Системный блок athlon xp 1800 характеристика. AMD AthlonXP: производительность выше мегагерц! Производительность при обработке потоковых данных

Nokia 28.02.2019
Nokia

Представленную видеокарту можно назвать бюджетной. Она поддерживает Directx 11 версии, которая берёт своё начало в 2014 году. За основу создания этой видеокарты был взят GF117-это графическое ядро с 28-нанометровой архитектурой Fermi, к ядру производитель добавил 64-битную версию шины версии DDR3. Это дискретный графический ускоритель, несмотря на это, она позволяет запускать и даже играть в большинство игр, на данный момент, но такое возможно только не на максимальных настройках игр.

Технические характеристики

Графический процессор, под кодовым названием GF117. Производитель указал на то, что он базируется на кристалле с 28-нанометрровом техническим процессом. В эту дискретную видеокарту входят 96 шейдерных модулей на момент выпуска это была не плохая цифра для бюджетника. Количество блоков TMU составляет 16 штук, и на борту у этого агрегата всего 4 модуля ROP. Что можно сказать о тактовой частоте.

Видеопроцессор работает от 1438 МГц до 1908 МГц, но это не предел о разгоне мы поговорим чуть позже. В этой видеокарте Nvidia реализовало свою фирменную технологию по названию GPU Boost, она позволяет изменять тактовую частоту графического чипа в зависимости, от той работы которую он выполняет. Такая плюшка, даёт возможность экономить электрическое питания для других потребностей, тем самым позволяя ноутбуку более дольше проработать автономно. Что касаемо программного обеспечения, поддерживается технологии Direct-X 11 версии и OpenGL 4.5.

Энергопотребление NVIDIA GeForce 820M составляет 15 Вт. Она подойдёт для компактных ноутбуков с диагональю экрана от 13 дюймов. Вся линейка серии 820M способна включить режим Turbo, но только в том случае, если на вашем ноутбуке, есть дополнительная система охлаждения, она рассчитана на увеличение тепловыделения.

Комплектация видео карты представляет собой, 1-ГБ оперативной памяти (ОЗУ), а более расширенная версия данной модели, может достигать до 2-ГБ. На больше рассчитывать не приходится. Этот графический чип исключительно нацелен на применение памяти версии DDR-3.

Разрядность шины равна 64 бита, стандартные показателе для видеобуфера.

За те же деньги

Какие аналоги можно подобрать, если вы не большой поклонник фирмы или ваша материнка не будет нормально сотрудничать с этим чипсетом. Начнём с довольно известного производителя такой же продукции.

AMD - гибридные процессоры, оснащены мощной хотя и встроенной графической системой. Разница между данными видео ускорителями не значительна. Но если присмотреться, с дискретных решений от AMD можно выбрать Radeon модели R7 M360. Её с гордостью могут назвать прямым конкурентом 820M. Если сопоставить стоимость, то это графическое решение будет иметь более высокое быстродействие. Но что касается производительности, то эти две дискретные видеокарты идут ноздрю в ноздрю, и не хотят уступать друг-другу.

О таком производителе как «Интел», долго говорить не придётся, на что сразу хотелось бы обратить внимание, так это на то, что по уровню быстродействия видеокарта от NVidia модели 820M значительно превосходит по производительности подобную линейку от фирмы «Интел». К примеру, HD 4400 будет работать медленнее минимум в 2 раза, чем герой сегодняшнего обзора. Хотя HD Graphics 4400 довольно хорошо позиционирует себя, среди своих сородичей.

Ах как хочется мощнее

Если у вас закрались мысли чтобы заняться оверлокингом, то не стоит пробовать использовать данную модель видеокарты. Хотя и графический процессор GM117 так и манит чтобы его разогнали, но не стоит. Зачем вам пытаться вносить изменения в биосе. Эта графическая карта рассчитана бюджетные версии ноутбуков, так сказать для офисной работы и приложений.

Сам производитель включил функцию программного разгона, но она доступна только при условиях, которые были описаны выше. Пытаться разогнать данную дискретную видеокарту это тоже самое, что пытаться запихнуть двигатель болида в машину для инвалидов.

Что может быть точнее, чем цифры, не зря математику называют царицей наук. Первый тест, происходил с помощью программы 3DMark06. Её предназначение простое, она тестирует производительность и стабильность графической платы, а также даёт оценку производительности в условных единицах. Создателями, полюбившейся геймерам и оверлокерам программы, является
Futuremark.

С помощью данной утилиты, вы сможете получить точную и объективную оценку, без лишней информации. Во время тестирования запускается 4 этапа благодаря которым, мы узнаём: качество изображения отдельных 3D моделей.

Данную проверку прошла видеокарта NVIDIA GeForce 820M показав не плохие результаты в своей ценовой категории, дав при этом 8284 единицы на 3DMark06. Что касается 3DMark11 версии то цифры значительно упали и имеют значение 1253.

  • 3 DMark 06 — 8281
  • 3 DMark 11 — 1252
  • Cinebench R11.5 OpenGL — 29,7

Есть во что поиграть

Те кто желает поиграть в новые компьютерные игры могут идти покупать другую видео карту.
Особенно если играть вы планируете на максимальной графике предложенной создателями.

Результаты могут отличаться, всё завит от комплектации ноутбука и конфигурации настроек.

Заключение

GeForce 820M – можно назвать отличным выбором среди своей ценовой линейки, а именно бюджетной. С одной стороны, он не позволяет играть на максимальных настройках в играх, но даёт возможность запустить их и играть на минималках. Имеет неплохую автономность и доступную цену.

Дискретный графический ускоритель среднего класса для мобильных компьютеров — это Данная видеокарта была выпущена в начале 2014 года и пока еще продолжает быть актуальной. Наличие такого акселератора позволяет на ноутбуке запускать большинство игрушек даже сейчас, но не с максимальными настройками.

Ниша адаптера

На сегодняшний день ноутбуки в зависимости от возможностей графической подсистемы подразделяются следующим образом:

    Мобильные системы начального уровня с минимальным уровнем быстродействия, максимальной автономностью и демократической стоимостью. Как правило, в таких ПК используется интегрированная видеокарта. В этом случае ЭВМ позволяет лишь запустить наиболее простые и наименее требовательные игры.

    Ноутбуки среднего уровня в обязательном порядке оснащаются дискретной графической подсистемой, имеют уменьшенную автономность и более высокий уровень быстродействия, в сравнении с мобильными ПК начального уровня. При этом и стоимость существенно возрастает. Именно в основе таких вычислительных систем и лежит GeForce 820M.

    Наиболее производительные ноутбуки комплектуются высокопроизводительными графическими акселераторами. Стоимость при этом у них существенно возрастает, а вот автономность минимальна. Аппаратные параметры таких вычислительных систем позволяют решать любые задачи, в том числе и наиболее требовательные игрушки последнего поколения.

Спецификации графического ускорителя

GF117 - это кодовое обозначение графического процессора, установленного в GeForce 820M. Характеристики его указывают на то, что он базируется на архитектуре под кодовым названием «Ферми». Сам же полупроводниковый кристалл производится по нормам 28-нм техпроцесса. В состав такой дискретной графической системы входят 96 шейдерных модулей , 16 блоков TMU и лишь только 4 модуля ROP. Тактовая частота видеопроцессора может изменяться в диапазоне от 719 до 954 МГц, а блоки шейдеров, в свою очередь, могут работать от 1438 МГц до 1908 МГц. В этой видеокарте реализован фирменная технология NVidia под названием GPU Boost, которая позволяет изменять частоту графического чипа в зависимости от степени сложности решаемо й задачи и уровня нагрева полупроводникового кристалла. На программном уровне поддерживаются такие технологии, как Direct Х версии 11.0 и OpenGL 4.5.

Подсистема оперативной памяти

Базовая комплектация данного ускорителя имеет 1 Гб оперативной памяти, а более продвинутая версия GeForce 820M — 2Гб. Опять-таки, о наличии более скоростной GDDR5 в данном случае речи быть не может по той причине, что этот графический чип нацелен на применение DDR3. Как результат, контроллер ОЗУ имеет в этом случае сниженные частоты. Теоретически в связке с таким видеочипом можно использовать GDDR5, но прирост по быстродействию будет минимальным. Все равно пропускная способность подсистемы памяти будет ограничена максимальным значением на уровне DDR3.Разрядность шины видеобуфера у этого ускорителя — 64 бита, а частота памяти — 2000 МГц.

Тепловые параметры

Тепловой пакет в GeForce 820M равен 15 Вт. Соответственно, этот графический акселератор не нуждается в системе активного охлаждения и дополнительном питании со стороны блока питания. Но большинство производителей все же комплектуют такие ноутбуки активным охлаждением. Это делается с учетом того, что часто такие видеокарты разгоняются и, как результат, необходим дополнительный теплоотвод.

Аналоги

Сразу необходимо отметить, что по уровню быстродействия NVidia GeForce 820M превосходит по производительности любую от «Интел». Например, HD Graphics модели 4400 в 2,5 раза медленнее, чем герой данного обзора. Немножко другая ситуация с продукцией компании АМД. Ее гибридные процессоры оснащаются мощной встроенной графической подсистемой и разница в этом случае практически не ощущается. С дискретных решений этого производителя прямым конкурентом является Radeon модели R7 M360. При сопоставимом уровне стоимости это графическое решение имеет чуть более высокое быстродействие. По уровню производительности равны между собой R7 М360 и GeForce 820M. Характеристики у них очень схожие.

Введение

Многие начинающие оверклокеры столкнулись с проблемой разгона заблокированных в подложке Атлон ХР. Производились они с 39-й недели 2003 года. Модели с разблокированным множителем разогнать особой сложности не представляет, но мы рассмотрим заблокированный Атлон ХР 1800+ с маркировкой JIXIB0339SPDW, который попал в мои руки. Испробовал я все методы изменения множителя, но ничего не получалось. И тут мне попалась статья о переделке Атлон ХР в мобильный Атлон ХР. Но она была краткой и не совсем понятной для новичков в этом деле, поэтому в конференции появились просьбы дать более полную информацию по переделке, привести пример и провести испытания.

Изучив немало информации по этой теме в интернете, я решил написать эту статью. В ней я постараюсь дать наиболее полную и доступную информацию с примером по переделке Атлон ХР в мобильный Атлон ХР. Заранее прошу прощения за отсутствие фото переделанного процессора (не имею возможности). Вместо этого с помощью рисунков я попробую изобразить проделанный мною опыт.

Теоретический материал.

Наверное, не каждый знает, что при производстве процессоров вначале изготавливаются так называемые "заготовки" процессоров определенной частоты с замкнутыми мостиками. Причем "заготовки" мобильного Атлон ХР и обычного Атлон ХР ничем не отличаются. Затем, по надобности тех или иных процессоров, "заготовки" поступают на обработку. В чем она заключается? С помощью лазерного луча разрезаются определенные мостики и "заготовка" превращается в рабочий процессор. В какой? Все зависит от разрезанных мостиков.

Мною были рассмотрены мобильный и обычный Атлон ХР одинакового рейтинга. Отличались они комбинациями мостиков группы L5. А именно, у обычного Атлон ХР был разрезан мостик L5(2).

Экспериментальная часть.

То же я нашел на своем Атлон ХР 1800+. Но на нем мостики были скрыты под слоем лака и чтобы их соединить пришлось:

  1. Залить обычным (супер) клеем канавку, проделанную лазером, между контактами мостика, чтобы не заземлить их.
  2. Очистить контакты от лака (точки с помощью иголки) и соединить их токопроводящим лаком (можно клеем) предварительно обклеив место соединения скотчем.

Запустив процессор, мы получаем мобильный Атлон ХР с рейтингом и напряжением... Каким? Здесь все будет зависеть от комбинации мостиков L6 (отвечает за максимальный множитель) и L8 (отвечает за максимальное напряжение). При старте процессор будет работать на максимальном множителе и напряжении по комбинациям L6 и L8. Однако их можно изменить из Windows с помощью программ CPUMSR, CrystalCPU. Но здесь существует две проблемы:

  1. Множитель. Нужно выставлять множитель, с которым данный процессор может работать. Если выставить завышенный, то процессор может не запуститься, либо запуститься на меньшей частоте FSB.
  2. Напряжение. Если не изменить комбинацию мостиков L8, то процессор запуститься с высоким напряжением. Это может привести к?смерти? вашего процессора от перенапряжения.

Решение есть! С помощью приведенной ниже таблицы нужно определить значение множителя и напряжения (по комбинациям мостиков L6 и L8) и в случае необходимости изменить их.

Множитель

Напряжение (B)

Настольный

Мобильный

нет CPU

выключение

Эти проблемы характерны для материнских плат, которые не умеют изменять множитель и напряжение в БИОСе. Есть платы, которые умеют делать это и, по идее, проблем возникнуть не должно. Однако, у меня нет такой и проверку я не проводил.

Еще одна небольшая проблема. Не все чипы на материнских платах поддерживают мобильные типы процессоров. Вот список чипов, которые данную функцию поддерживают:

  • VIA: KT133A, KT133E (reg. 55, bit 2 = 1 for those two), KT266, KT266A, KT333 (reg. 95, bit 2 = 1 for those three), KT333CF, KT400, KT400A, KT600 (reg. D5, bit 2 = 1 for those four)
  • SiS: SiS730, SiS735, SiS745, SiS746, SiS748 Ali: M1647 (ALiMAGiK1)
  • Ati: Radeon IGP320 supported
  • nVidia: nForce 2 (reg. E7, bit 4 = FID_Change Detect; reg. 6F, bit 4 = Halt Disconnect)
  • AMD: AMD761 (reg. 44, bit 0 = 1).

Испытания.

Конфигурация моей системы:

  • Мать: K7S5A PRO (Elitgroup).
  • CPU: Athlon XP 1800+ (1533MHz) с маркировкой JIXIB0339SPDW.
  • RAM: 256 DDR Hynix (одной планкой).
  • Video: GeForce4 MX 440 8-x AGP.
  • NDD: Maxtor 4K040H2 5400об.

Причем мать не приспособлена для разгона, а БИОСе изменяется только частота FSB (100, 133, 166). Процессор заблокирован в подложке и изменить множитель через ножки и мостики L3 не удалось.

1). Соединяю мостик L5(2). Запускаю систему и получаю мобильный Атлон ХР 1700+ с напряжением 2.0В. Систему сразу же отключаю и обращаюсь к мостикам L6, L8 и таблице. Все мостики L6 и L8 замкнуты:

Это соответствует множителю 11х и напряжению 2.0В. Естественно с таким напряжением работать нельзя.

2). Изменяю напряжение, делая его стандартным для моего процессора (1.6В). Множитель оставляю 11х, что соответствует Athlon XP 1700+ (1460MHz) . Тестирую с помощью Sandra2004 производительность системы. Да, во всех тестах эталонный процессор1, предлагаемый Sandra2004, будет соответствовать моему оригинальному Athlon XP 1800+ (1533MHz).

Производительность системы во всех тестах снизилась.

3). Естественно этот результат оставляет желать лучшего, хотя меня не удивил. Делаю множитель 13.5х и в путь. Напоминаю, что все множители выставляю мостиками L6. Система стартует как Athlon XP 2200+ (1796MHz) с FSB 133. Тестирую производительность системы, которая должна увеличиться. Так оно и есть:

  • Арифметика - 15,5%,
  • Мультимедиа - 17%,
  • Связка процессор - чипсет - память - 2,8%.

5). Множитель ставлю 15х и запускаю. Стартует система как Athlon XP 2400+ (1992MHz). Неплохо. Тестирую Sandra2004:

Прирост производительности, по сравнению с оригиналом (что соответствует эталонному процессору1) составил приблизительно:

  • Арифметика - 28,5%.
  • Мультимедиа - 30%.
  • Связка процессор - чипсет - память - 3,8%.

И это не предел. Поставить 16х не решился. Не потому, что побоялся. Просто цель была другая. Нужно было разблокировать процессор и проверить, как он гонится (разные образцы будут вести себя по-разному). Обратите внимание, что почти во всех тестах связка процессор - чипсет - память прироста не дает, а 2-3% - это всего лишь погрешность теста. Причина этому чипсет и память, которые не дают возможности процессору полностью показать себя в этом тесте. И гнать процессор дальше особого смысла не имеет, т.к. скорость работы приложений не увеличится. Вот разве что играм лишние мегагерцы не помешают, хотя их уже и так много.

6). Возник вопрос: Сможет ли моя материнка запуститься с FSB 166MHz. Для этого множитель был понижен до 10х. Система не стартует. Делать множитель еще меньше не вижу смысла, т.к. производительность системы уменьшится даже с FSB 166MHz.

Вывод: Производительность системы возросла в среднем на 30%. Я смог поднять рейтинг процессора с 1800+ до 2400+ (частоту с 1533MHz до 1992MHz), но это еще не предел. В результате сэкономил около 25$.

Заключение.

Да, АМД заблокировала всеми любимые Атлоны, но не учла все мелочи. Переделка в мобильный - это пока единственный известный мне способ бороться с этой бедой. Способ несложный и, если учесть, что такой способ разгона осуществим на материнках без "особых" возможностей, он становится просто замечательным. Имея недорогую материнскую плату и недорогой Атлон ХР среднего рейтинга, Вы можете получить высокопроизводительную систему за небольшие деньги, используя свои мозги, руки и мои рекомендации. Дерзайте!!!

AMD Athlon XP 2600+ с 333-мегагерцевой системной шиной - сравнение с конкурентами

После довольно длительного перерыва экспертам нашей тестовой лаборатории наконец-то была предоставлена возможность оценить новую модель процессора компании AMD - AMD Athlon XP 2600+, работающего на 333-мегагерцевой системной шине.

о прежде чем перейти к рассмотрению нового процессора, попробуем восстановить хронологию событий, произошедших со времени нашего последнего обзора процессоров компании AMD (см. КомпьютерПресс № 7‘2002 «Процессор AMD Athlon 2100+, сравнение с предшественниками»). За это время произошло два знаменательных события, которые повлияли на дальнейшее развитие столь популярной среди пользователей линейки десктопных процессоров AMD Athlon XP, - это перевод технологического процесса на 0,13-микронные нормы и переход на 333-мегагерцовую системную шину. Теперь обо всем по порядку.

Уже в начале прошлого, 2002 года стало ясно, что частотный ресурс ядра Palomino, максимальная обеспечивающая стабильную работу частота которого, лишь немного превышала 1,7 ГГц, практически полностью исчерпан.

Именно поэтому последней моделью, созданной на основе очень удачного, но уже исчерпавшего свои ресурсы, ядра Palomino, выпускаемого по 0,18-микронной технологии, стал процессор AMD Athlon 2100+, реальная тактовая частота которого составила 1733 МГц. Исправить сложившееся положение и не потерять завоеванное в острой конкурентной борьбе положение на компьютерном рынке было возможно, лишь форсировав переход на более совершенный 0,13-микронный процесс. Переход на новый «тонкий» технологический процесс, позволил без внесения в архитектуру ядра каких-либо существенных изменений значительно расширить диапазон возможных тактовых частот, при этом уменьшив площадь ядра и снизив тепловыделения процессора. При этом, несмотря на отсутствие архитектурных изменений, предыдущее ядро Palomino было подвергнуто серьезной «перепланировке», что было вызвано в первую очередь причинами технологического характера. В результате новое процессорное ядро, получившее название Thoroughbred, было уменьшено более чем на треть (его площадь составила всего 80 кв.мм против 128 кв.мм у ядра Palomino), в то время как число транзисторов на кристалле осталось практически прежним (37,2 млн. - у ядра Thoroughbred и 37,5 млн. - у ядра Palomino). При этом удалось снизить напряжение питания процессорного ядра и тем самым уменьшить его тепловыделение (табл. 1).

Таблица 1

Рейтинг Частота, МГц Palomino Thoroughbred
V core, B Макс. Тепловыделение, Вт Типичное тепловыделение, Вт V core, B Макс. Тепловыделение, Вт Типичное тепловыделение, Вт
1700+ 1467 1,75 64,0 57,4 1,5 49,4 44.9
1800+ 1533 66,0 59,2 51,0 46.3
1900+ 1600 68,0 60,7 52,5 47.7
2000+ 1667 70,0 62,5 1,6 60,3 54.7
1,65
2100+ 1733 72,0 64,3 1,6 62,1 56.4
2200+ 1800 Нет Нет 1,65 67,9 61.7

Процессоры AMD Athlon XP, выполненные на ядре Thoroughbred, нетрудно отличить от их более ранних моделей на ядре Palomino даже визуально по вынесенным на верхнюю поверхность пассивным элементам и расположению маркировки, которая теперь наносится не на само ядро, а на диэлектрическое основание процессора (рис. 1).

Рис. 1. Маркировка процессоров AMD Athlon XP на ядре Thoroughbred

Рис. 2. Новый степинг процессорного ядра Thoroughbred

Еще раз хочется напомнить, что в обозначениях процессоров AMD Athlon XP указывается не реальная тактовая частота, а рейтинг, определяемый на основе результатов, показанных на следующем наборе тестов: Business Winstone 2001, Content Creation Winstone 2001, SYSmark 2001 (Office Productivity, Internet Content Creation), 3D WinBench 2000 (Hardware T&L и D3D software), 3DMark2001(Hardware T&L и D3D software), AquaMark, Dronez, Evolva, Expendable, Half-life Smokin‘, MDK2, QuakeIII, Serious Sam, Serious Sam: Second Encounter, Return to Castle Wolfenstein 3D, Unreal Tournament. В результате процессоры, имеющие разную тактовую частоту, но идентичную производительность, обозначаются одним и тем же номером (рейтингом), как, например, в случае процессоров AMD Athlon XP 2600+, работающих с системной шиной 266 и 333 МГц.

Рассмотрев основные изменения, которые претерпели процессоры AMD Athlon XP со времени нашего последнего тестирования, оценим производительность одной из топовых моделей этой линейки - процессора AMD Athlon XP 2600+ (реальная тактовая частота этого процессора равна 2083 МГц), работающего на 333-мегагерцовой системной шине. Для наглядности сравним его возможности с возможностями самого быстрого на сегодня x86-процессора - Intel Pentium 4 с тактовой частотой 3,06 ГГц с технологией Hyper-Threading. Конечно, более корректно было бы проводить сравнение старших моделей, но, к сожалению, в нашем распоряжении не оказалось процессора AMD Athlon XP 2800+. Тем не менее даже результаты тестирования процессора AMD Athlon XP 2600+ позволяют вскрыть слабые и сильные стороны двух конкурирующих архитектур.

Прежде чем перейти непосредственно к результатам нашего тестирования, попробуем сравнить внутреннюю архитектуру современных десктопных процессоров компаний Intel и AMD (табл. 2.)

Таблица 2

Процессор AMD Athlon XP Intel Pentium 4
Архитектура QuantiSpeed Intel Netburst
Поддержка технологии логической мультипроцессорности Intel Hyper-Threading
Количество целочисленных конвейеров 3 4 (2 работают с удвоенной тактовой частотой)
Количество конвейеров для выполнения операций с плавающей запятой 3 2
Кэш L1 128 Kбайт 12k µop (Trace-кэш) + 8 Kбайт (Кэш данных)
Кэш L2 256 Kбайт 512 Kбайт
Эффективный размер полноскоростного кэша 384Kбайт (эксклюзивный кэш) 512 Kбайт
Частота работы системной шины 266/333 МГц 400/533 МГц
Используемый набор SIMD-инструкций 3DNow! Professional Technology SSE2

Для проведения тестовых испытаний была использована следующая конфигурация тестового стенда:

  • процессор AMD Athlon XP 2600+ (частота FSB 166 МГц) или Intel Pentium 4 3,06 ГГц (частота FSB 133 МГц);
  • системная плата MSI K7N2 (nVIDIA nForce 2) для процессора AMD и MSI GBN Max (Intel E7205)
  • жесткий диск IBM IC35L020AVER07 20 Гбайт с файловой системой NTFS;
  • 512 Мбайт оперативной памяти (PC2700, Kingston, тайминги 2,5-2-2-6);
  • видеокарта ABIT Siluro Ti4200 OTES-64MB (GeForce4 Ti4200 + 64 Мбайт DDR SDRAM) с видеодрайвером Detonator 40.72 (разрешение 1024Ч768, глубина цвета 32 бит, Vsync - откл.).

Такой выбор материнских плат вовсе не случаен. При тестировании процессоров нам хотелось создать примерно идентичные по своим характеристикам системы, созданные на основе новейших моделей материнских плат. Именно по этой причине выбор пал на системные платы компании MSI, построенные на базе новейших чипсетов, поддерживающих работу с двухканальной DDR SDRAM-памятью. Хотя нужно отметить, что чипсет Intel E7205 позволяет использовать в качестве оперативной памяти модули DDR SDRAM спецификации PC1600 или PC2100, в то время как чипсет nVIDIA nForce2 дает возможность работать и с памятью PC2700 и PC3200. Поэтому справедливости ради отметим, что процессор Intel Pentium 4 тестировался с более медленной памятью PC2100, в то время как для процессора AMD были использованы модули памяти PC2700.

Тестирование проводилось под управлением операционной системы Microsoft Windows XP Service Pack 1, а кроме того, были установлены все необходимые обновления и драйверы для материнских плат.

В итоге проведенного тестирования были получены следующие результаты (табл. 3).

Таблица 3

Процессор AMD Athlon XP 2600+ Intel Pentium 4 3,06 ГГц
Материнская плата MSI K7N2 MSI GNB Max
Чипсет nForce2 E7205
Память, МГц 333 (2,5-2-2-6) 266 (2,5-2-2-6)
FSB, МГц 167,04 134,85
Коэф. умножения 12,5 23
Частота системной шины, МГц 334,09 539,38
Тактовая частота процессора, МГц 2088,06 3101,45
Частота шины памяти, МГц 334,09 269,7
SPEC ViewPerf 7.0 3dsmax-01 8,92 8,902
drv-08 56,15 47,12
dx-07 56,92 31,17
light-05 13,78 11,49
proe-01 12,6 12
ugs-01 4,905 4,92
WAV -> MP3 (RazorLame 1.1.5 + Lame 3.92), с 214 173
AVI -> MPEG4 (VirtualDub 1.4.10 + DIvX 5.0.2), с 630 508
Arh WinZip 8.1, с 304 275
WinAce v.2.2, с 1889 1958
MadOnion 3DMark 2001SE Hard 12 690 13 062
Soft 6447 6798
Unreal Tournament 2003 Demo dm-antalus 59,624 60,434
br-anubis 88,982 97,453
dm-asbestos 66,682 89,639
ctf-citadel 66,705 70,791
dm-antalus 172,385 176,603
dm-asbestos 219,377 240,921
ctf-citadel 158,625 154,47
3ds max 5 3dsmax_rays.max, с 34,9 26,9
CBALLS2.max, с 47,6 34,1
SinglePipe2.max, с 340,9 269,1
Underwater_Environment_Finished.max, сек 320,5 238,3
vol_light2.max, с 15,9 9,8
ScienceMark 2.0 Molecular Dynamics Benchmark, с 76,268 81,179
CPU RightMark (SSE) Math Solving Speed 270,9571 365,8277
Speed of Prerendering 557,5633 687,057
Speed of Rendering 116,387 148,4953
Overall fps 71,0421 91,548

Приведенные результаты тестирования позволяют сделать вывод о том, что несмотря на то, что тактовая частота работы процессора AMD Athlon XP 2600+ практически в полтора раза ниже, чем у процессора Intel Pentium 4 3,06ГГц, на целом ряде тестов эта модель компании AMD не только не уступает, но и превосходит по производительности процессор компании Intel. Однако не будем делать скоропалительные выводы, а попробуем проанализировать полученные результаты. При беглом взгляде на перечень проведенных тестов сразу же может возникнуть вопрос, почему в нем отсутствуют традиционные в таких случаях тесты - BAPCo SYSmark 2002 или аналогичные тесты Ziff Davis. Дело в том, что оценки этих тестовых пакетов специалистами компаний AMD и Intel не просто неоднозначны, а прямо-таки противоположены. Именно поэтому мы и решили отказаться от их использования для сравнительного тестирования. Что касается остальных результатов, то здесь сложилась следующая ситуация. Результаты тестирования сравниваемых процессоров с помощью утилиты SPEC ViewPerf 7.0 показали безоговорочное лидерство процессора AMD Athlon XP 2600+. Не принижая достоинств победителя, хочется отметить в этой связи, что такое положение вещей, на наш взгляд, все же связано с тем, что потенциал процессора Intel Pentium 4 3,06 ГГц в этом тесте просто не используется, ввиду неоптимизированности приложений, на базе которых был создан этот тест. Лучшим подтверждением сказанному могут послужить результаты, показанные тестируемыми процессорами при рендеринге тестовых графических сцен в приложении Discreet 3ds max 5, имеющем оптимизацию для процессоров AMD Athlon XP и Intel Pentium 4 (в том числе и для мультипроцессорных систем), где преимущество процессора Intel Pentium 4 3,06 ГГц было просто подавляющим. Аналогичное положение вещей наблюдалось и в отношении времени конвертирования эталонного wav-файла в mp3-файл (с помощью утилиты RazorLame 1.1.5 и кодека Lame 3.92) и эталонного MPEG-файла в MPEG4 (посредством утилиты VirtualDub 1.4.10 и кодека DIVx Pro 5.0.2). Оценка времени архивирования эталонного файла (установочная директория дистрибутива теста MadOnion SYSmark 2002) архиваторами WinZip 8.1 (с использование настроек по умолчанию) и WinAce 2.2 (при максимальном размере словаря 4096 Кбайт), дала ничейный результат. Если при использовании архиватора WinZip 8.1 лучший результат показал процессор компании Intel, то архивирование с помощью WinAce 2.2 выявило преимущество продукта от AMD. Игровой тест Unreal Tournament 2003 Demo явно остался за Pentium 4. Интересные результаты были получены нами в тестах, позволяющих оценить производительность процессора по результатам выполнения сложных ресурсоемких задач математического моделирования физических процессов - ScienceMark 2.0 и CPU RightMark. По результатам первого из перечисленных тестов, в ходе которого осуществляется расчет термодинамической модели атома аргона, лучшим оказался процессор AMD Athlon XP, во многом благодаря отличной работе блока FPU (блок работы с числами с плавающей запятой). И это несмотря на то, что тест ScienceMark 2.0, по утверждению его создателей, оптимизирован для работы не только с процессорами AMD, но и с Intel Pentium 4, поддерживая весь набор существующих SIMD-инструкций MMX, SSE, SSE2 и 3DNow! Professional. Кроме того, этот тест оптимизирован для мультипроцессорных систем, что должно было бы принести еще большие выгоды при использовании процессора Intel, поддерживающего технологию Hyper-Threading. А вот результаты, показанные тестируемыми процессорами на тесте CPU RightMark 2.0, моделирующем взаимодействие тел в вязкой среде, с учетом потерь на трение, с последующим программным рендерингом при визуализации модели, выявили полное преимущество процессора компании Intel. Отметим, что результаты, приведенные в таблице для процессора Intel Pentium 4 с тактовой частотой 3,06 ГГц, получены для случая оптимизации с использованием инструкций SSE2.

По итогам приведенного нами сравнения можно сделать очень приятный для нас вывод - интрига в противостоянии двух гигантов процессорного рынка сохраняется. И несмотря на стремительный технологический и мегагерцевой рывок компании Intel (речь идет только о технологиях, уже нашедших свое применение в серийных продуктах), ее основной конкурент - компания AMD - вовсе не собирается уступать завоеванные позиции. И это не может не радовать, так как честная конкурентная борьба еще более способствует скорейшему развитию передовых технологий и формированию на рынке оптимальных цен, что всегда на руку конечному пользователю, то есть нам с вами.

) мы уже писали: "…AMD явно "подустала" и начала сбавлять
обороты…". И вот, в начале года текущего эта компания выпустила продукт,
способный претендовать на звание нового — Athlon XP 3000+ на ядре Barton. Конечно,
это не долгожданный Hammer, но все же, все же… Для начала — необходимое (впрочем, немногословное) теоретическое введение. Итак
— ядро Barton. В roadmap компании оно было уже довольно давно, так что выход
процессоров на его основе ни для кого неожиданностью не стал. Правда, у многих
поклонников AMD возникло вполне обоснованное ощущение, что появились эти CPU на
рынке, мягко говоря, поздновато. Фактически единственным существенным нововведением,
которое присутствует в Barton, является увеличенный в два раза кэш второго уровня
— его размер вырос с 256 до 512 KB. К слову, напомним, что, как и во всех других
Athlon/Duron, L2-кэш этого процессора "эксклюзивный" (т. е. данные,
находящиеся в L1, не дублируются в L2), поэтому иногда сама AMD предпочитает говорить
не об объеме L1- и L2-кэша по отдельности, а указывать "общий объем кэшируемой
процессором информации", равный, соответственно, сумме объемов обоих кэшей
(в нашем случае 128 + 512 = 640 KB). Между прочим, если принять эту позицию, то
перед нами — десктопный процессор с самым большим кэшем из всех ныне существующих .
Что же касается системной шины с частотой 333 (166 DDR) MHz, то она уже применялась
ранее в CPU на ядре Thoroughbred, поэтому нововведением Barton считаться не может.
Несколько интереснее "почти официально подтвержденная" (так называют
вполне открытые высказывания, которым подчеркнуто не присваивают статуса "официальных")
информация о том, что впоследствии на ядре Barton будут выпущены процессоры с
частотой FSB 400 (200 DDR) MHz. Впрочем, с другой стороны, к тому времени мы почти
наверняка увидим 800 (200 Quad Pumped) MHz FSB на Pentium 4 "Prescott",
так что все "шинные" достижения AMD имеют вес больше "внутри ее
самой", чем по отношению ко всей индустрии x86 CPU. Однако это все в будущем,
а пока… Пока — все. 512 KB вместо 256 — "вот и весь Barton". Дополнительной
ложкой дегтя является то, что самый высокоиндексный процессор на этом ядре —
Athlon XP 3000+… имеют отнюдь не самую высокую частоту! Даже Athlon XP 2800+
на ядре Thoroughbred работает на частоте 2250 MHz, в то время как Athlon XP 3000+
"Barton" — на 2167 MHz. В связи с этим невольно придется еще раз остановиться
на том, что же это за цифры, которые AMD называет "моделью процессора",
и какое они имеют отношение к частоте… и ко всему прочему.

К частоте, как показывает день сегодняшний — однозначно никакого. Достаточно
вернуться к вышенаписанному — процессор с индексом 3000+ работает на частоте
ядра меньшей , чем модель с индексом 2800+. Более того — на самом деле
2800+ еще и "един в двух лицах", ибо существуют варианты как на ядре
Thoroughbred (256 KB L2-кэша, 2250 MHz), так и на ядре Barton (512 KB L2-кэша,
но уже 2083 MHz). Итак, мы видим, что либо AMD просто старательно запутывает нас
и саму себя… либо она инициирует все эти "непонятности" совершенно
осознанно и с определенной целью. Вариант запутывания мы все же склонны отбросить
— компания живет на рынке не первый год, и вряд ли могла бы себе позволить "расслабиться"
до такой степени. Значит, имеет место осознанная политика. И цель ее в общем-то
на поверхности — "выхолостить" отношение к частоте (да и к прочим физическим
характеристикам CPU), как к чему-то, связанному с производительностью. Быстродействие
ведь складывается из многих факторов — ширины и частоты процессорной шины, частоты
работы ядра, объемов кэшей первого и второго уровня, количества блоков различного
назначения (ALU, FPU, SIMD), длины конвейера… Официальная позиция AMD состоит
в том, что каждая новая модель CPU проходит тестирование на некоем наборе программного
обеспечения с целью определения ее быстродействия, после чего она получает соответствующий
индекс, который и обозначает ее производительность в неких условных единицах .
Выше индекс — быстрее процессор. А какие там частоты, шины и все такое прочее
— это, дескать пользователя интересовать не должно. В общем-то сама по себе позиция
не плохая и не хорошая, а просто "одна из". Успешность ее зависит в
основном от того, насколько "честным" окажется индекс и не поддастся
ли рано или поздно компания соблазну брать его "с потолка". Однако,
собственно говоря, именно для пресечения подобных попыток и существуют независимые
тестовые лаборатории, не так ли? Вот мы и полюбопытствуем насчет нового "юбилейного"
индекса Athlon XP 3000+…

Corsair XMS TWINX512-3200LL


Память на это тестирование нам досталась тоже весьма необычная (о чем,
впрочем, грех сожалеть, так как модули в своем роде уникальные). Набор
(да, да — именно набор!) TWINX512-3200LL — это пара из двух модулей DDR400 по
256 MB каждый, предназначенных, по заявлению производителя, специально для использования
в системах, оснащенных двухканальными контроллерами DDR SDRAM. Судить о том, что
скрывается за "спаренностью" этих DIMM (кроме того, что продаются они
только парами), мы, понятное дело, не можем — но предполагается, что модули проходят
специальный отбор на максимальное соответствие "тонких" таймингов именно
в рамках конкретной пары. Де-факто подтвердить это без специального оборудования
невозможно, гораздо проще идти "от противного", т. е. попытаться данное
утверждение опровергнуть, заставив один из модулей "заглючить" первым.
В таком случае мы можем с удовлетворением констатировать, что нам это не удалось .

Однако, кроме спаренности, с точки зрения "эстетствующих оверклокеров"
есть у Corsair TWINX еще одно достоинство — эти модули как бы "предразогнаны
на заводе". Выражается это в том, что все тайминги, прописанные в SPD, т.
е. устанавливаемые любой "честной" платой как параметры по умолчанию,
— уже "задраны" прямо на уровне установок по умолчанию (2-2-2-6, DRAM
Command rate = 1T, при этом у нас в режиме DDR333 модули TWINX работали стабильно
даже как 2-2-2-5). Этакий, знаете ли, получается "разгон для ленивых"
— даже экспериментировать ни с чем не нужно, просто выбрал в BIOS установку "By
SPD" — и подсистема памяти уже как на настоящей экстремально-оверклокерской
машине. Впрочем, есть одно "но", которое, с одной стороны, свидетельствует
о по-настоящему серьезном подходе компании к выпуску этих модулей, с другой же
— иногда может привести к неработоспособности системы. Дело в том, что стандартно
применяемое оверклокерами повышенное напряжение питания у них… тоже предустановлено
в SPD! И вот, видимо, из-за этого на одной из тестовых систем у нас и возникли
проблемы — плата Gigabyte GA-8SQ800 с Corsair TWINX стабильно работать почему-то
упорно не желала. Впрочем, ничего особенно страшного мы в этом не видим — даже
в узких рамках данного теста нормальное функционирование оверклокерской
по сути памяти на пяти системах из шести можно считать вполне приемлемым достижением.
К тому же любой маститый "разгонщик" компоненты своей системы всегда
подбирает очень тщательно, в том числе проверяя их на совместимость со всеми остальными
— это ведь даже не столько "проза жизни", сколько некий особый ритуал…

Методика тестирования

Данный материал знаменателен еще и тем, что является в некоторой степени "переходным", так как в нем впервые опробуется новая методика тестирования быстродействия процессоров, чипсетов и памяти. Разумеется, она еще будет частично пересматриваться и расширяться, однако в общих чертах представление о ней может быть получено уже на основании этой статьи. Аппаратная конфигурация тестовых стендов приведена в таблице, поэтому на ее описании мы подробно останавливаться не будем, тем более что принцип формирования был предельно прост: самым мощным процессорам — самую быструю память (в достаточном количестве) и самую скоростную видеокарту. Отдельно хотелось бы сказать о том, почему в паре с Athlon XP мы занижали частоту DDR SDRAM до 333 MHz. Как показала практика, при частоте работы памяти большей, чем у процессорной шины, быстродействие практически никогда не увеличивается, но, мало того — иногда уменьшается ! Так что чудес на этом свете по-прежнему не так уж и много, и справиться с последствиями асинхронности еще никому не удалось. Но вернемся к методике.

Конфигурации тестовых систем

Процессор Системная плата Чипсет Память
Athlon XP 3000+ MSI K7N2 NVidia nForce2 SPP 2 x 256 MB DDR400 Corsair TWINX
(в режиме DDR333)
EPoX EP-8RGA+ NVidia nForce2 IGP
Gigabyte GA-7VAXP Ultra KT400
Pentium 4 3,06 GHz Gigabyte GA-8SQ800 Ultra2 SiS 655 2 x 256 MB DDR400 Samsung
ASUS P4PE Intel i845PE 2 x 256 MB DDR400 Corsair TWINX
EPoX EP-4GEAE Intel i845GE

Скорость обращения к памяти и в обязательном порядке график латентности
исследовались с помощью программы Cachemem 2.65. К слову — ее "неидеальность"
нам в общем-то известна, но следует учитывать отсутствие разумных альтернатив
— пожалуй, в таком количестве и с такой точностью и повторяемостью ни один из
других известных нам бенчмарков памяти результаты не выдает. В качестве комплексного
теста быстродействия CPU (скорее — ALU), процессорного кэша и подсистемы памяти
выступает архиватор WinRAR 3.11, причем его результаты также представлены
в виде графика, где на оси X отложены различные размеры "словаря" —
от 64 до 4096 KB. Также мы все-таки вернулись к игровым тестам, в основном под
впечатлением "прожорливости" по отношению к процессору встроенного теста
Unreal Tournament 2003 в режиме Botmatch. Факультативно приводим
результаты "старого" и "нового" 3DMark , но в
будущем, по всей видимости, ограничимся специальным подтестом для CPU из состава
3DMark ’03 . Кодирование медиаданных пока представлено двумя кодеками
MP3 — наиболее популярным LAME последней версии и наиболее
"продвинутым" GOGO-no-coda , который поддерживает MMX/3DNow!/SSE/SSE2
и даже SMP. Профессиональный OpenGL традиционно олицетворяет тест SPEC ViewPerf
7.0, а за рендеринг пока что "в одиночку отдувается" LightWave
7.5
тестовая сцена, сделанная с учетом возможностей 3ds max 5.0, пока
еще находится в разработке. Также мы специально ввели один тест на "реальную
многозадачность" т. е. использующий более чем одно активно работающее приложение.
Им стал стандартный встроенный бенчмарк из UT 2003, исполняемый на фоне
кодирования WAV в MP3 с помощью кодека LAME. По окончании теста замеряются два
параметра — собственно показатели производительности, полученные в UT 2003, и
процент выполнения задания по кодированию медиаданных (т. е. сколько успела сделать
программа, работающая в фоновом режиме, пока проходил "основной" тест).

Gigabyte GA-8SQ800 Ultra2


Пожалуй, по количеству "наворотов на единицу площади" эту плату
следует причислить к чемпионам, по крайней мере если брать во внимание те, что
прошли через нашу Тестовую лабораторию. На стандартной площади ATX-формата Gigabyte
удалось разместить двухканальный UATA/133 IDE RAID на микросхеме ITE IT8212F (поддерживаются
стандартные для подобных устройств режимы 0, 1 и 0+1), двухканальный Serial ATA
RAID (аналогичной функциональности, на чипе Silicon Image Sil3112), контроллер
Gigabit Ethernet (на чипе Intel), фирменный Dual BIOS (две микросхемы Flash, одна
из которых служит для восстановления случайно или злонамеренно запорченной BIOS),
ну и "остальная функциональность согласно чипсету". Чипсет же, между
прочим, тоже неординарный — SiS 655. Этот новейший набор микросхем от SiS поддерживает
DDR-память вплоть до DDR400, и к тому же оснащен двухканальным контроллером ОЗУ!
Кстати, также это один из первых наборов микросхем не от Intel, в котором реализована
технология Hyper-Threading. О таких "мелочах", как поддержка шести портов
USB 2.0 и трех IEEE-1394 (FireWire), даже и упоминать как-то неудобно — понятно,
что для такой платы подобная функциональность является само собой разумеющейся.

Ну а завершает данный внушительный перечень весьма интересно реализованный блок
VRM — половина его не распаяна на основной площади, а вынесена на отдельную мини-плату,
устанавливаемую в специальный слот. У Gigabyte эта технология, пополнившая и так
немалый список "фирменных", носит название DPS — Dual Power System.
У кого-то может возникнуть вопрос — а зачем "умножать сущности сверх необходимого"
и делать VRM на отдельной плате? Первое (самое, пожалуй, разумное) предположение
звучит так: чтобы обеспечить более долгий жизненный цикл продукта. Действительно
— как показала практика, потребляемая процессорами мощность все равно растет,
даже несмотря на постоянное совершенствование техпроцесса. Вполне вероятно, что
через некоторое время рекорд 82-ваттного "чемпиона" Pentium 4 3,06 GHz
снова будет побит, и целая обойма системных плат сразу же останется "за кормой
прогресса". А вот для Gigabyte GA-8SQ800 все может оказаться совсем не так
плохо — теоретически внешний VRM заменяется на другой, более мощный. Нам пока
еще не известно, планирует ли компания обеспечивать подобный сервис для своих
пользователей, но предположение выглядит как минимум довольно логично. Также заслуживает
внимания очень интересное решение — планка для установки в один из свободных
слотов корпуса с выведенными на нее двумя разъемами Serial ATA и одним разъемом
питания. Фактически это позволяет подключить к машине обычный десктопный винчестер,
не разбирая корпуса. К слову, учитывая повальное использование подобного рода
устройств у нас в стране просто в качестве "больших дискет" — вполне
актуальная задумка. Правда — Serial ATA… Ну, что ж, будем надеяться, что скоро
такие диски станут ничуть не менее доступны, чем обычные (и очень хотелось бы,
чтобы в том числе по цене). В целом же, повторимся, плата супероснащенная .
Ну а о продемонстрированном чипсетом SiS 655 быстродействии — читайте в основном
материале.


Результаты тестов

Cachemem , как и всегда,
"развенчивает мифы и ниспровергает авторитеты": превосходство систем
на базе Pentium 4 в скорости чтения из памяти — штука уже давно известная, а
вот то, что в скорости записи даже самому быстрому SiS 655 с двухканальной DDR400
почти не уступает nForce2 — это в некотором роде сюрприз. Однако еще больше сюрпризов
несет график латентности: у nForce2 она самая низкая (что, напомним — очень хорошо),
а вот у SiS 655 настолько высока, что это наводит на грустные мысли. Большая скорость
линейного чтения и записи — это, конечно, здорово, но при высокой латентности
во многих программах она, что называется, "не спасает". В целом же по
скорости работы с памятью платформа Pentium 4 явно выигрывает, несмотря
на безусловно прекрасные показатели nForce2. Почему — тоже понятно: быстродействие
процессорной шины от чипсета не зависит, а 333 MHz на Socket A и 533 на Socket
478 — все-таки немного разные величины. А вот в реальной задаче — архивации
данных с помощью WinRAR — Athlon XP 3000+ в паре с nForce2 сумел
обойти все системы на основе Pentium 4 3,06 GHz. Можно предположить, что "виной"
тому именно латентность, которая у данного чипсета воистину потрясающе низкая.
Впрочем… латентность ли? Не стоит забывать, что там, где другие чипсеты вправе
уповать лишь на свои возможности быстро запросы обрабатывать , nForce2 может
попытаться их предугадать , ибо в его состав входит специальный механизм
DASP. А вот SiS 655 продемонстрировал в этом тесте, увы, ошарашивающе низкое
быстродействие.

Во всех без исключения игровых тестах — редкостное единодушие и практически полный паритет. Можно, конечно же, с глубокомысленным видом анализировать копеечное преимущество Athlon XP 3000+ в UT 2003 и 3DMark 2001SE и столь же мизерное его отставание в новом 3DMark ’03 , но делать этого явно не стоит, дабы не разводить "глубокую философию на мелких местах". Преобразование WAV -> MP3 дает схожую картину, но тут уже преимущество Pentium 4 хоть и невелико, но постоянно. Не поддерживающий ни SSE2, ни SMP кодек LAME практически ставит знак равенства между Athlon XP 3000+ и Pentium 4 3,06 GHz (выигрыш последнего — не более 5%), а вот SSE2/SMP-оптимизированный GOGO да еще и при включенной Hyper-Threading выводит Pentium 4 в однозначные лидеры.

В LightWave 7.5 командует парадом опять-таки Pentium 4, но в данном случае нас интересует больше даже не чей-то выигрыш или проигрыш, а поведение самого приложения. Легко заметить, что в отличие от LightWave 6.x, где максимальное количество потоков рендеринга имело смысл устанавливать даже на однопроцессорной системе, LW 7.5 ведет себя более разумно — если процессор один, то и наилучший результат наблюдается в случае с одним потоком. А вот если добавляется "виртуальный второй" (Pentium 4 + Hyper-Threading), то его вполне реально задействовать, и скорость даже немного растет. Производительность всех систем за исключением основанной на nForce2 в тесте SPEC ViewPerf настолько одинаковая, что мы смело можем подарить пальму первенства не столько процессору, сколько чипсету. Впрочем — так или иначе, и даже не важно за счет чего, но выиграл этот раунд все-таки Athlon XP 3000+.

А вот с одновременной "игрой" в Unreal Tournament и преобразованием WAV в MP3 все "честные однопроцессорные" системы (как Athlon XP 3000+, так и Pentium 4 3,06 GHz, если ему отключить поддержку Hyper-Threading) справляются намного хуже, чем "виртуально многопроцессорные". Пожалуй, это единственный по-настоящему серьезный "звоночек" для Athlon XP — ибо в данном случае Pentium 4 выигрывает у него не столько за счет "тупой мощи", сколько за счет использования передовой технологии — а это намного более "хлопотно" с точки зрения конкуренции всех будущих CPU от AMD с процессорами Intel.


Выводы

Они будут краткими — в очередной раз AMD все-таки смогла противопоставить
топовому продукту от Intel процессор, в среднем равный ему по производительности.
То есть несмотря на явно наличествующие проблемы с ростом частот, за счет увеличения
объема кэша этот раунд она сыграла "вничью". Можно предположить, что
еще некоторое количество времени паритет удастся сохранять, поднимая частоты Barton
(будем надеяться, что это получится). Пожалуй, единственным "облачком"
этого дня на безмятежном небосклоне AMD можно назвать работу систем в условиях
"истинной многозадачности", т. е. когда число активных процессов больше
одного, — здесь "виртуальная многопроцессорность" от Intel в лице технологии
Hyper-Threading демонстрирует все же намного более убедительные результаты, чем
"честный однопроцессорный" Athlon XP.

В целом же можно констатировать, что… ничего не изменилось. Как стояли два ведущих
производителя x86 CPU друг напротив друга "поигрывая мускулами" два
последних года — так и стоят по-прежнему. То и дело кто-то вырывается вперед,
но, как правило — ненадолго. Технологическими нововведениями Intel нас радует
все же чаще — но в то же самое время достигнуть решающего перевеса в быстродействии
"на всех фронтах" они ей пока что не позволяют. В перспективе же все-таки
очень хочется увидеть от обеих компаний что-то более блещущее новизной,
чем поднятые частоты и/или увеличенный объем кэш-памяти. Intel готовит Pentium
4 "Prescott" с 800-мегагерцевой системной шиной и Hyper-Threading II.
AMD — Athlon 64 и Opteron на ядре следующего поколения (Hammer). Кому удастся
нас удивить сильнее — время покажет…

Продукты предоставлены



Рекомендуем почитать

Наверх