имеют вес больше "внутри ее
самой", чем по отношению ко всей индустрии x86 CPU. Однако это все в будущем,
а пока… Пока — все. 512 KB вместо 256 — "вот и весь Barton". Дополнительной
ложкой дегтя является то, что самый высокоиндексный процессор на этом ядре —
Athlon XP 3000+… имеют отнюдь не самую высокую частоту! Даже Athlon XP 2800+
на ядре Thoroughbred работает на частоте 2250 MHz, в то время как Athlon XP 3000+
"Barton" — на 2167 MHz. В связи с этим невольно придется еще раз остановиться
на том, что же это за цифры, которые AMD называет "моделью процессора",
и какое они имеют отношение к частоте… и ко всему прочему.

К частоте, как показывает день сегодняшний — однозначно никакого. Достаточно
вернуться к вышенаписанному — процессор с индексом 3000+ работает на частоте
ядра меньшей , чем модель с индексом 2800+. Более того — на самом деле
2800+ еще и "един в двух лицах", ибо существуют варианты как на ядре
Thoroughbred (256 KB L2-кэша, 2250 MHz), так и на ядре Barton (512 KB L2-кэша,
но уже 2083 MHz). Итак, мы видим, что либо AMD просто старательно запутывает нас
и саму себя… либо она инициирует все эти "непонятности" совершенно
осознанно и с определенной целью. Вариант запутывания мы все же склонны отбросить
— компания живет на рынке не первый год, и вряд ли могла бы себе позволить "расслабиться"
до такой степени. Значит, имеет место осознанная политика. И цель ее в общем-то
на поверхности — "выхолостить" отношение к частоте (да и к прочим физическим
характеристикам CPU), как к чему-то, связанному с производительностью. Быстродействие
ведь складывается из многих факторов — ширины и частоты процессорной шины, частоты
работы ядра, объемов кэшей первого и второго уровня, количества блоков различного
назначения (ALU, FPU, SIMD), длины конвейера… Официальная позиция AMD состоит
в том, что каждая новая модель CPU проходит тестирование на некоем наборе программного
обеспечения с целью определения ее быстродействия, после чего она получает соответствующий
индекс, который и обозначает ее производительность в неких условных единицах .
Выше индекс — быстрее процессор. А какие там частоты, шины и все такое прочее
— это, дескать пользователя интересовать не должно. В общем-то сама по себе позиция
не плохая и не хорошая, а просто "одна из". Успешность ее зависит в
основном от того, насколько "честным" окажется индекс и не поддастся
ли рано или поздно компания соблазну брать его "с потолка". Однако,
собственно говоря, именно для пресечения подобных попыток и существуют независимые
тестовые лаборатории, не так ли? Вот мы и полюбопытствуем насчет нового "юбилейного"
индекса Athlon XP 3000+…

Corsair XMS TWINX512-3200LL


Память на это тестирование нам досталась тоже весьма необычная (о чем,
впрочем, грех сожалеть, так как модули в своем роде уникальные). Набор
(да, да — именно набор!) TWINX512-3200LL — это пара из двух модулей DDR400 по
256 MB каждый, предназначенных, по заявлению производителя, специально для использования
в системах, оснащенных двухканальными контроллерами DDR SDRAM. Судить о том, что
скрывается за "спаренностью" этих DIMM (кроме того, что продаются они
только парами), мы, понятное дело, не можем — но предполагается, что модули проходят
специальный отбор на максимальное соответствие "тонких" таймингов именно
в рамках конкретной пары. Де-факто подтвердить это без специального оборудования
невозможно, гораздо проще идти "от противного", т. е. попытаться данное
утверждение опровергнуть, заставив один из модулей "заглючить" первым.
В таком случае мы можем с удовлетворением констатировать, что нам это не удалось .

Однако, кроме спаренности, с точки зрения "эстетствующих оверклокеров"
есть у Corsair TWINX еще одно достоинство — эти модули как бы "предразогнаны
на заводе". Выражается это в том, что все тайминги, прописанные в SPD, т.
е. устанавливаемые любой "честной" платой как параметры по умолчанию,
— уже "задраны" прямо на уровне установок по умолчанию (2-2-2-6, DRAM
Command rate = 1T, при этом у нас в режиме DDR333 модули TWINX работали стабильно
даже как 2-2-2-5). Этакий, знаете ли, получается "разгон для ленивых"
— даже экспериментировать ни с чем не нужно, просто выбрал в BIOS установку "By
SPD" — и подсистема памяти уже как на настоящей экстремально-оверклокерской
машине. Впрочем, есть одно "но", которое, с одной стороны, свидетельствует
о по-настоящему серьезном подходе компании к выпуску этих модулей, с другой же
— иногда может привести к неработоспособности системы. Дело в том, что стандартно
применяемое оверклокерами повышенное напряжение питания у них… тоже предустановлено
в SPD! И вот, видимо, из-за этого на одной из тестовых систем у нас и возникли
проблемы — плата Gigabyte GA-8SQ800 с Corsair TWINX стабильно работать почему-то
упорно не желала. Впрочем, ничего особенно страшного мы в этом не видим — даже
в узких рамках данного теста нормальное функционирование оверклокерской
по сути памяти на пяти системах из шести можно считать вполне приемлемым достижением.
К тому же любой маститый "разгонщик" компоненты своей системы всегда
подбирает очень тщательно, в том числе проверяя их на совместимость со всеми остальными
— это ведь даже не столько "проза жизни", сколько некий особый ритуал…

Методика тестирования

Данный материал знаменателен еще и тем, что является в некоторой степени "переходным", так как в нем впервые опробуется новая методика тестирования быстродействия процессоров, чипсетов и памяти. Разумеется, она еще будет частично пересматриваться и расширяться, однако в общих чертах представление о ней может быть получено уже на основании этой статьи. Аппаратная конфигурация тестовых стендов приведена в таблице, поэтому на ее описании мы подробно останавливаться не будем, тем более что принцип формирования был предельно прост: самым мощным процессорам — самую быструю память (в достаточном количестве) и самую скоростную видеокарту. Отдельно хотелось бы сказать о том, почему в паре с Athlon XP мы занижали частоту DDR SDRAM до 333 MHz. Как показала практика, при частоте работы памяти большей, чем у процессорной шины, быстродействие практически никогда не увеличивается, но, мало того — иногда уменьшается ! Так что чудес на этом свете по-прежнему не так уж и много, и справиться с последствиями асинхронности еще никому не удалось. Но вернемся к методике.

Конфигурации тестовых систем

Процессор Системная плата Чипсет Память
Athlon XP 3000+ MSI K7N2 NVidia nForce2 SPP 2 x 256 MB DDR400 Corsair TWINX
(в режиме DDR333)
EPoX EP-8RGA+ NVidia nForce2 IGP
Gigabyte GA-7VAXP Ultra KT400
Pentium 4 3,06 GHz Gigabyte GA-8SQ800 Ultra2 SiS 655 2 x 256 MB DDR400 Samsung
ASUS P4PE Intel i845PE 2 x 256 MB DDR400 Corsair TWINX
EPoX EP-4GEAE Intel i845GE

Скорость обращения к памяти и в обязательном порядке график латентности
исследовались с помощью программы Cachemem 2.65. К слову — ее "неидеальность"
нам в общем-то известна, но следует учитывать отсутствие разумных альтернатив
— пожалуй, в таком количестве и с такой точностью и повторяемостью ни один из
других известных нам бенчмарков памяти результаты не выдает. В качестве комплексного
теста быстродействия CPU (скорее — ALU), процессорного кэша и подсистемы памяти
выступает архиватор WinRAR 3.11, причем его результаты также представлены
в виде графика, где на оси X отложены различные размеры "словаря" —
от 64 до 4096 KB. Также мы все-таки вернулись к игровым тестам, в основном под
впечатлением "прожорливости" по отношению к процессору встроенного теста
Unreal Tournament 2003 в режиме Botmatch. Факультативно приводим
результаты "старого" и "нового" 3DMark , но в
будущем, по всей видимости, ограничимся специальным подтестом для CPU из состава
3DMark ’03 . Кодирование медиаданных пока представлено двумя кодеками
MP3 — наиболее популярным LAME последней версии и наиболее
"продвинутым" GOGO-no-coda , который поддерживает MMX/3DNow!/SSE/SSE2
и даже SMP. Профессиональный OpenGL традиционно олицетворяет тест SPEC ViewPerf
7.0, а за рендеринг пока что "в одиночку отдувается" LightWave
7.5
тестовая сцена, сделанная с учетом возможностей 3ds max 5.0, пока
еще находится в разработке. Также мы специально ввели один тест на "реальную
многозадачность" т. е. использующий более чем одно активно работающее приложение.
Им стал стандартный встроенный бенчмарк из UT 2003, исполняемый на фоне
кодирования WAV в MP3 с помощью кодека LAME. По окончании теста замеряются два
параметра — собственно показатели производительности, полученные в UT 2003, и
процент выполнения задания по кодированию медиаданных (т. е. сколько успела сделать
программа, работающая в фоновом режиме, пока проходил "основной" тест).

Gigabyte GA-8SQ800 Ultra2


Пожалуй, по количеству "наворотов на единицу площади" эту плату
следует причислить к чемпионам, по крайней мере если брать во внимание те, что
прошли через нашу Тестовую лабораторию. На стандартной площади ATX-формата Gigabyte
удалось разместить двухканальный UATA/133 IDE RAID на микросхеме ITE IT8212F (поддерживаются
стандартные для подобных устройств режимы 0, 1 и 0+1), двухканальный Serial ATA
RAID (аналогичной функциональности, на чипе Silicon Image Sil3112), контроллер
Gigabit Ethernet (на чипе Intel), фирменный Dual BIOS (две микросхемы Flash, одна
из которых служит для восстановления случайно или злонамеренно запорченной BIOS),
ну и "остальная функциональность согласно чипсету". Чипсет же, между
прочим, тоже неординарный — SiS 655. Этот новейший набор микросхем от SiS поддерживает
DDR-память вплоть до DDR400, и к тому же оснащен двухканальным контроллером ОЗУ!
Кстати, также это один из первых наборов микросхем не от Intel, в котором реализована
технология Hyper-Threading. О таких "мелочах", как поддержка шести портов
USB 2.0 и трех IEEE-1394 (FireWire), даже и упоминать как-то неудобно — понятно,
что для такой платы подобная функциональность является само собой разумеющейся.

Ну а завершает данный внушительный перечень весьма интересно реализованный блок
VRM — половина его не распаяна на основной площади, а вынесена на отдельную мини-плату,
устанавливаемую в специальный слот. У Gigabyte эта технология, пополнившая и так
немалый список "фирменных", носит название DPS — Dual Power System.
У кого-то может возникнуть вопрос — а зачем "умножать сущности сверх необходимого"
и делать VRM на отдельной плате? Первое (самое, пожалуй, разумное) предположение
звучит так: чтобы обеспечить более долгий жизненный цикл продукта. Действительно
— как показала практика, потребляемая процессорами мощность все равно растет,
даже несмотря на постоянное совершенствование техпроцесса. Вполне вероятно, что
через некоторое время рекорд 82-ваттного "чемпиона" Pentium 4 3,06 GHz
снова будет побит, и целая обойма системных плат сразу же останется "за кормой
прогресса". А вот для Gigabyte GA-8SQ800 все может оказаться совсем не так
плохо — теоретически внешний VRM заменяется на другой, более мощный. Нам пока
еще не известно, планирует ли компания обеспечивать подобный сервис для своих
пользователей, но предположение выглядит как минимум довольно логично. Также заслуживает
внимания очень интересное решение — планка для установки в один из свободных
слотов корпуса с выведенными на нее двумя разъемами Serial ATA и одним разъемом
питания. Фактически это позволяет подключить к машине обычный десктопный винчестер,
не разбирая корпуса. К слову, учитывая повальное использование подобного рода
устройств у нас в стране просто в качестве "больших дискет" — вполне
актуальная задумка. Правда — Serial ATA… Ну, что ж, будем надеяться, что скоро
такие диски станут ничуть не менее доступны, чем обычные (и очень хотелось бы,
чтобы в том числе по цене). В целом же, повторимся, плата супероснащенная .
Ну а о продемонстрированном чипсетом SiS 655 быстродействии — читайте в основном
материале.


Результаты тестов

Cachemem , как и всегда,
"развенчивает мифы и ниспровергает авторитеты": превосходство систем
на базе Pentium 4 в скорости чтения из памяти — штука уже давно известная, а
вот то, что в скорости записи даже самому быстрому SiS 655 с двухканальной DDR400
почти не уступает nForce2 — это в некотором роде сюрприз. Однако еще больше сюрпризов
несет график латентности: у nForce2 она самая низкая (что, напомним — очень хорошо),
а вот у SiS 655 настолько высока, что это наводит на грустные мысли. Большая скорость
линейного чтения и записи — это, конечно, здорово, но при высокой латентности
во многих программах она, что называется, "не спасает". В целом же по
скорости работы с памятью платформа Pentium 4 явно выигрывает, несмотря
на безусловно прекрасные показатели nForce2. Почему — тоже понятно: быстродействие
процессорной шины от чипсета не зависит, а 333 MHz на Socket A и 533 на Socket
478 — все-таки немного разные величины. А вот в реальной задаче — архивации
данных с помощью WinRAR — Athlon XP 3000+ в паре с nForce2 сумел
обойти все системы на основе Pentium 4 3,06 GHz. Можно предположить, что "виной"
тому именно латентность, которая у данного чипсета воистину потрясающе низкая.
Впрочем… латентность ли? Не стоит забывать, что там, где другие чипсеты вправе
уповать лишь на свои возможности быстро запросы обрабатывать , nForce2 может
попытаться их предугадать , ибо в его состав входит специальный механизм
DASP. А вот SiS 655 продемонстрировал в этом тесте, увы, ошарашивающе низкое
быстродействие.

Во всех без исключения игровых тестах — редкостное единодушие и практически полный паритет. Можно, конечно же, с глубокомысленным видом анализировать копеечное преимущество Athlon XP 3000+ в UT 2003 и 3DMark 2001SE и столь же мизерное его отставание в новом 3DMark ’03 , но делать этого явно не стоит, дабы не разводить "глубокую философию на мелких местах". Преобразование WAV -> MP3 дает схожую картину, но тут уже преимущество Pentium 4 хоть и невелико, но постоянно. Не поддерживающий ни SSE2, ни SMP кодек LAME практически ставит знак равенства между Athlon XP 3000+ и Pentium 4 3,06 GHz (выигрыш последнего — не более 5%), а вот SSE2/SMP-оптимизированный GOGO да еще и при включенной Hyper-Threading выводит Pentium 4 в однозначные лидеры.

В LightWave 7.5 командует парадом опять-таки Pentium 4, но в данном случае нас интересует больше даже не чей-то выигрыш или проигрыш, а поведение самого приложения. Легко заметить, что в отличие от LightWave 6.x, где максимальное количество потоков рендеринга имело смысл устанавливать даже на однопроцессорной системе, LW 7.5 ведет себя более разумно — если процессор один, то и наилучший результат наблюдается в случае с одним потоком. А вот если добавляется "виртуальный второй" (Pentium 4 + Hyper-Threading), то его вполне реально задействовать, и скорость даже немного растет. Производительность всех систем за исключением основанной на nForce2 в тесте SPEC ViewPerf настолько одинаковая, что мы смело можем подарить пальму первенства не столько процессору, сколько чипсету. Впрочем — так или иначе, и даже не важно за счет чего, но выиграл этот раунд все-таки Athlon XP 3000+.

А вот с одновременной "игрой" в Unreal Tournament и преобразованием WAV в MP3 все "честные однопроцессорные" системы (как Athlon XP 3000+, так и Pentium 4 3,06 GHz, если ему отключить поддержку Hyper-Threading) справляются намного хуже, чем "виртуально многопроцессорные". Пожалуй, это единственный по-настоящему серьезный "звоночек" для Athlon XP — ибо в данном случае Pentium 4 выигрывает у него не столько за счет "тупой мощи", сколько за счет использования передовой технологии — а это намного более "хлопотно" с точки зрения конкуренции всех будущих CPU от AMD с процессорами Intel.


Выводы

Они будут краткими — в очередной раз AMD все-таки смогла противопоставить
топовому продукту от Intel процессор, в среднем равный ему по производительности.
То есть несмотря на явно наличествующие проблемы с ростом частот, за счет увеличения
объема кэша этот раунд она сыграла "вничью". Можно предположить, что
еще некоторое количество времени паритет удастся сохранять, поднимая частоты Barton
(будем надеяться, что это получится). Пожалуй, единственным "облачком"
этого дня на безмятежном небосклоне AMD можно назвать работу систем в условиях
"истинной многозадачности", т. е. когда число активных процессов больше
одного, — здесь "виртуальная многопроцессорность" от Intel в лице технологии
Hyper-Threading демонстрирует все же намного более убедительные результаты, чем
"честный однопроцессорный" Athlon XP.

В целом же можно констатировать, что… ничего не изменилось. Как стояли два ведущих
производителя x86 CPU друг напротив друга "поигрывая мускулами" два
последних года — так и стоят по-прежнему. То и дело кто-то вырывается вперед,
но, как правило — ненадолго. Технологическими нововведениями Intel нас радует
все же чаще — но в то же самое время достигнуть решающего перевеса в быстродействии
"на всех фронтах" они ей пока что не позволяют. В перспективе же все-таки
очень хочется увидеть от обеих компаний что-то более блещущее новизной,
чем поднятые частоты и/или увеличенный объем кэш-памяти. Intel готовит Pentium
4 "Prescott" с 800-мегагерцевой системной шиной и Hyper-Threading II.
AMD — Athlon 64 и Opteron на ядре следующего поколения (Hammer). Кому удастся
нас удивить сильнее — время покажет…

Продукты предоставлены

«Зачем нужна эта встройка? Дайте больше ядер, мегагерц и кэша! » - вопрошает и восклицает среднестатистический компьютерный пользователь. Действительно, когда в компьютере используется дискретная видеокарта, то необходимость в интегрированной графике отпадает. Признаюсь, я слукавил относительно того, что сегодня центральный процессор без встроенного видео тяжелее найти, чем с оным. Такие платформы есть - это LGA2011-v3 для чипов Intel и AM3+ для «камней» AMD. В обоих случаях речь идет о топовых решениях, а за них надо платить. Мейнстрим-платформы, такие как Intel LGA1151/1150 и AMD FM2+, поголовно оснащаются процессорами с интегрированной графикой. Да, в ноутбуках «встройка» незаменима. Хотя бы потому, что в режиме 2D мобильные компьютеры дольше работают от аккумулятора. В десктопах толк от интегрированного видео есть в офисных сборках и так называемых HTPC. Во-первых, мы экономим на комплектующих. Во-вторых, мы опять экономим на энергопотреблении. Тем не менее в последнее время AMD и Intel всерьез говорят о том, что их встроенная графика - всем графикам графика! Годится в том числе и для гейминга. Это мы и проверим.

Играем в современные игры на встроенной в процессор графике

300% прироста

Впервые встроенная в процессор графика (iGPU) появилась в решениях Intel Clarkdale (архитектура Core первого поколения) в 2010 году. Именно интегрированная в процессор. Важная поправка, так как само понятие «встроенное видео» образовалось гораздо раньше. У Intel - в далеком 1999 году с выходом 810-го чипсета для Pentium II/III. В Clarkdale интегрированное видео HD Graphics реализовали в виде отдельной микросхемы, размещенной под теплораспределительной крышкой процессора. Графика производилась по старому на тот момент времени 45-нанометровому техпроцессу, основная вычислительная часть - по 32-нанометровым нормам. Первыми решениями Intel, в которых блок HD Graphics «поселился» вместе с остальными компонентами на одном кристалле, стали процессоры Sandy Bridge.

Intel Clarkdale - первый процессор со встроенной графикой

С тех пор встроенная в «камень» графика для мейнстрим-платформ LGA115* стала стандартом де-факто. Поколения Ivy Bridge, Haswell, Broadwell, Skylake - все обзавелись интегрированным видео.

Встроенная в процессор графика появилась 6 лет назад

В отличие от вычислительной части, «встройка» в решениях Intel заметно прогрессирует. HD Graphics 3000 в настольных процессорах Sandy Bridge K-серии насчитывает 12 исполнительных устройств. У HD Graphics 4000 в Ivy Bridge - 16; у HD Graphics 4600 в Haswell - 20, у HD Graphics 530 в Skylake - 25. Постоянно растут частоты как самого GPU, так и оперативной памяти. В итоге производительность встроенного видео за четыре года увеличилась в 3-4 раза! А ведь есть еще гораздо более мощная серия «встроек» Iris Pro, которые используются в определенных процессорах Intel. 300% процентов за четыре поколения - это вам не 5% в год .

Производительность встроенной графики Intel

Встроенная в процессор графика - это тот сегмент, в котором Intel приходится поспевать за AMD. В большинстве случаев решения «красных» оказываются быстрее. Ничего удивительно в этом нет, ведь AMD разрабатывает мощные игровые видеокарты. Вот и во встроенной графике настольных процессоров используется та же архитектура и те же наработки: GCN (Graphics Core Next) и 28 нанометров.

Гибридные чипы AMD дебютировали в 2011 году. Семейство кристаллов Llano стало первым, в котором встроенная графика была совмещена с вычислительной частью на одном кристалле. Маркетологи AMD смекнули, что тягаться с Intel на ее условиях не получится, поэтому ввели термин APU (Accelerated Processing Unit, процессор с видеоускорителем), хотя идея вынашивалась «красными» еще с 2006 года. После Llano вышли еще три поколения «гибридников»: Trinity, Richland и Kaveri (Godavari). Как я уже говорил, в современных чипах встроенное видео архитектурно ничем не отличается от графики, используемой в дискретных 3D-ускорителях Radeon. В итоге в чипах 2015-2016 годов половина транзисторного бюджета расходуется именно на iGPU.

Современная встроенная графика занимает половину полезной площади центрального процессора

Самое интересное в том, что развитие APU повлияло на будущее… игровых приставок. Вот и в PlayStation 4 с Xbox One используется чип AMD Jaguar - восьмиядерный, с графикой на архитектуре GCN. Ниже приведена таблица с характеристиками. Radeon R7 - это самое мощное интегрированное видео, какое есть у «красных» на сегодняшний день. Блок используется в гибридных процессорах AMD A10. Radeon R7 360 - это дискретная видеокарта начального уровня, которую, согласно моим рекомендациям , можно считать в 2016 году условно игровой. Как видите, современная «встройка» в плане характеристик несильно уступает Low-end-адаптеру. Нельзя сказать, что и графика игровых приставок обладает выдающимися характеристиками.

Само по себе появление процессоров со встроенной графикой во многих случаях ставит крест на необходимости покупать дискретный адаптер начального уровня. Однако уже сегодня интегрированное видео AMD и Intel посягает на святое - игровой сегмент. Например, в природе существует четырехъядерный процессор Core i7-6770HQ (2,6/3,5 ГГц) на архитектуре Skylake. В нем задействованы встроенная графика Iris Pro 580 и 128 Мбайт памяти eDRAM в роли кэша четвертого уровня. Интегрированное видео насчитывает сразу 72 исполнительных блока, работающих на частоте 950 МГц. Это мощнее графики Iris Pro 6200, в которой используется 48 исполнительных устройств. В итоге Iris Pro 580 оказывается быстрее таких дискретных видеокарт, как Radeon R7 360 и GeForce GTX 750, а также в ряде случаев навязывает конкуренцию GeForce GTX 750 Ti и Radeon R7 370. То ли еще будет, когда AMD переведет свои APU на 16-нанометровый техпроцесс, а оба производителя со временем начнут использовать вместе со встроенной графикой память HBM/HMC .

Intel Skull Canyon - компактный компьютер с самой мощной встроенной графикой

Тестирование

Для испытания современной встроенной графики я взял четыре процессора: по два от AMD и Intel. Все чипы оснащены разными iGPU. Так, у гибридников AMD A8 (плюс A10-7700K) видео Radeon R7 идет с 384 унифицированными процессорами. У старшей серии - A10 - на 128 блоков больше. Выше у флагмана и частота. Есть еще серия A6 - в ней с графическим потенциалом совсем все грустно, так как используется «встройка» Radeon R5 с 256 унифицированными процессорами. Рассматривать ее для игр в Full HD я не стал.

Самой мощной встроенной графикой обладают процессоры AMD A10 и Intel Broadwell

Что касается продукции Intel, то в самых ходовых чипах Skylake Core i3/i5/i7 для платформы LGA1151 используется модуль HD Graphics 530. Как я уже говорил, он содержит 25 исполнительных устройств: на 5 больше, чем у HD Graphics 4600 (Haswell), но на 23 меньше, чем у Iris Pro 6200 (Broadwell). В тесте использовался младший четырехъядерник - Core i5-6400.

AMD A8-7670K AMD A10-7890K Intel Core i5-6400 (обзор) Intel Core i5-5675C (обзор)
Техпроцесс 28 нм 28 нм 14 нм 14 нм
Поколение Kaveri (Godavari) Kaveri (Godavari) Skylake Broadwell
Платформа FM2+ FM2+ LGA1151 LGA1150
Количество ядер/потоков 4/4 4/4 4/4 4/4
Тактовая частота 3,6 (3,9) ГГц 4,1 (4,3) ГГц 2,7 (3,3) ГГц 3,1 (3,6) ГГц
Кэш третьего уровня Нет Нет 6 Мбайт 4 Мбайт
Встроенная графика Radeon R7, 757 МГц Radeon R7, 866 МГц HD Graphics 530, 950 МГц Iris Pro 6200, 1100 МГц
Контроллер памяти DDR3-2133, двухканальный DDR3-2133, двухканальный DDR4-2133, DDR3L-1333/1600 двухканальный DDR3-1600, двухканальный
Уровень TDP 95 Вт 95 Вт 65 Вт 65 Вт
Цена 7000 руб. 11 500 руб. 13 000 руб. 20 000 руб.
Купить

Ниже расписаны конфигурации всех тестовых стендов. Когда речь заходит о производительности встроенного видео, то необходимо уделить должное внимание выбору оперативной памяти, так как от нее тоже зависит, сколько FPS покажет интегрированная графика в итоге. В моем случае использовались киты DDR3/DDR4, функционирующие на эффективной частоте 2400 МГц.

Тестовые стенды
№1: №2: №3: №4:
Процессоры: AMD A8-7670K, AMD A10-7890K; Процессор: Intel Core i5-6400; Процессор: Intel Core i5-5675C; Процессор: AMD FX-4300;
Материнская плата: ASUS 970 PRO GAMING/AURA;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт. Видеокарта: NVIDIA GeForce GTX 750 Ti;
Оперативная память: DDR3-1866 (11-13-13-35), 2x 8 Гбайт.
Материнская плата: ASUS CROSSBLADE Ranger; Материнская плата: ASUS Z170 PRO GAMING; Материнская плата: ASRock Z97 Fatal1ty Performance;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт. Оперативная память: DDR4-2400 (14-14-14-36), 2x 8 Гбайт. Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт.
Материнская плата: ASUS CROSSBLADE Ranger; Материнская плата: ASUS Z170 PRO GAMING;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт. Оперативная память: DDR4-2400 (14-14-14-36), 2x 8 Гбайт.
Материнская плата: ASUS CROSSBLADE Ranger;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт.
Операционная система: Windows 10 Pro x64;
Периферия: монитор LG 31MU97;
Драйвер AMD: 16.4.1 Hotfix;
Драйвер Intel: 15.40.64.4404;
Драйвер NVIDIA: 364.72.

Поддержка оперативной памяти для процессоров AMD Kaveri

Такие комплекты выбраны неспроста. Согласно официальным данным, встроенный контроллер памяти процессоров Kaveri работает с памятью DDR3-2133, однако материнские платы на чипсете A88X (за счет дополнительного делителя) поддерживают и DDR3-2400. Чипы Intel вкупе с флагманской логикой Z170/Z97 Express взаимодействуют и с более скоростной памятью, пресетов в BIOS заметно больше. Что касается тестового стенда, то для платформы LGA1151 использовался двухканальный кит Kingston Savage HX428C14SB2K2/16, который без каких-либо проблем работает в разгоне до 3000 МГц. В других системах задействовалась память ADATA AX3U2400W8G11-DGV.

Выбор оперативной памяти

Небольшой эксперимент. В случае с процессорами Core i3/i5/i7 для платформы LGA1151 применение более быстрой памяти для ускорения графики не всегда рационально. Например, для Core i5-6400 (HD Graphics 530) смена комплекта DDR4-2400 МГц на DDR4-3000 в Bioshock Infinite дала всего 1,3 FPS. То есть при заданных мною настройках качества графики производительность «уперлась» именно в графическую подсистему.

Зависимость производительности встроенной графики процессора Intel от частоты оперативной памяти

При использовании гибридных процессоров AMD ситуация выглядит лучше. Увеличение скорости работы ОЗУ дает более внушительный прирост FPS, в дельте частот 1866-2400 МГц мы имеем дело с прибавкой в 2-4 кадра в секунду. Думаю, использование во всех тестовых стендах оперативной памяти с эффективной частотой 2400 МГц - это рациональное решение. И более приближенное к реальности.

Зависимость производительности встроенной графики процессора AMD от частоты оперативной памяти

Судить о быстродействии интегрированной графики будем по результатам тринадцати игровых приложений. Я их условно разделил на четыре категории. В первую входят популярные, но нетребовательные ПК-хиты. В них играют миллионы. Поэтому такие игры («танки», Word of Warcraft, League of Legends, Minecraft - сюда же) не имеют права быть требовательными. Мы вправе ожидать комфортного уровня FPS при высоких настройках качества графики в разрешении Full HD. Остальные категории были просто разделены на три временных отрезка: игры 2013/14, 2015 и 2016 годов.

Производительность встроенной графики зависит от частоты оперативной памяти

Качество графики подбиралось индивидуально для каждой программы. Для нетребовательных игр - это преимущественно высокие настройки. Для остальных приложений (за исключением Bioshock Infinite, Battlefield 4 и DiRT Rally) - низкое качество графики. Все же тестировать будем встроенную графику в разрешении Full HD. Скриншоты с описанием всех настроек качества графики расположены в одноименной. Будем считать играбельным показатель в 25 кадр/с.

Нетребовательные игры Игры 2013/14 годов Игры 2015 года Игры 2016 года
Dota 2 - высокое; Bioshock Infinite - среднее; Fallout 4 - низкое; Rise of the Tomb Raider - низкое;
Diablo III - высокое; Battlefield 4 -среднее; GTA V - стандартное; Need for Speed - низкое;
StarCraft II - высоко. Far Cry 4 - низкое. XCOM 2 - низкое.
DiRT Rally - высокое.
Diablo III - высокое; Battlefield 4 -среднее; GTA V - стандартное;
StarCraft II - высоко. Far Cry 4 - низкое. «Ведьмак 3: Дикая Охота» - низкое;
DiRT Rally - высокое.
Diablo III - высокое; Battlefield 4 -среднее;
StarCraft II - высоко. Far Cry 4 - низкое.
Diablo III - высокое;
StarCraft II - высоко.

HD

Основная цель тестирования - изучить производительность встроенной графики процессоров в разрешении Full HD, но для начала разомнемся на более низком HD. Вполне комфортно в таких условиях чувствовали себя iGPU Radeon R7 (как для A8, так и A10) и Iris Pro 6200. А вот HD Graphics 530 со своими 25 исполнительными устройствами в ряде случаев выдавала совершенно неиграбельную картинку. Конкретно: в пяти играх из тринадцати, так как в Rise of the Tomb Raider, Far Cry 4, «Ведьмак 3: Дикая Охота», Need for Speed и XCOM 2 снижать качество графики уже некуда. Очевидно, что в Full HD интегрированное видео чипа Skylake ожидает полный провал.

HD Graphics 530 сливает уже в разрешении 720p

Графика Radeon R7, используемая в A8-7670K, не справилась с тремя играми, Iris Pro 6200 - с двумя, а встройка A10-7890K - с одной.

Результаты тестирования в разрешении 1280x720 точек

Интересно, что есть игры, в которых интегрированное видео Core i5-5675C серьезно обходит Radeon R7. Например, в Diablo III, StarCraft II, Battlefield 4 и GTA V. В низком разрешении сказывается не только наличие 48 исполнительных устройств, но и процессорозависимость. А также наличие кэша четвертого уровня. В то же время A10-7890K обошел своего оппонента в более требовательных Rise of the Tomb Raider, Far Cry 4, «Ведьмак 3» и DiRT Rally. Архитектура GCN хорошо проявляет себя в современных (и не очень) хитах.

Встроенный графический адаптер начального уровня Intel HD Graphics 2500дебютировал вместе с третьим поколением процессоров на основе микроархитектуры Core под кодовым названием Ivi Bridge. Наиболее часто он был интегрирован в настольные чипы серий Celeron, Pentium, i3 и даже i5. Именно об этом графическом решении и пойдет речь в нашем обзоре.

Причина появления рассматриваемого акселератора

Intel HD Graphics 2500, как и любой другой адаптер данного производителя, является интегрированным решением. Первоначально такие продукты подходили лишь для решения самых простых и наиболее нетребовательных задач. К их числу можно отнести различные офисные пакеты, медиаконтент и браузеры. Также на таком аппаратном обеспечении допускается запуск наиболее простых игрушек, к числу которых можно отнести пошаговые стратегии или логические приложения. Задумка менеджеров «Интел» в этом случае сводится к тому, что в большинстве вариантов для работы офисного компьютера достаточно возможностей видеоадаптера, встроенного в центральный процессор. Поэтому дополнительно приобретать дискретный ускоритель начального уровня в этом случае нет особого смысла. Как результат, последний класс устройств постепенно вытесняется интегрированными видеокартами. Но компании «Интел» и АМД на этом не остановились. Их встроенные акселераторы уже на равных сейчас конкурируют даже с ускорителями среднего класса. Ключевой фактор, который привел к появлению рассматриваемого графического решения — это снижение стоимости конечной вычислительной системы и повышение степени ее интеграции и функциональности. Именно эту задачу и решила компания «Интел» с помощью интеграции видеоадаптера на кристалл ЦПУ.

Назначение ускорителя

Как было отмечено ранее, основной сферой применения Intel HD Graphics 2500 являются офисные компьютеры, нацеленные на решение наиболее простых задач. В этом случае возможностей такого начального ускорителя вполне достаточно. Без особых проблем на таком «железе» пойдет "Офис", воспроизведение мультимедийных файлов, простые игры и интернет-серфинг. Но даже требовательные игрушки на таком аппаратном обеспечении могут вполне комфортно функционировать. Опять-таки, в последнем случае качество и детализация изображения должны быть снижены до уровня 1366Х768 или даже 800Х600. Поэтому рассматриваемый адаптер можно использовать в двух случаях:

    Офисные ПК с минимальными требованиями к быстродействию и производительности.

    Игровые системы начального уровня, на которых возможен запуск большей части современных игрушек, но с очень скромными параметрами изображения.

Характеристики чипа

По технологическому процессу с допусками 22 нм изготавливался видеоадаптер Intel HD Graphics 2500. Характеристикиего указывают на то, что диапазон его рабочих частот ограничен значениями 350-1150 МГц. В первом случае видеокарта работает в режиме простоя или минимальных нагрузок. Если запускается какое-то ресурсоемкое приложение, то частота автоматически повышается. Кодовое название данного интегрированного видеоконтроллера — GT1. В его состав входит 1,4 миллиона транзисторных компонентов, а площадь подложки составляет 160 мм 2 . Блоков растеризации в этом ускорителе всего 2, а графических процессоров — 6.

Подсистема памяти

Весьма скромными параметрами видеобуфера может похвастаться Intel HD Graphics 2500. Памятьдля хранения видеоинформации выделяется из состава системного ОЗУ. То есть тип оперативной памяти в этой ситуации идентичен той, которая установлена в ПК. Как правило, это DDR3 с частотами 800 или 1066 МГц. Можно устанавливать в ПК и более скоростные микросхемы, но работать они будут на максимально допустимой в данном случае частоте — 1066 МГц. Разрядность шины ОЗУ — 64 бита, а количество адресуемого ОЗУ ограничено 1,7 Гб. Последнее значение задается в БИОС и может быть принудительно уменьшено, при необходимости.

Пропускная способность данного видеобуфера заявлена производителем на уровне 29,9 Гбит/сек и по этому показателю данный ускоритель обходит множество дискретных акселераторов экономкласса. Хоть у них и отдельный видеобуфер, но частота микросхем памяти ниже, а разрядность шины — идентичная. Как результат, пропускная способность у них ниже, и это приводит к тому, что в тестах они в тестах проигрывают герою этой статьи. Дополнительно необходимо отметить компоновку данного решения. Кроме самого ускорителя и процессора, на этой же самой подложке находится северный мост чипсета со встроенным контроллером ОЗУ. Еще один важный момент — это наличие прямого доступа к 3-му уровню кеша у рассматриваемого адаптера. Поэтому даже в случае более высокой пропускной способности дискретная видеокарта вполне может в плане производительности проигрывать такому интегрированному решению по той причине, что взаимодействие GPU и CPU в этой ситуации оптимизировано и они расположены рядом, между ними нет каких-либо дополнительных компонентов. Вот и возникает вопрос целесообразности покупки дискретных продуктов экономкласса в такой ситуации, когда в наличии есть достаточная видеокарта, и ее приобретать отдельно нет нужды.

Синтетические тесты

Весьма неплохие результаты для встроенного решения показывает видеокарта Intel HD Graphics 2500в синтетически тестах. В качестве оппонентов ее наиболее правильно выбрать модели предыдущего поколения с индексами 2000 и 3000, а также Radeon HD моделей 6450 и 6570. В тесте 3DMark Vantage были набраны такие баллы:

    HD 6570 - 6049.

    HD 6450 - 2302.

    HD 2500 - 1579.

    HD 3000 - 1393.

    HD 2000 - 812.

Победа в этом тесте HD 6570 каких-либо вопросов не вызывает. Отдельный видеобуфер, высокие частоты и повышенная разрядность шины ОЗУ до 128 бит - это те факторы, которые позволяют ему без особых вопросов обойти любого конкурента в данном случае. На втором месте расположилась еще одна дискретная видеокарта HD 6450 от АМД. На третьем месте находится HD 2500, которая обходит предыдущего «флагмана» «Интел» - HD 3000. Ну и совсем скромный результат показывает HD 2000. В свою очередь, в тестовом пакете 3DMark 11 результаты получились в условных баллах такие:

    HD 6570 - 2247 .

    HD 6450 - 1046 .

    HD 2500 - 819 .

    HD 3000 - 0 .

    HD 2000 - 0 .

Расстановка сил в этом случае не изменилась. Единственное, что необходимо отметить, — это то, что адаптеры «Интел» предыдущего поколения не прошли тест в силу аппаратных ограничений.

Игровые приложения

Теперь проверим производительность в реальных приложениях Intel HD Graphics 2500. Тест в играхначнем с Batman Arkham City. Оппоненты у героя этого обзора те же самые, что при синтетических тестах абзацем ранее. В этой игре при разрешении 1366х768 и низком качестве изображения получаются такие результаты по количеству fps:

    HD 6570 - 91 .

    HD 6450 - 48 .

    HD 3000 - 33 .

    HD 2500 - 28 .

    HD 2000 - 20 .

Комфортный уровень играбельности обеспечивают в этом случае первые три видеокарты. А вот HD 2500 лишь чуть-чуть до этого не дотягивает. Возможно дальнейшее понижение разрешения до 1280х800 или же до 1024х768 позволит ему преодолеть минимальный порог в 30 fps. В Battlefield 3 ситуация значительно ухудшается и силы распределяются следующим образом в fps при тестировании в аналогичном режиме:

    HD 6570 - 38 .

    HD 6450 - 17 .

    HD 3000 - 11 .

    HD 2500 - 10 .

    HD 2000 - 7 .

Лишь только HD 6570 позволит поиграть в этом случае. Остальные адаптеры до минимально допустимых 30 fps уж точно не дотянут. В Dirt 3, в свою очередь, получаются такие результаты:

    HD 6570 - 62 .

    HD 6450 - 31 .

    HD 2500 - 29 .

    HD 3000 - 23 .

    HD 2000 - 20 .

Опять на границе играбельности герой этой статьи. Чуть похуже сделать картинку и игра пойдет во вполне комфортном режиме. В Far Cry 2 был получен такой FPS:

    HD 6570 - 83 .

    HD 6450 - 42 .

    HD 2500 - 31 .

    HD 3000 - 31 .

    HD 2000 - 21 .

Впервые HD 2500 превышает минимально допустимый порог. Расстановка сил не изменилась.

В какие игры можно с таким адаптером поиграть?

Теперь постараемся дать ответ для Intel HD Graphics 2500: «Какие игры потянет эта видеокарта?» В этот список попадает Far Cry 2 с 31 fps, низким качеством картинки и разрешением 1366х768. Также возможен запуск Dirt 3 и протестированная ранее версия Batman. Только в этом случае разрешение снизится до 1024х768. А вот Battlefield на таком «железе» уж точно не пойдет.

Выводы

Достаточно неплохие результаты для интегрированного ускорителя показал . Конечно, до полноценного игрового адаптера ему еще далеко. Но видно то, что «Интел» и в этом направлении усиленно работает. Не за горами то время, когда акселераторы этого производителя будут и с такими задачами справляться.



Рекомендуем почитать

Наверх