Переместить курсор в конец строки. Как в Excel сделать перенос текста в ячейке. Как поменять перенос строки на пробел или наоборот в Excel с помощью VBA

Для Windows 04.04.2019
Для Windows

Глава 29 NFS: сетевая файловая система

Введение

В этой главе мы рассмотрим сетевую файловую систему ( NFS - Network File System), популярное приложение, которое предоставляет приложениям клиентов прозрачный доступ к файлам. Краеугольным камнем NFS является Sun RPC: вызов удаленной процедуры (Remote Procedure Call), что мы и опишем в первую очередь.

Программе клиента не требуется специальных средств, чтобы воспользоваться NFS. Ядро определяет что файл находится на NFS сервере и автоматически генерирует RPC вызов, для того чтобы получить доступ к файлу.

Мы не будем подробно рассматривать, как реализуется доступ к файлам, а рассмотрим, как при этом используются протоколы Internet, особенно UDP.

Вызов удаленной процедуры компании Sun

В большинстве случаев задачи сетевого программирования решаются путем написания программ приложений, которые вызывают функции, предоставляемые системой, чтобы осуществить конкретные сетевые операции. Например, одна функция осуществляет активное открытие TCP, другая пассивное открытие TCP, третья посылает данные по TCP соединению, четвертая устанавливает конкретные опции протокола (включает TCP таймер "оставайся в живых") и так далее. В разделе "Интерфейсы прикладного программирования" главы 1 мы упоминали, что существует два популярных набора функций для сетевого программирования (прикладной программный интерфейс, API), это сокеты и TLI. Программный интерфейс, используемый клиентом, и программный интерфейс, используемый сервером, могут отличаться, так же как и операционные системы, которые функционируют у клиента и сервера. Именно коммуникационный и прикладной протоколы определяют, сможет ли конкретный клиент общаться с сервером. Unix клиент, написанный на C, использующий сокеты в качестве программного интерфейса, и TCP - в качестве коммуникационного протокола, может общаться с сервером на мейнфрейме, написанным на COBOLе с использованием других API и TCP, если оба хоста подключены к сети и оба имеют реализацию TCP/IP.

Обычно клиент посылает серверу команды, а сервер отправляет клиенту отклики. Все рассмотренные нами приложения, - Ping, Traceroute, демоны маршрутизации, клиенты и сервера DNS, TFTP, BOOTP, SNMP, Telnet, FTP, SMTP - все построены именно таким образом.

RPC, вызов удаленной процедуры, реализует иной подход к сетевому программированию. Программа клиента просто вызывает функции в программе сервера. Так это решено с точки зрения программиста, однако в действительности имеет место следующая последовательность действий.

  1. Когда клиент вызывает удаленную процедуру, вызывается функция на локальном хосте, которая сгенерирована пакетом RPC. Эта функция называется client stub. client stub упаковывает аргументы процедуры в сетевое сообщение и отправляет сообщение серверу.
  2. server stub на хосте сервера получает сетевое сообщение. Аргументы извлекаются из сетевого сообщения, и осуществляется вызов процедуры сервера, написанной прикладным программистом.
  3. Функция сервера возвращает управление server stubу, который, в свою очередь, принимает полученные значения, упаковывает их в сетевое сообщение и отправляет сообщение обратно к client stub.
  4. client stub возвращает приложению клиента значения из сетевого сообщения.

Сетевое программирование, использующее stubы и библиотечные RPC подпрограммы использует интерфейсы прикладного программирования API (сокеты или TLI), однако пользовательские приложения (программа клиента и процедуры сервера, вызываемые клиентом) никогда не обращаются к API. Приложению клиента достаточно вызывать процедуру сервера, при этом все детали реализации спрятаны пакетом RPC, client stubом и server stubом.

Пакеты RPC имеют следующие положительные стороны.

  • Программирование становится легче, так как не приходится решать задачи сетевого программирования (а если и приходится, то совсем немного). Прикладные программисты просто пишут программу клиента и процедуры сервера, которые вызывает клиент.
  • Если используется ненадежный протокол, такой как UDP, все детали, а именно тайм-ауты и повторные передачи обрабатываются пакетом RPC. Это, в свою очередь, упрощает пользовательское приложение.
  • Библиотека RPC обрабатывает необходимое преобразование аргументов и возвращаемых значений. Например, если аргументы состоят из целых чисел и чисел с плавающей точкой, пакет RPC обработает все различия между представлением целых чисел и чисел с плавающей точкой на клиенте и сервере. Благодаря этому упрощается реализация клиентов и серверов для функционирования в разнородных средах.

Программирование RPC подробно описано в главе 18 . Два наиболее популярных RPC пакета это Sun RPC и RPC пакет в Open Software Foundation"s ( OSF) Distributed Computing Environment ( DCE). Мы рассмотрим, как осуществляется вызов процедуры, как выглядит возвращаемое сообщение и как это соотносится с пакетом Sun RPC, так как именно этот пакет используется в сетевой файловой системе. Версия 2 Sun RPC описана в RFC 1057 [ Sun Microsystems 1988a].

Существует два вида Sun RPC. Одна версия построена с использованием API сокет и работает с TCP и UDP. Другая называется TI-RPC (независимо от транспорта - transport independent), построена с использованием TLI API и работает с любыми транспортными уровнями, предоставляемыми ядром. С нашей точки зрения между ними нет никакой разницы, так как в этой главе мы рассматриваем только TCP и UDP.

На рисунке 29.1 показан формат сообщения вызова процедуры RPC, с использованием UDP.

Рисунок 29.1 Сообщения вызова процедуры RPC в формате UDP датаграммы.

Стандартные IP и UDP заголовки показаны раньше (рисунок 3.1 и рисунок 11.2). Все, что следует после UDP заголовка, определяется пакетом RPC.

Идентификатор транзакции ( XID - transaction ID) устанавливается клиентом и возвращается сервером. Когда клиент получает отклик, он сравнивает XID, возвращенный сервером, с XID отправленного запроса. Если они не совпадают, клиент отбрасывает сообщение и ожидает прихода следующего. Каждый раз, когда клиент выдает новый RPC, он меняет XID. Однако если клиент передает RPC повторно (если отклик не был получен), XID не меняется.

Переменная call равна 0 для вызова и 1 для отклика. Текущая версия RPC (RPC version) равна 2. Три следующие переменные, номер программы (program number), номер версии (version number) и номер процедуры (procedure number), идентифицируют конкретную процедуру, которая должна быть вызвана на сервере.

Полномочия (credentials) идентифицируют клиента. В некоторых примерах это поле остается незаполненным, а в других здесь можно встретить цифровой идентификатор пользователя и идентификатор группы к который он принадлежит. Сервер может заглянуть в полномочия и решить, обработать ли запрос или нет. Проверка (verifier) используется для защищенного RPC (Secure RPC), которое использует DES шифрование. Несмотря на то, что поля полномочий и проверки это поля с переменной длиной, их длина передается как часть поля.

Дальше следуют параметры процедуры. Их формат зависит от того, как приложение определяет удаленную процедуру. Как получатель (server stub) узнает размер параметров? Так как используется UDP, размер параметров можно рассчитать как размер UDP датаграммы минус длина всех полей вплоть до поля проверки. Когда вместо UDP используется TCP, понятия фиксированной длины не существует, так как TCP это поток байтов без разделителей записей. В подобном случае, между TCP заголовком и XID появляется 4-байтовое поле длины, из которого приемник узнает длину RPC вызова в байтах. Это позволяет, если необходимо, послать сообщение вызова RPC в нескольких TCP сегментах. (DNS использует подобную технику; упражнение 4 главы 14.)

На рисунке 29.2 показан формат RPC отклика. Он отправляется от server stub к client stub, когда удаленная процедура завершает свою работу.

Рисунок 29.2 Формат сообщения отклика процедуры RPC как UDP датаграмма.

XID вызова просто копируется в XID отклика. В поле reply находится 1, по этому полю проводится различие между вызовом и откликом. Поле статуса (status) содержит нулевое значение, если сообщение вызова было принято. (Сообщение может быть отброшено, если номер версии RPC не равен 2 или если сервер не может аутентифицировать клиента.) Поле проверки (verifier) используется в случае защищенного RPC, чтобы указать сервер.

В поле статуса приема (accept status) находится нулевое значение, если все нормально. Ненулевое значение может указывать, например, на неверный номер версии или неверный номер процедуры. Если вместо UDP используется TCP, то, как и в случае сообщения вызова RPC, между TCP заголовком и XID посылается 4-байтовое поле длины.

XDR: представление внешних данных

Представление внешних данных ( XDR - External Data Representation) это стандарт, используемый для кодирования значений в RPC вызове и отклике сообщениях - полей заголовка RPC (XID, номер программы, статус приема и так далее), параметров процедуры и результатов процедуры. Стандартный способ кодирования данных позволяет клиенту вызвать процедуру в системе с отличной архитектурой. XDR определен в RFC 1014 [ Sun Microsystems 1987].

XDR определяет определенное количество типов данных и точный способ того, как они передаются в RPC сообщении (порядок битов, порядок байтов и так далее). Отправитель должен построить RPC сообщение в XDR формате, тогда получатель конвертирует XDR формат в исходное представление. (В тот формат, который принят для его системы.) Мы видим, например, на рисунках 29.1 и 29.2, что все целые значения, которые мы показали (XID, вызов, номер программы и так далее), это 4-байтовые целые числа. И действительно, все целые в XDR занимают 4 байта. XDR поддерживает и другие типы данных, включая целые без знака, логические, числа с плавающей точкой, массивы фиксированной длины, массивы переменной длины и структуры.

Соответствие портов

Программы RPC сервера, содержащие удаленные процедуры, используют динамически назначаемые порты, а не заранее известные порты. Это требует "регистрации" в какой-либо форме, для того чтобы постоянно иметь информацию, какая динамически назначаемый порт использует та или иная RPC программа. В Sun RPC этот регистратор называется преобразователь портов (port mapper). (Port mapper - это сервер, который конвертирует номера RPC программ в номера портов протоколов DARPA. Этот сервер обязательно должен быть запущен, чтобы можно было исполнить RPC вызов.)

Термин "порт" (port) в названии происходит от номеров портов TCP и UDP, характеристики семейства протоколов Internet. Так как TI-RPC работает поверх любых транспортных уровней, а не только поверх TCP и UDP, название port mapper в системах, использующих TI-RPC ( SVR4 и Solaris 2.2, например), было преобразовано в rpcbind. Однако мы будем продолжать использовать более привычное - port mapper.

В действительности, сам преобразователь портов должен иметь заранее известный порт: UDP порт 111 и TCP порт 111. Преобразователь портов - это всего лишь программа RPC сервера. Он имеет номер программы (100000), номер версии (2), TCP порт 111 и UDP порт 111. Серверы регистрируют друг друга в преобразователе портов, используя RPC вызовы, а клиенты запрашивают преобразователь портов, используя RPC вызовы. Преобразователь портов предоставляет четыре процедуры сервера:

  1. PMAPPROC_SET. Вызывается RPC сервером при старте, чтобы зарегистрировать номер программы, номер версии и протокол в преобразователе портов.
  2. PMAPPROC_UNSET. Вызывается сервером, чтобы удалить ранее зарегистрированное преобразование.
  3. PMAPPROC_GETPORT. Вызывается RPC клиентом при старте, чтобы получить номер порта для заданного номера программы, номера версии и протокола.
  4. PMAPPROC_DUMP. Возвращает все пункты (номер программы, номер версии, протокол и номер порта) в базу данных преобразователя портов.

Когда стартует программа сервер RPC и позже, когда она вызывается программой клиента RPC, осуществляются следующие шаги.

  1. Преобразователь портов должен стартовать первым, обычно при загрузке системы. При этом создается конечная точка TCP и осуществляется пассивное открытие TCP порта 111. Также создается конечная точка UDP, которая находится в ожидании, когда на UDP порт 111 прибудет UDP датаграмма.
  2. При старте программа сервера RPC создает конечную точку TCP и конечную точку UDP для каждой поддерживаемой версии программы. (Программа RPC может поддерживать несколько версий. Клиент указывает требуемую версию при вызове процедуры сервера.) Динамически назначаемый номер порта закрепляется за каждой конечной точкой. (Нет никакой разницы, одинаковые ли номера портов TCP и UDP или разные.) Сервер регистрирует каждую программу, версию, протокол и номер порта, осуществляя удаленной вызов процедуры преобразователя портов PMAPPROC_SET.
  3. Когда стартует программа клиента RPC, она вызывает процедуру преобразователя портов PMAPPROC_GETPORT, чтобы получить динамически назначаемый номер порта для заданной программы, версии и протокола.
  4. Клиент отправляет сообщение вызова RPC на номер порта, полученный в пункте 3. Если используется UDP, клиент просто посылает UDP датаграмму, содержащую сообщение вызова RPC (рисунок 29.1), на номер UDP порта сервера. В ответ сервер отправляет UDP датаграмму, содержащую сообщение RPC отклика (рисунок 29.2). Если используется TCP, клиент осуществляет активное открытие на номер TCP порта сервера и затем посылает сообщение вызова RPC по соединению. Сервер отвечает сообщением отклика RPC по соединению.

Программа rpcinfo(8) печатает все текущие настройки преобразователя портов. (Здесь происходит вызов процедуры преобразователя портов PMAPPROC_DUMP.) Ниже показан обычный вывод:

Sun % /usr/etc/rpcinfo -p
program vers proto port
100005 1 tcp 702 mountd демон монтирования NFS
100005 1 udp 699 mountd
100005 2 tcp 702 mountd
100005 2 udp 699 mountd

100003 2 udp 2049 nfs сам NFS

100021 1 tcp 709 nlockmgr менеджер блокирования NFS
100021 1 udp 1036 nlockmgr
100021 2 tcp 721 nlockmgr
100021 2 udp 1039 nlockmgr
100021 3 tcp 713 nlockmgr
100021 3 udp 1037 nlockmgr

Мы видим, что некоторые программы поддерживают несколько версий, и каждая комбинация номера программы, номера версии и протокола имеет свою собственную раскладку номеров портов, обслуживаемую преобразователем портов.

Доступ к обеим версиям монтирующего демона можно получить через один и тот же номер TCP порта (702) и один и тот же номер UDP порта (699), однако каждая версия блокирующего менеджера имеет свой собственный номер порта.

Протокол NFS

NFS предоставляет клиентам прозрачный доступ к файлам и файловой системе сервера. Это отличается от FTP (глава 27), который обеспечивает передачу файлов. С помощью FTP осуществляется полное копирование файла. NFS осуществляет доступ только к тем частям файла, к которым обратился процесс, и основное достоинство NFS в том, что он делает этот доступ прозрачным. Это означает, что любое приложение клиента, которое может работать с локальным файлом, с таким же успехом может работать и с NFS файлом, без каких либо модификаций самой программы.

NFS это приложение клиент-сервер, построенное с использованием Sun RPC. NFS клиенты получают доступ к файлам на NFS сервере путем отправки RPC запросов на сервер. Это может быть реализовано с использованием обычных пользовательских процессов - а именно, NFS клиент может быть пользовательским процессом, который осуществляет конкретные RPC вызовы на сервер, который так же может быть пользовательским процессом. Однако, NFS обычно реализуется иначе, это делается по двум причинам. Во-первых, доступ к NFS файлам должен быть прозрачным для клиента. Поэтому, вызовы NFS клиента осуществляются операционной системой клиента от имени пользовательского процесса клиента. Во-вторых, NFS сервера реализованы внутри операционной системы для повышения эффективности работы сервера. Если бы NFS сервер являлся пользовательским процессом, каждый запрос клиента и отклик сервера (включая данные, которые будут считаны или записаны) должен пройти через разделитель между ядром и пользовательским процессом, что вообще довольно дорогое удовольствие.

В этом разделе мы рассмотрим версию 2 NFS, как она документирована в RFC 1094 [ Sun Microsystems 1988b]. Лучшее описание Sun RPC, XDR и NFS дано в [ X/Open 1991]. Подробности использования и администрирования NFS приведены в [ Stern 1991]. Спецификации версии 3 протокола NFS были реализованы в 1993 году, о чем мы поговорим в разделе этой главы.

На рисунке 29.3 показаны типичные настройки NFS клиента и NFS сервера. На этом рисунке необходимо обратить внимание на следующее.

  1. Клиенту безразлично, получает ли он доступ к локальному файлу или к NFS файлу. Ядро определяет это, когда файл открыт. После того как файл открыт, ядро передает все обращения к локальным файлам в квадратик, помеченный как "доступ к локальным файлам", а все ссылки на NFS файлы передаются в квадратик "NFS клиент".
  2. NFS клиент отправляет RPC запросы NFS серверу через модуль TCP/IP. NFS обычно использует UDP, однако более новые реализации могут использовать TCP.
  3. NFS сервер получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS может работать с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт 2049 жестко закреплен за NFS в большинстве реализаций.

Рисунок 29.3 Типичные настройки NFS клиента и NFS сервера.

  • Когда NFS сервер получает запрос от клиента, он передаются локальной подпрограмме доступа к файлу, которая обеспечивает доступ к локальному диску на сервере.
  • Серверу может потребоваться время, для того чтобы обработать запросы клиента. Даже доступ к локальной файловой системе может занять некоторое время. В течение этого времени сервер не хочет блокировать запросы от других клиентов, которые также должны быть обслужены. Чтобы справиться с подобной ситуацией, большинство NFS серверов запускаются несколько раз, то есть внутри ядра существует несколько NFS серверов. Конкретные методы решения зависят от операционной системы. В большинстве ядер Unix систем не "живет" несколько NFS серверов, вместо этого запускается несколько пользовательских процессов (которые обычно называются nfsd), которые осуществляют один системный вызов и остаются внутри ядра в качестве процесса ядра.
  • Точно так же, NFS клиенту требуется время, чтобы обработать запрос от пользовательского процесса на хосте клиента. RPC выдается на хост сервера, после чего ожидается отклик. Для того, чтобы пользовательские процессы на хосте клиента могли в любой момент воспользоваться NFS, существует несколько NFS клиентов, запущенных внутри ядра клиента. Конкретная реализация также зависит от операционной системы. Unix система обычно использует технику, напоминающую NFS сервер: пользовательский процесс, называемый biod, осуществляет один единственный системный вызов и остается внутри ядра как процесс ядра.
  • Большинство Unix хостов может функционировать как NFS клиент и как NFS сервер, или как и то и другое одновременно. Большинство PC реализаций (MS-DOS) имеют только реализации NFS клиента. Большинство IBM мейнфреймов предоставляет только функции NFS сервера.

    NFS в действительности - это нечто большее, чем просто NFS протокол. На рисунке 29.4 показаны различные программы RPC, которые используются с NFS.

    Приложение

    Номер программы

    Номер версии

    Количество процедур

    преобразователь портов
    NFS
    программа mount
    менеджер блокирования
    монитор статуса

    Рисунок 29.4 Различные RPC программы, используемые в NFS.

    Версии, которые мы показали на этом рисунке в виде единиц, найдены в таких системах как SunOS 4.1.3. Новые реализации предоставляют более новые версии некоторых программ. Solaris 2.2, например, также поддерживает версии 3 и 4 преобразователя портов и версию 2 демона mount. SVR4 также поддерживает версию 3 преобразователя портов.

    Демон монтирования вызывается на хосте NFS клиента, перед тем как клиент может получить доступ к файловой системе сервера. Мы опишем этот процесс ниже.

    Менеджер блокирования и монитор статуса позволяют клиенту заблокировать часть файлов, которые находятся на NFS сервере. Эти две программы не зависимы от протокола NFS, потому что блокирование требует идентификации клиента и на хосте клиента, и на сервере, а NFS сам по себе "безразличен". (Ниже мы скажем о безразличности NFS более подробно.) Главы 9, 10 и 11 [ X/Open 1991] документируют процедуры, которые используются менеджером блокирования и монитором статуса для блокирования в NFS.

    Описатели файлов

    Одна из основ NFS реализуется описателями файлов. Для обращения к файлу или директории на сервере объекта используется opaque. Термин opaque обозначает, что сервер создает описатель файла, передает его обратно клиенту, который клиент затем использует при обращении к файлу. Клиент никогда не просматривает содержимое описателя файла - его содержимое представляет интерес только для сервера.

    NFS клиент получает описатель файла каждый раз когда открывает файл, который в действительности находится на NFS сервере. Когда NFS клиент читает или пишет в этот файл (по поручению пользовательского процесса), описатель файла передается обратно серверу. Это указывает на то, что доступ к файлу был осуществлен.

    Обычно пользовательский процесс не работает с описателями файлов. Обмен описателями файлов осуществляют NFS клиент и NFS сервер. В версии 2 NFS описатель файла занимает 32 байта, а в версии 3 он вырос до 64 байт.

    Unix серверы обычно хранят в описателе файла следующую информацию: идентификатор файловой системы (major и minor номера устройства файловой системы), номер инода (i-node) (уникальный номер внутри файловой системы), номер поколения инода (номер, который изменяется каждый раз, когда инод повторно используется для другого файла).

    Протокол монтирования

    Клиент использует NFS протокол монтирования, чтобы смонтировать файловую систему сервера, перед тем как получить доступ к NFS файлам. Обычно это происходит при загрузке клиента. В результате клиент получает описатель файла файловой системы сервера.

    На рисунке 29.5 описана последовательность действий Unix клиента при исполнении команды mount(8).

    Рисунок 29.5 Протокол монтирования, используемый Unix командой mount.

    При этом осуществляются следующие шаги.

    1. При загрузке сервера на нем стартует преобразователь портов.
    2. После преобразователя портов на сервере стартует демон монтирования ( mountd). Он создает конечную точку TCP и конечную точку UDP, а также назначает каждой из них динамически назначаемый номер порта. Затем он регистрирует эти номера у преобразователя портов.
    3. Клиент исполняется команду mount, которая выдает RPC вызов на преобразователь портов сервера, чтобы получить номер порта от демона монтирования на сервере. Для обмена между клиентом и преобразователем портов могут быть использованы и TCP и UDP, однако обычно используется UDP.
    4. Преобразователь портов сообщает номер порта.
    5. Команда mount выдает RPC вызов демону монтирования, чтобы смонтировать файловую систему сервера. И снова может быть использован как TCP, так и UDP, однако обычно используется UDP. Теперь сервер может проверить "годность" клиента основываясь на его IP адресе и номере порта, чтобы убедиться, можно ли этому клиенту смонтировать указанную файловую систему.
    6. Демон монтирования откликается описателем файла указанной файловой системы.
    7. Команда mount клиента выдает системный вызов mount, чтобы связать описатель файла, полученный в шаге 5, с локальной точкой монтирования на хосте клиента. Описатель файла хранится в коде NFS клиента, и с этого момента любое обращение пользовательских процессов к файлам на файловой системе сервера будет использовать описатель файла как стартовую точку.

    Подобная реализация отдает весь процесс монтирования, кроме системного вызова mount на клиенте, пользовательским процессам, а не ядру. Три программы, которые мы показали - команда mount, преобразователь портов и демон монтирования - пользовательские процессы.

    В этом примере на хосте sun (NFS клиент) была исполнена команда

    sun # mount -t nfs bsdi:/usr /nfs/bsdi/usr

    Эта команда монтирует директорию /usr на хосте bsdi (NFS сервер) как локальную файловую систему /nfs/bsdi/usr. На рисунке 29.6 показан результат.

    Рисунок 29.6 Монтирование директории bsdi:/usr как /nfs/bsdi/usr на хосте sun.

    После чего при обращении к файлу /nfs/bsdi/usr/rstevens/hello.c на клиенте sun, происходит обращение к файлу /usr/rstevens/hello.c на сервере bsdi.

    Процедуры NFS

    NFS сервер предоставляет 15 процедур, которые мы сейчас опишем. (Числа, которые использованные при описании, не совпадают с номерами NFS процедур, так как мы сгруппировали их по функциональному признаку.) Несмотря на то что NFS разрабатывалась таким образом, чтобы работать между различными операционными системами, а не только между Unix системами, некоторые из процедур основаны именно на Unix функционировании, что, в свою очередь, может не поддерживаться другими операционными системами (например, жесткие линки, символические линки, групповое пользование, права доступа на исполнение и так далее). Глава 4 содержит дополнительную информацию о характеристиках файловых систем, некоторыми из которых пользуется NFS.

    1. GETATTR. Возвращает атрибуты файлов: тип файла (обычный файл, директория и так далее), права доступа, размер файла, владельца файла, время последнего обращения и так далее.
    2. SETATTR. Устанавливает атрибуты файла. Установлен может быть только определенный набор атрибутов: права доступа, владелец, групповое владение, размер, время последнего обращения и время последней модификации.
    3. STATFS. Возвращает статус файловой системы: размер свободного пространства, оптимальный размер для передачи и так далее. Используется, например, Unix командой df.
    4. LOOKUP. "Оценивает" файл. Эта процедура вызывается клиентом каждый раз, когда пользовательский процесс открывает файл, который находится на NFS сервере. Возвращается описатель файла, вместе с атрибутами файла.
    5. READ. Читает из файла. Клиент указывает описатель файла, начальное смещение в байтах и максимальное количество байтов, которое необходимо считать (до 8192).
    6. WRITE. Записывает в файл. Клиент указывает описатель файла, начальное смещение в байтах, количество байт, которое необходимо записать, и данные, которые необходимо записать.

      Требуется, чтобы NFS записи были синхронными (с ожиданием). Сервер не может ответить OK до тех пор, пока данные не были успешно записаны (и любая другая информация о файле, которая должна быть обновлена) на диск.

    7. CREATE. Создает файл.
    8. REMOVE. Удаляет файл.
    9. RENAME. Переименовывает файл.
    10. LINK. Делает жесткий линк на файл. Жесткий линк это Unix концепция, которая определяет, что конкретный файл на диске может иметь любое количество точек входа (имен, которые также называются жесткими линками), которые указывают на этот файл.
    11. SYMLINK. Создает символический линк на файл. Символический линк это файл, который содержит имя другого файла. Большинство операций, которые осуществляются над символическим линком (например, открытие), в действительности совершаются с тем файлом, на котороый указывает символический линк.
    12. READLINK. Чтение символического линка возвращает имя файла, на который указывает символический линк.
    13. MKDIR. Создает директорию.
    14. RMDIR. Удаляет директорию.
    15. READDIR. Читает директорию. Используется, например, Unix командой ls.

    В действительности, приведенные имена процедур начинаются с префикса NFSPROC_, который мы опустили.

    UDP или TCP?

    NFS был исходно написан, чтобы использовать UDP, и эту возможность предоставляют все производители. Однако, более новые реализации, также поддерживают TCP. Поддержка TCP используется для работы в глобальных сетях, которые становится все быстрее. Поэтому использование NFS в настоящее время уже не ограничено локальными сетями.

    Границы между локальными и глобальными сетями стираются, и все это происходит очень быстро. Времена возврата меняются в очень широком диапазоне, и все чаще возникает переполнение. Эти характеристики глобальных сетей приводят к тому, что все чаще в них используются алгоритмы, которые мы рассматривали для TCP - медленный старт и избежание переполнения. Так как UDP не предоставляет ничего похожего на эти алгоритмы, то они или им подобные должны быть встроены в NFS клиент и сервер, иначе необходимо использовать TCP.

    NFS поверх TCP

    Реализация NFS Berkeley Net/2 поддерживает как UDP, так и TCP. [ Macklem 1991] описывает эту реализацию. Давайте рассмотрим, чем отличается использование NFS при работе поверх TCP.

    1. Когда сервер загружается, он запускает NFS сервер, который осуществляет активное открытие на TCP порт 2049, ожидая прихода запроса на соединение от клиента. Это обычно делается в дополнение к обычному NFS UDP, который ожидает входящие датаграммы на UDP порте 2049.
    2. Когда клиент монтирует файловую систему сервера с использованием TCP, он осуществляет активное открытие на TCP порт 2049 на сервере. При этом устанавливается TCP соединение между клиентом и сервером для этой файловой системы. Если тот же самый клиент монтирует еще одну файловую систему на том же самом сервере, создается еще одно TCP соединение.
    3. И клиент, и сервер устанавливают TCP опцию "оставайся в живых" на своих концах соединения (глава 23). Это позволяет определить момент выхода из строя или перезагрузки того или иного участника обмена.
    4. Все приложения на клиенте, которые используют файловую систему сервера, делят одно и то же TCP соединение для этой файловой системы. Например, если была на рисунке 29.6, бы еще одна директория на bsdi, с именем smith, ниже директории /usr, обращения к файлам в /nfs/bsdi/usr/rstevens и /nfs/bsdi/usr/smith делили бы одно и то же TCP соединение.
    5. Если клиент определяет, что сервер вышел из строя или перезагрузился (после получения TCP ошибки "соединение закрыто по тайм-ауту" или "соединение закрыто хостом"), он старается повторно подсоединиться к серверу. Клиент осуществляет еще одно активное открытие, чтобы повторно установить TCP соединение для этой файловой системы. Любой запрос от клиента, для которого отработан тайм-аут на предыдущем соединении, повторно выдается на новое соединение.
    6. Если клиент вышел из строя, то же происходит и с приложениями, которые работали до выхода из строя. Когда клиент перезагружается, он, возможно, повторно смонтирует файловую систему сервера с использованием TCP, причем будет использовано другое TCP соединение с сервером. Предыдущее соединение между клиентом и сервером для этой файловой системы находится в полуоткрытом состоянии (сервер думает, что оно все еще открыто), однако так как сервер установил опцию "оставайся в живых", это полуоткрытое соединение будет закрыто, когда TCP сервер пошлет следующую пробу "оставайся в живых".

    Со временем и другие производители планируют начать поддержку NFS поверх TCP.

    Примеры NFS

    Давайте воспользуемся tcpdump, чтобы посмотреть, какие NFS процедуры привлекаются клиентом для обычных операций с файлом. Когда tcpdump определяет, что UDP датаграмма содержит RPC вызов (call равен 0 на рисунке 29.1) с портом назначения 2049, он декодирует датаграмму как NFS запрос. Точно так же, если UDP датаграмма содержит RPC отклик (reply равен 1 на рисунке 29.2) с портом источника равным 2049, он декодирует датаграмму как NFS отклик.

    Простой пример: чтение файла

    В первом примере мы скопируем файл, находиться на NFS сервере, на терминал с использованием команды cat(1):

    Sun % cat /nfs/bsdi/usr/rstevens/hello.c копирование файла на терминал
    main()
    {
    printf ("hello, world\n");
    }

    Файловая система /nfs/bsdi/usr на хосте sun (NFS клиент) в действительности является файловой системой /usr на хосте bsdi (NFS сервер), как показано на рисунке 29.6. Ядро sun определяет это, когда cat открывает файл и использует NFS для доступа к файлу. На рисунке 29.7 показан вывод команды tcpdump.

    1 0.0 sun.7aa6 > bsdi.nfs: 104 getattr
    2 0.003587 (0.0036) bsdi.nfs > sun.7aa6: reply ok 96

    3 0.005390 (0.0018) sun.7aa7 > bsdi.nfs: 116 lookup "rstevens"
    4 0.009570 (0.0042) bsdi.nfs > sun.7aa7: reply ok 128

    5 0.011413 (0.0018) sun.7aa8 > bsdi.nfs: 116 lookup "hello.c"
    6 0.015512 (0.0041) bsdi.nfs > sun.7aa8: reply ok 128

    7 0.018843 (0.0033) sun.7aa9 > bsdi.nfs: 104 getattr
    8 0.022377 (0.0035) bsdi.nfs > sun.7aa9: reply ok 96

    9 0.027621 (0.0052) sun.7aaa > bsdi.nfs: 116 read 1024 bytes @ 0
    10 0.032170 (0.0045) bsdi.nfs > sun.7aaa: reply ok 140

    Рисунок 29.7 Функционирование NFS при чтении файла.

    Команда tcpdump декодирует NFS запрос или отклик, также она печатает поле XID для клиента, вместо номера порта. Поле XID в строках 1 и 2 равно 0x7aa6.

    Имя файла /nfs/bsdi/usr/rstevens/hello.c обрабатывается функцией открытия в ядре клиента по одному элементу имени за раз. Когда функция открытия достигает /nfs/bsdi/usr, она определяет, что это точка монтирования файловой системы NFS.

    В строке 1 клиент вызывает процедуру GETATTR, чтобы получить атрибуты директории сервера, которую смонтировал клиент (/usr). Этот RPC запрос содержит 104 байта данных, помимо IP и UDP заголовков. Отклик в строке 2 возвращает OK и содержит 96 байт данных, помимо IP и UDP заголовков. Мы видим на этом рисунке, что минимальное NFS сообщение содержит примерно 100 байт данных.

    В строке 3 клиент вызывает процедуру LOOKUP для файла rstevens и получает отклик OK в строке 4. LOOKUP указывает имя файла rstevens и описатель файла, который был сохранен ядром, когда монтировалась удаленная файловая система. Отклик содержит новый описатель файла, который используется в следующем шаге.

    В строке 5 клиент осуществляет LOOKUP файла hello.c с использованием описателя файла из строки 4. Он получает другой описатель файла в строке 6. Этот новый описатель файла как раз то, что клиент использует в строках 7 и 9, чтобы обратиться к файлу /nfs/bsdi/usr/rstevens/hello.c. Мы видим, что клиент осуществляет LOOKUP для каждого компонента имени в пути к открываемому файлу.

    В строке 7 клиент еще раз исполняет GETATTR, затем следует READ в строке 9. Клиент запрашивает 1024 байта, начиная со смещения равного 0, однако получает данных меньше чем 1024 байта. (После вычитания размеров RPC полей и других значений, возвращенных процедурой READ, в строке 10 возвращаются 38 байт данных. Это как раз размер файла hello.c.)

    В этом примере пользовательский процесс ничего не знает об этих NFS запросах и откликах, которые осуществляются ядром. Приложение всего лишь вызывает функцию открытия ядра, которая вызывает обмен 3 запросами и 3 откликами (строки 1-6), а затем вызывает функцию чтение ядра, которая вызывает 2 запроса и 2 отклика (строки 7-10). Для приложения клиента, файл, находящийся на NFS сервере, прозрачен.

    Простой пример: создание директории

    В качестве еще одного примера сменим рабочую директорию на директорию, которая находится на NFS сервере, а затем создадим новую директорию:

    Sun % cd /nfs/bsdi/usr/rstevens меняем рабочую директорию
    sun % mkdir Mail создаем директорию

    На рисунке 29.8 показан вывод команды tcpdump.

    1 0.0 sun.7ad2 > bsdi.nfs: 104 getattr
    2 0.004912 (0.0049) bsdi.nfs > sun.7ad2: reply ok 96

    3 0.007266 (0.0024) sun.7ad3 > bsdi.nfs: 104 getattr
    4 0.010846 (0.0036) bsdi.nfs > sun.7ad3: reply ok 96

    5 35.769875 (35.7590) sun.7ad4 > bsdi.nfs: 104 getattr
    6 35.773432 (0.0036) bsdi.nfs > sun.7ad4: reply ok 96

    7 35.775236 (0.0018) sun.7ad5 > bsdi.nfs: 112 lookup "Mail"
    8 35.780914 (0.0057) bsdi.nfs > sun.7ad5: reply ok 28

    9 35.782339 (0.0014) sun.7ad6 > bsdi.nfs: 144 mkdir "Mail"
    10 35.992354 (0.2100) bsdi.nfs > sun.7ad6: reply ok 128

    Рисунок 29.8 Функционирование NFS при смене директории (cd) на NFS директорию, а затем создание директории (mkdir).

    При смене директории клиент вызывает процедуру GETATTR дважды (строки 1-4). Когда мы создаем новую директорию, клиент вызывает процедуру GETATTR (строки 5 и 6), затем LOOKUP (строки 7 и 8, чтобы проверить, что такой директории не существует), затем MKDIR, чтобы создать директорию (строки 9 и 10). Отклик OK в строке 8 не означает, что директория существует. Он просто означает, что процедура вернула какое-то значение. tcpdump не интерпретирует значение, возвращаемое NFS процедурами. Команда просто печатает OK и количество байт данных в отклике.

    Безразличность

    Одна из характеристик NFS (критики NFS называют это бородавкой, а не характеристикой) заключается в том, что NFS сервер безразличен. Сервер не заботится о том, какие клиенты получают доступ и к каким файлам. Заметьте, что в списке NFS процедур, показанных ранее, нет процедуры открытия или закрытия. Процедура LOOKUP напоминает открытие, однако сервер никогда не знает, осуществил ли клиент обращение к файлу, после того как был сделан LOOKUP.

    Причина такого "безразличного поведения" заключается в том, чтобы упростить восстановление после выхода из строя сервера, после того как он сломался и перезагрузился.

    Пример: выход сервера из строя

    В следующем примере мы читаем файл с NFS сервера, когда сервер выходит из строя и перезагружается. Это покажет как "безразличность" сервера позволяет, клиенту "не знать" о том, что сервер вышел из строя. Все то время, пока сервер сломался и перезагружается, клиент не знает о проблеме, и приложение клиента работает так же, как и раньше.

    На клиенте sun мы стартовали cat с очень большим файлом в качестве аргумента (/usr/share/lib/termcap на NFS сервере svr4), отсоединили Ethernet кабель в процессе передачи, выключили и перезагрузили сервер и затем снова подсоединили кабель. Клиент был сконфигурирован таким образом, чтобы читать 1024 байта за одно NFS чтение. На рисунке 29.9 показан вывод tcpdump.

    Строки 1-10 соответствуют открытию файла клиентом. Эта операция напоминает ту, что показана на рисунке 29.7. В строке 11 мы видим первое чтение (READ) из файла 1024-х байт данных; отклик возвратился в строке 12. Это продолжается до строки 129 (чтение READ по 1024 байта и затем отклик OK).

    В строках 130 и 131 мы видим два запроса, которые отработаны по тайм-ауту и повторно переданы в строках 132 и 133. Первый вопрос: мы видим два запроса на чтение, один начинается со смещения 65536, а другой начинается со смещения 73728, почему? Ядро клиента определило, что приложение клиента осуществляет последовательное считывание, и постаралось получить блоки данных заранее. (Большинство Unix ядер осуществляют это чтение вперед (read-ahead).) Ядро клиента также запустило несколько NFS демонов блочного ввода-вывода (I/O) (biod процессы), которые стараются сгенерировать несколько RPC запросов от имени клиента. Один демон считывает 8192 байта, начиная с 65536 (в 1024-байтных цепочках), а другие осуществляют чтение вперед по 8192 байта, начиная с 73728.

    Повторные передачи клиента появляются в строках 130-168. В строке 169 мы видим, что сервер перезагрузился, и послал ARP запрос перед тем, как откликнуться на NFS запрос клиента из строки 168. Отклик на строку 168 посылается в строке 171. Запросы клиента на чтение (READ) продолжаются.

    1 0.0 sun.7ade > svr4.nfs: 104 getattr
    2 0.007653 (0.0077) svr4.nfs > sun.7ade: reply ok 96

    3 0.009041 (0.0014) sun.7adf > svr4.nfs: 116 lookup "share"
    4 0.017237 (0.0082) svr4.nfs > sun.7adf: reply ok 128

    5 0.018518 (0.0013) sun.7ae0 > svr4.nfs: 112 lookup "lib"
    6 0.026802 (0.0083) svr4.nfs > sun.7ae0: reply ok 128

    7 0.028096 (0.0013) sun.7ae1 > svr4.nfs: 116 lookup "termcap"
    8 0.036434 (0.0083) svr4.nfs > sun.7ae1: reply ok 128

    9 0.038060 (0.0016) sun.7ae2 > svr4.nfs: 104 getattr
    10 0.045821 (0.0078) svr4.nfs > sun.7ae2: reply ok 96

    11 0.050984 (0.0052) sun.7ae3 > svr4.nfs: 116 read 1024 bytes @ 0
    12 0.084995 (0.0340) svr4.nfs > sun.7ae3: reply ok 1124

    Считывание

    128 3.430313 (0.0013) sun.7b22 > svr4.nfs: 116 read 1024 bytes @ 64512
    129 3.441828 (0.0115) svr4.nfs > sun.7b22: reply ok 1124

    130 4.125031 (0.6832) sun.7b23 >
    131 4.868593 (0.7436) sun.7b24 >

    132 4.993021 (0.1244) sun.7b23 > svr4.nfs: 116 read 1024 bytes @ 65536
    133 5.732217 (0.7392) sun.7b24 > svr4.nfs: 116 read 1024 bytes @ 73728

    134 6.732084 (0.9999) sun.7b23 > svr4.nfs: 116 read 1024 bytes @ 65536
    135 7.472098 (0.7400) sun.7b24 > svr4.nfs: 116 read 1024 bytes @ 73728

    136 10.211964 (2.7399) sun.7b23 >
    137 10.951960 (0.7400) sun.7b24 >

    138 17.171767 (6.2198) sun.7b23 > svr4.nfs: 116 read 1024 bytes @ 65536
    139 17.911762 (0.7400) sun.7b24 > svr4.nfs: 116 read 1024 bytes @ 73728

    140 31.092136 (13.1804) sun.7b23 > svr4.nfs: 116 read 1024 bytes @ 65536
    141 31.831432 (0.7393) sun.7b24 > svr4.nfs: 116 read 1024 bytes @ 73728

    142 51.090854 (19.2594) sun.7b23 > svr4.nfs: 116 read 1024 bytes @ 65536
    143 51.830939 (0.7401) sun.7b24 > svr4.nfs: 116 read 1024 bytes @ 73728

    144 71.090305 (19.2594) sun.7b23 > svr4.nfs: 116 read 1024 bytes @ 65536
    145 71.830155 (0.7398) sun.7b24 > svr4.nfs: 116 read 1024 bytes @ 73728

    Повторные передачи

    167 291.824285 (0.7400) sun.7b24 > svr4.nfs: 116 read 1024 bytes @ 73728
    168 311.083676 (19.2594) sun.7b23 > svr4.nfs: 116 read 1024 bytes @ 65536

    Сервер перезагрузился

    169 311.149476 (0.0658) arp who-has sun tell svr4
    170 311.150004 (0.0005) arp reply sun is-at 8:0:20:3:f6:42

    171 311.154852 (0.0048) svr4.nfs > sun.7b23: reply ok 1124

    172 311.156671 (0.0018) sun.7b25 > svr4.nfs: 116 read 1024 bytes @ 66560
    173 311.168926 (0.0123) svr4.nfs > sun.7b25: reply ok 1124
    считывание

    Рисунок 29.9 Считывание файла клиентом, когда NFS сервер вышел из строя и перезагрузился.

    Приложение клиента никогда не узнает, что сервер выходил из строя и перезагружался, за исключением того, что между строками 129 и 171 была 5-минутная пауза, таким образом, выход из строя сервера прозрачен для клиента.

    Чтобы оценить продолжительность тайм-аутов при повторных передачах в этом примере, представьте, что существуют два демона клиента, каждый со своими собственными тайм-аутами. Интервалы для первого демона (читающего со смещения 65536) примерно следующие (округлено до двух знаков после запятой): 0,68; 0,87; 1,74; 3,48; 6,96; 13,92; 20,0; 20,0; 20,0 и так далее. Интервалы для второго демона (читающего со смещения 73728) точно такие же. Это означает, что эти NFS клиенты используют тайм-ауты, которые кратны 0,875 секунды с верхним пределом равным 20 секундам. После каждого тайм-аута интервал повторной передачи удваивается: 0,875; 1,75; 3,5; 7,0 и 14,0.

    Сколько времени клиент будет осуществлять повторные передачи? Клиент имеет две опции, которые могут повлиять на это. Во-первых, если файловая система сервера смонтирована жестко (hard) , клиент будет повторно передавать вечно, однако если файловая система сервера смонтирована мягко (soft) , клиент прекратит свои попытки после фиксированного количества повторных передач. Также, в случае жесткого монтирования клиент имеет опцию, позволяющую пользователю прервать неудачные повторные передачи или не прерывать. Если при монтировании файловой системы сервера, хост клиента указывает что прервать можно, и если мы не хотим ждать 5 минут, пока сервер перезагрузится после выхода из строя, мы можем ввести символ прерывания, чтобы прекратить работу приложения клиента.

    Несколько одинаковых процедур

    RPC процедуры могут быть исполнены сервером несколько раз, но при этом все равно возвращают тот же самый результат. Например, процедура чтения NFS. Как мы видели на рисунке 29.9, клиент просто повторно выдает вызов READ до тех пор, пока он получает отклик. В нашем примере причина повторной передачи была в том, что сервер вышел из строя. Если сервер не вышел из строя, а сообщения, содержащие RPC отклики, были потеряны (так как UDP ненадежный протокол), клиент просто повторно передает, и сервер снова осуществляет то же самое чтение (READ). Та же самая часть того же самого файла считывается снова и посылается клиенту.

    Это работает, потому что каждый запрос на чтение READ содержит начальное смещение. Если бы NFS процедура попросила сервер считать следующие N байт файла, это бы не сработало. Если бы сервер не был безразличным (это значение наоборот к безразличности), и отклик потерян, а клиент повторно выдает READ для следующих N байт, результат будет отличаться. Именно поэтому процедуры NFS READ и WRITE имеют начальное смещение. Именно клиент поддерживает состояние (текущее смещение для каждого файла), а не сервер.

    К несчастью, не все операции с файловыми системами можно исполнить несколько раз. Например, представьте себе следующие шаги: клиент NFS выдает запрос REMOVE, чтобы удалить файл; NFS сервер удаляет файл и отвечает OK; отклик сервера потерян; NFS клиент отрабатывает тайм-аут и повторно передает запрос; NFS сервер не может найти файл и возвращает ошибку; приложение клиента получает ошибку, сообщающую о том, что файл не существует. Эта ошибка возвращается приложению клиента, и эта ошибка несет неверную информацию - файл не существовал и был удален.

    Ниже приведен список NFS процедур, которые можно исполнить несколько раз: GETATTR, STATFS, LOOKUP, READ, WRITE, READLINK и READDIR. Процедуры, которые нельзя исполнить несколько раз: CREATE, REMOVE, RENAME, LINK, SYMLINK, MKDIR и RMDIR. SETATTR обычно исполняется несколько раз, если только она не была использована для того, чтобы обрезать файл.

    Так как в случае использования UDP всегда могут появиться потерянные отклики, NFS сервера должны иметь способ обработать операции, которые нельзя исполнять несколько раз. Большинство серверов имеют кэш последних откликов, в котором они хранят последние принятые отклики для подобных операций. Каждый раз, когда сервер получает запрос, он, во-первых, просматривает свой кэш, и если найдено совпадение, возвращает предыдущий отклик, вместо того чтобы вызывать NFS процедуру снова. [ Juszczak 1989] описывает детали этих типов кэша.

    Подобный подход к процедурам на серверах применяется ко всем приложениям, основанным на UDP, а не только NFS. DNS, например, предоставляет сервис, безболезненно используемый несколько раз. DNS сервер может осуществить запрос разборщика любое количество раз, что не приведет к отрицательным результатам (может быть, кроме того, что будут заняты сетевые ресурсы).

    NFS версии 3

    В течение 1994 года были выпущены спецификации для версии 3 протокола NFS [ Sun Microsystems 1993]. Реализации, как ожидается, станут доступными в течение 1994 года.

    Здесь вкратце описаны основные различия между версиями 2 и 3. Мы будем называть их V2 и V3.

    1. Описатели файлов в V2 это массив фиксированного размера - 32 байта. В V3 это массив переменного размера с размером до 64 байт. Массив переменной длины в XDR определяется 4-байтным счетчиком, за которым следуют реальные байты. Это уменьшает размер описателя файла в таких реализациях, как, например, Unix, где требуется всего около 12 байт, однако позволяет не-Unix реализациям обмениваться дополнительной информацией.
    2. V2 ограничивает количество байт на процедуры READ или WRITE RPC размером 8192 байта. Это ограничение не действует в V3, что, в свою очередь, означает, что с использованием UDP ограничение будет только в размере IP датаграммы (65535 байт). Это позволяет использовать большие пакеты при чтении и записи в быстрых сетях.
    3. Размеры файлов и начальное смещение байтов для процедур READ и WRITE расширены с 32 до 64 бит, что позволяет работать с файлами большего размера.
    4. Атрибуты файла возвращаются в каждом вызове, который может повлиять на атрибуты. Это уменьшает количество вызовов GETATTR, требуемых клиентом.
    5. Записи (WRITE) могут быть асинхронными, тогда как в V2 они должны были быть синхронными. Это может улучшить производительность процедуры WRITE.
    6. Одна процедура была удалена (STATFS) и семь были добавлены: ACCESS (проверка прав доступа к файлу), MKNOD (создание специального файла Unix), READDIRPLUS (возвращает имена файлов в директории вместе с их атрибутами), FSINFO (возвращает статистическую информацию о файловой системе), FSSTAT (возвращает динамическую информацию о файловой системе), PATHCONF (возвращает POSIX.1 информацию о файле) и COMMIT (передает ранее сделанные асинхронные записи на постоянное хранение).

    Краткие выводы

    RPC это способ построить приложение клиент-сервер таким образом, что клиент просто вызывает процедуры на сервере. Все сетевые детали спрятаны в stubах клиента и сервера, которые генерируются для приложений пакетом RPC и в подпрограммах библиотеки RPC. Мы показали формат RPC сообщений вызова и отклика и упомянули, что XDR используется, чтобы кодировать значения, что позволяет RPC клиентам и серверам работать на машинах с различной архитектурой.

    Одно из наиболее широко используемых приложений RPC это Sun NFS, протокол доступа к разнородным файлам, который широко используется на хостах практически всех размеров. Мы рассмотрели NFS и то, как он использует UDP или TCP. В протоколе NFS версии 2 (NFS Version 2) определено 15 процедур.

    Доступ клиента к NFS серверу начинается с протокола монтирования, после чего клиенту возвращается описатель файла. Затем клиент может получить доступ к файлам в файловой системе сервера с использованием этого описателя файла. Имена файлов просматриваются на сервере по одному элементу имени за раз, при этом для каждого элемента возвращается новый описатель файла. Конечный результат это описатель того файла, к которому было осуществлено обращение, и который используется при последовательных чтениях и записях.

    NFS старается сделать все свои процедуры независимыми от количества исполнений таким образом, чтобы клиент мог просто повторно выдать запрос, если отклик был потерян. Мы видели примеры этого: в случае, когда клиент читал файл, пока сервер вышел из строя и перезагружался.

    Упражнения

    На рисунке 29.7 мы видели, что tcpdump интерпретирует пакеты как NFS запросы и отклики, и при этом печатает XID. Может ли tcpdump сделать это для любых RPC запросов или откликов?
  • Как Вы думаете, почему в Unix системах программа RPC сервера использует динамически назначаемые порты, а не заранее известные?
  • RPC клиент вызвал две процедуры сервера. Первая процедура потребовалось на исполнение 5 секунд, а второй - 1 секунда. Клиент имеет тайм-аут равный 4 секундам. Нарисуйте временную диаграмму того, чем обмениваются клиент и сервер. (Представьте, что на прохождение сообщения от клиента к серверу и наоборот время не тратится.)
  • Что произойдет в примере на рисунке 29.9, если пока NFS сервер был выключен, его Ethernet плата была удалена?
  • Когда сервер перезагрузился на рисунке 29.9, он обрабатывал запрос, начинающийся на смещении 65536 (строки 168 и 171), а затем обрабатывал следующий запрос, начинающийся со смещения 66560 (строки 172 и 173). Что произойдет с запросом, начинающимся со смещением 73728 (строка 167)?
  • Когда мы описывали независимые от количества исполнений NFS процедуры, то показали пример отклика REMOVE, который потерялся в сети. Что произойдет в этом случае, если используется TCP вместо UDP?
  • Если NFS сервер использует динамически назначаемый порт вместо порта 2049, что произойдет с NFS клиентом, когда сервер выйдет из строя и перезагрузится?
  • Номеров зарезервированных портов (глава 1, раздел "Номера портов") очень-очень мало, их максимум 1023 на хост. Если NFS сервер требует, чтобы его клиенты имели зарезервированные порты (что обычно так и есть), и NFS клиент, использующий TCP, монтирует N файловых систем на N различных серверах, необходимо ли клиенту иметь различные зарезервированные номера портов для каждого соединения?
  • NFS: удобная и перспективная сетевая файловая система

    Сетевая файловая система – это сетевая абстракция поверх обычной файловой системы, позволяющая удаленному клиенту обращаться к ней через сеть так же, как и при доступе к локальным файловым системам. Хотя NFS не является первой сетевой системой, она сегодня развилась до уровня наиболее функциональной и востребованной сетевой файловой системы в UNIX®. NFS позволяет организовать совместный доступ к общей файловой системе для множества пользователей и обеспечить централизацию данных для минимизации дискового пространства, необходимого для их хранения.

    Эта статья начинается с краткого обзора истории NFS, а затем переходит к исследованию архитектуры NFS и путей её дальнейшего развития.

    Краткая история NFS

    Первая сетевая файловая система называлась FAL (File Access Listener - обработчик доступа к файлам) и была разработана в 1976 году компанией DEC (Digital Equipment Corporation). Она являлась реализацией протокола DAP (Data Access Protocol – протокол доступа к данным) и входила в пакет протоколов DECnet. Как и в случае с TCP/IP, компания DEC опубликовала спецификации своих сетевых протоколов, включая протокол DAP.

    NFS была первой современной сетевой файловой системой, построенной поверх протокола IP. Её прообразом можно считать экспериментальную файловую систему, разработанную в Sun Microsystems в начале 80-х годов. Учитывая популярность этого решения, протокол NFS был представлен в качестве спецификации RFC и впоследствии развился в NFSv2. NFS быстро утвердилась в качестве стандарта благодаря способности взаимодействовать с другими клиентами и серверами.

    Впоследствии стандарт был обновлен до версии NFSv3, определенной в RFC 1813. Эта версия протокола была более масштабируема, чем предыдущие, и поддерживала файлы большего размера (более 2 ГБ), асинхронную запись и TCP в качестве транспортного протокола. NFSv3 задала направление развития файловых систем для глобальных (WAN) сетей. В 2000 году в рамках спецификации RFC 3010 (переработанной в версии RFC 3530) NFS была перенесена в корпоративную среду. Sun представила более защищенную NFSv4 c поддержкой сохранения состояния (stateful) (предыдущие версии NFS не поддерживали сохранение состояния, т.е. относились к категории stateless). На текущий момент последней версией NFS является версия 4.1, определенная в RFC 5661, в которой в протокол посредством расширения pNFS была добавлена поддержка параллельного доступа для распределенных серверов.

    История развития NFS, включая конкретные RFC, описывающие её версии, показана на рисунке 1.


    Как ни удивительно, NFS находится в стадии разработки уже почти 30 лет. Она является исключительно стабильной и переносимой сетевой файловой системой с выдающимися характеристиками масштабируемости, производительности и качества обслуживания. В условиях увеличения скорости и снижения задержек при обмене данными внутри сети NFS продолжает оставаться популярным способом реализации файловой системы внутри сети. Даже в случае локальных сетей виртуализация побуждает хранить данные в сети, чтобы обеспечить виртуальным машинам дополнительную мобильность. NFS также поддерживает новейшие модели организации вычислительных сред, нацеленные на оптимизацию виртуальных инфраструктур.

    Архитектура NFS

    NFS использует стандартную архитектурную модель "клиент-сервер" (как показано на рисунке 2). Сервер отвечает за реализацию файловой системы совместного доступа и хранилища, к которому подключаются клиенты. Клиент реализует пользовательский интерфейс к общей файловой системе, смонтированной внутри локального файлового пространства клиента.

    Рисунок 2. Реализация модели "клиент-сервер" в архитектуре NFS

    В ОС Linux® виртуальный коммутатор файловой системы (virtual file system switch - VFS) предоставляет средства для одновременной поддержки на одном хосте нескольких файловых систем (например, файловой системы ISO 9660 на CD-ROM и файловой системы ext3fs на локальном жестком диске). Виртуальный коммутатор определяет, к какому накопителю выполняется запрос, и, следовательно, какая файловая система должна использоваться для обработки запроса. Поэтому NFS обладает такой же совместимостью, как и другие файловые системы, применяющиеся в Linux. Единственное отличие NFS состоит в том, что запросы ввода/вывода вместо локальной обработки на хосте могут быть направлены для выполнения в сеть.

    VFS определяет, что полученный запрос относится к NFS, и передает его в обработчик NFS, находящийся в ядре. Обработчик NFS обрабатывает запрос ввода/вывода и транслирует его в NFS-процедуру (OPEN , ACCESS , CREATE , READ , CLOSE , REMOVE и т.д.). Эти процедуры, описанные в отдельной спецификации RFC, определяют поведение протокола NFS. Необходимая процедура выбирается в зависимости от запроса и выполняется с помощью технологии RPC (вызов удаленной процедуры). Как можно понять по названию, RPC позволяет осуществлять вызовы процедур между различными системами. RPC-служба соединяет NFS-запрос с его аргументами и отправляет результат на соответствующий удаленный хост, а затем следит за получением и обработкой ответа, чтобы вернуть его инициатору запроса.

    Также RPC включает в себя важный уровень XDR (external data representation – независимое представление данных), гарантирующий, что все пользователи NFS для одинаковых типов данных используют один и тот же формат. Когда некая платформа отправляет запрос, используемый ею тип данных может отличаться от типа данных, используемого на хосте, обрабатывающего этот запрос. Технология XDR берет на себя работу по преобразованию типов в стандартное представление (XDR), так что платформы, использующие разные архитектуры, могут взаимодействовать и совместно использовать файловые системы. В XDR определен битовый формат для таких типов, как float , и порядок байтов для таких типов, как массивы постоянной и переменной длины. Хотя XDR в основном известна благодаря применению в NFS, это спецификация может быть полезна во всех случаях, когда приходится работать в одной среде с различными архитектурами.

    После того как XDR переведет данные в стандартное представление, запрос передается по сети с помощью определенного транспортного протокола. В ранних реализациях NFS использовался протокол UDP, но сегодня для обеспечения большей надежности применяется протокол TCP.

    На стороне NFS-сервера применяется схожий алгоритм. Запрос поднимается по сетевому стеку через уровень RPC/XDR (для преобразования типов данных в соответствии с архитектурой сервера) и попадает в NFS-сервер, который отвечает за обработку запроса. Там запрос передается NFS-демону для определения целевой файловой системы, которой он адресован, а затем снова поступает в VFS для обращения к этой файловой системе на локальном диске. Полностью схема этого процесса приведена на рисунке 3. При этом локальная файловая система сервера – это стандартная для Linux файловая система, например, ext4fs. По сути NFS – это не файловая система в традиционном понимании этого термина, а протокол удаленного доступа к файловым системам.


    Для сетей с большим временем ожидания в NFSv4 предлагается специальная составная процедура (compound procedure ). Эта процедура позволяет поместить несколько RPC-вызовов внутрь одного запроса, чтобы минимизировать затраты на передачу запросов по сети. Также в этой процедуре реализован механизм callback-функций для получения ответов.

    Протокол NFS

    Когда клиент начинает работать с NFS, первым действием выполняется операция mount , которая представляет собой монтирование удаленной файловой системы в пространство локальной файловой системы. Этот процесс начинается с вызова процедуры mount (одной из системных функций Linux), который через VFS перенаправляется в NFS-компонент. Затем с помощью RPC-вызова функции get_port на удаленном сервере определяется номер порта, который будет использоваться для монтирования, и клиент через RPC отправляет запрос на монтирование. Этот запрос на стороне сервера обрабатывается специальным демоном rpc.mountd , отвечающим за протокол монтирования (mount protocol ). Демон проверяет, что запрошенная клиентом файловая система имеется в списке систем, доступных на данном сервере. Если запрошенная система существует и клиент имеет к ней доступ, то в ответе RPC-процедуры mount указывается дескриптор файловой системы. Клиент сохраняет у себя информацию о локальной и удаленной точках монтирования и получает возможность осуществлять запросы ввода/вывода. Протокол монтирования не является безупречным с точки зрения безопасности, поэтому в NFSv4 вместо него используются внутренние RPC-вызовы, которые также могут управлять точками монтирования.

    Для считывания файла его необходимо сначала открыть. В RPC нет процедуры OPEN , вместо этого клиент просто проверяет, что указанные файл и каталог существуют в смонтированной файловой системе. Клиент начинает с выполнения RPC-запроса GETATTR к каталогу, в ответ на который возвращаются атрибуты каталога или индикатор, что каталог не существует. Далее, чтобы проверить наличие файла, клиент выполняет RPC-запрос LOOKUP . Если файл существует, для него выполняется RPC-запрос GETATTR , чтобы узнать атрибуты файла. Используя информацию, полученную в результате успешных вызовов LOOKUP и GETATTR , клиент создает дескриптор файла, который предоставляется пользователю для выполнения будущих запросов.

    После того как файл идентифицирован в удаленной файловой системе, клиент может выполнять RPC-запросы типа READ . Этот запрос состоит из дескриптора файла, состояния, смещения и количества байт, которое следует считать. Клиент использует состояние (state ), чтобы определить может ли операция быть выполнена в данный момент, т.е. не заблокирован ли файл. Смещение (offset ) указывает, с какой позиции следует начать чтение, а счетчик байт (count ) определяет, сколько байт необходимо считать. В результате RPC-вызова READ сервер не всегда возвращает столько байт, сколько было запрошено, но вместе с возвращаемыми данными всегда передает, сколько байт было отправлено клиенту.

    Инновации в NFS

    Наибольший интерес представляют две последние версии NFS – 4 и 4.1, на примере которых можно изучить наиболее важные аспекты эволюции технологии NFS.

    До появления NFSv4 для выполнения таких задач по управлению файлами, как монтирование, блокировка и т.д. существовали специальные дополнительные протоколы. В NFSv4 процесс управления файлами был упрощен до одного протокола; кроме того, начиная с этой версии UDP больше не используется в качестве транспортного протокола. NFSv4 включает поддержку UNIX и Windows®-семантики доступа к файлам, что позволяет NFS "естественным" способом интегрироваться в другие операционные системы.

    В NFSv4.1 для большей масштабируемости и производительности была введена концепция параллельной NFS (parallel NFS - pNFS). Чтобы обеспечить больший уровень масштабируемости, в NFSv4.1 реализована архитектура, в которой данные и метаданные (разметка ) распределяются по устройствам аналогично тому, как это делается в кластерных файловых системах. Как показано на , pNFS разделяет экосистему на три составляющие: клиент, сервер и хранилище. При этом появляются два канала: один для передачи данных, а другой для передачи команд управления. pNFS отделяет данные от описывающих их метаданных, обеспечивая двухканальную архитектуру. Когда клиент хочет получить доступ к файлу, сервер отправляет ему метаданные с "разметкой". В метаданных содержится информация о размещении файла на запоминающих устройствах. Получив эту информацию, клиент может обращаться напрямую к хранилищу без необходимости взаимодействовать с сервером, что способствует повышению масштабируемости и производительности. Когда клиент заканчивает работу с файлом, он подтверждает изменения, внесенные в файл и его "разметку". При необходимости сервер может запросить у клиента метаданные с разметкой.

    С появлением pNFS в протокол NFS было добавлено несколько новых операций для поддержки такого механизма. Метод LayoutGet используется для получения метаданных с сервера, метод LayoutReturn "освобождает" метаданные, "захваченные" клиентом, а метод LayoutCommit загружает "разметку", полученную от клиента, в хранилище, так что она становится доступной другим пользователям. Сервер может отозвать метаданные у клиента с помощью метода LayoutRecall . Метаданные с "разметкой" распределяются между несколькими запоминающими устройствами, чтобы обеспечить параллельный доступ и высокую производительность.


    Данные и метаданные хранятся на запоминающих устройствах. Клиенты могут выполнять прямые запросы ввода/вывода на основе полученной разметки, а сервер NFSv4.1 хранит метаданные и управляет ими. Сама по себе эта функциональность и не нова, но в pNFS была добавлена поддержка различных методов доступа к запоминающим устройствам. Сегодня pNFS поддерживает использование блочных протоколов (Fibre Channel), объектных протоколов и собственно NFS (даже не в pNFS-форме).

    Развитие NFS продолжается, и в сентябре 2010 года были опубликованы требования к NFSv4.2. Некоторые из нововведений связаны с наблюдающейся миграцией технологий хранения данных в сторону виртуализации. Например, в виртуальных средах с гипервизором весьма вероятно возникновение дублирования данных (несколько ОС выполняют чтение/запись и кэширование одних и тех же данных). В связи с этим желательно, чтобы система хранения данных в целом понимала, где происходит дублирование. Такой подход поможет сэкономить пространство в кэше клиента и общую емкость системы хранения. В NFSv4.2 для решения этой проблемы предлагается использовать "карту блоков, находящихся в совместном доступе" (block map of shared blocks). Поскольку современные системы хранения все чаще оснащаются собственными внутренними вычислительными мощностями, вводится копирование на стороне сервера, позволяющее снизить нагрузку при копировании данных во внутренней сети, когда это можно эффективно делать на самом запоминающем устройстве. Другие инновации включают в себя субфайловое кэширование для флэш-памяти и рекомендации по настройке ввода-вывода на стороне клиента (например, с использованием mapadvise).

    Альтернативы NFS

    Хотя NFS – самая популярная сетевая файловая система в UNIX и Linux, кроме нее существуют и другие сетевые файловые системы. На платформе Windows® чаще всего применяется SMB, также известная как CIFS ; при этом ОС Windows также поддерживает NFS, равно как и Linux поддерживает SMB.

    Одна из новейших распределенных файловых систем, поддерживаемых в Linux - Ceph - изначально спроектирована как отказоустойчивая POSIX-совместимая файловая система. Дополнительную информацию о Ceph можно найти в разделе .

    Стоит также упомянуть файловые системы OpenAFS (Open Source-версия распределенной файловой системы Andrew, разработанной в университете Карнеги-Меллона и корпорации IBM), GlusterFS (распределенная файловая система общего назначения для организации масштабируемых хранилищ данных) и Lustre (сетевая файловая система с массовым параллелизмом для кластерных решений). Все эти системы с открытым исходным кодом можно использовать для построения распределенных хранилищ.

    Заключение

    Развитие файловой системы NFS продолжается. Подобно ОС Linux, подходящей для поддержки и бюджетных, и встраиваемых, и высокопроизводительных решений, NFS предоставляет архитектуру масштабируемых решений для хранения данных, подходящих как отдельным пользователям, так и организациям. Если посмотреть на путь, уже пройденный NFS, и перспективы её дальнейшего развития, становится понятно, что эта файловая система будет продолжать изменять наши взгляды на то, как реализуются и используются технологии хранения файлов.

    Файловая система NFS (Network File System) создана компанией Sun Microsystems. В настоящее время это стандартная сетевая файловая система для ОС семейства UNIX, кроме того, клиенты и серверы NFS реализованы для многих других ОС. Принципы ее организации на сегодня стандартизованы сообществом Интернета, последняя версия NFS v.4 описывается спецификацией RFC ЗОЮ, выпущенной в декабре 2000 года.

    NFS представляет собой систему, поддерживающую схему удаленного доступа к файлам. Работа пользователя с удаленными файлами после выполнения операции монтирования становится полностью прозрачной - поддерево файловой системы сервера NFS становится поддеревом локальной файловой системы.

    Одной из целей разработчиков NFS была поддержка неоднородных систем с клиентами и серверами, работающими под управлением различных ОС на различной аппаратной платформе. Этой цели способствует реализация NFS на основе механизма Sun RFC, поддерживающего по умолчанию средства XDR для унифицированного представления аргументов удаленных процедур.

    Для обеспечения устойчивости клиентов к отказам серверов в NFS принят подход stateless, то есть серверы при работе с файлами не хранят данных об открытых клиентами файлах.

    Основная идея NFS - позволить произвольной группе пользователей разделять общую файловую систему. Чаще всего все пользователи принадлежат одной локальной сети, но не обязательно. Можно выполнять NFS и на глобальной сети. Каждый NFS-сервер предоставляет один или более своих каталогов для доступа удаленным клиентам. Каталог объявляется достудным со всеми своими подкаталогами. Список каталогов, которые сервер передает, содержится в файле /etc/exports, так что эти каталоги экспортируются сразу автоматически при загрузке сервера. Клиенты получают доступ к экспортируемым каталогам путем монтирования. Многие рабочие станции Sun бездисковые, но и в этом случае можно монтировать удаленную файловую систему к корневому каталогу, при этом вся файловая система целиком располагается на сервере. Выполнение программ почти не зависит от того, где расположен файл: локально или на удаленном диске. Если два или более клиента одновременно смонтировали один и тот же каталог, то они могут связываться путем разделения файла.

    В своей работе файловая система NFS использует два протокола.

    Первый NFS-протокол управляет монтированием. Клиент посылает серверу полное имя каталога и запрашивает разрешение на монтирование этого каталога в какую-либо точку собственного дерева каталогов. При этом серверу не указывается, в какое место будет монтироваться каталог сервера. Получив имя, сервер проверяет законность этого запроса и возвращает клиенту дескриптор файла, являющегося удаленной точкой монтирования. Дескриптор включает описатель типа файловой системы, номер диска, номер индексного дескриптора (inode) каталога, который является удаленной точкой монтирования, информацию безопасности. Операции чтения и записи файлов из монтируемых файловых систем используют дескрипторы файлов вместо символьного имени.


    Монтирование может выполняться автоматически, с помощью командных файлов при загрузке. Существует другой вариант автоматического монтирования: при загрузке ОС на рабочей станции удаленная файловая система не монтируется, но при первом открытии удаленного файла ОС посылает запросы каждому серверу и после обнаружения этого файла монтирует каталог того сервера, на котором расположен найденный файл.

    Второй NFS-протокол используется для доступа к удаленным файлам и каталогам. Клиенты могут послать запрос серверу для выполнения какого-либо действия над каталогом или операции чтения или записи файла. Кроме того, они могут запросить атрибуты файла, такие как тип, размер, время создания и модификации. NFS поддерживается большая часть системных вызовов UNIX, за исключением open и close. Исключение open и close не случайно. Вместо операции открытия удаленного файла клиент посылает серверу сообщение, содержащее имя файла, с запросом отыскать его (lookup) и вернуть дескриптор файла. В отличие от вызова open вызов lookup не копирует никакой информации во внутренние системные таблицы. Вызов read содержит дескриптор того файла, который нужно читать, смещение в уже читаемом файле и количество байт, которые нужно прочитать. Преимуществом такой схемы является то, что сервер не запоминает ничего об открытых файлах. Таким образом, если сервер откажет, а затем будет восстановлен, информация об открытых файлах не потеряется, потому что она не поддерживается.

    При отказе сервера клиент просто продолжает посылать на него команды чтения или записи в файлы, однако не получив ответа и исчерпав тайм-аут, клиент повторяет свои запросы. После перезагрузки сервер получает очередной повторный запрос клиента и отвечает на него. Таки образом, крах сервера вызывает только некоторую паузу в обслуживании клиентов, но никаких дополнительных действий по восстановлению соединений и повторному открытию файлов от клиентов не требуется.

    К сожалению, NFS затрудняет блокировку файлов. Во многих ОС файл может быть открыт и заблокирован так, чтобы другие процессы не имели к нему доступа. Когда файл закрывается, блокировка снимается. В системах stateless, подобных NFS, блокирование не может быть связано с открытием файла, так как сервер не знает, какой файл открыт. Следовательно, NFS требует специальных дополнительных средств управления блокированием.

    В NFS используется кэширование на стороне клиента, данные в кэш переносятся поблочно и применяется упреждающее чтение, при котором чтение блока в кэш по требованию приложения всегда сопровождается чтением следующего блока по инициативе системы. Метод кэширования NFS не сохраняет семантику UNIX для разделения файлов. Вместо этого используется не раз подвергавшаяся критике семантика, при которой изменения данных в кэшируемом клиентом файле видны другому клиенту, в зависимости от временных соотношений. Клиент при очередном открытии файла, имеющегося в его кэше, проверяет у сервера, когда файл был в последний раз модифицирован. Если это произошло после того, как файл был помещен в кэш, файл удаляется из кэша и от сервера получается новая копия файла. Клиенты распространяют модификации, сделанные в кэше, с периодом в 30 секунд, так что сервер может получить обновления с большой задержкой. В результате работы механизмов удаления данных из кэша и распространения модификаций данные, получаемые каким-либо клиентом, не всегда, являются самыми свежими.

    Репликация в NFS не поддерживается.

    Служба каталогов

    Назначение и принципы организации

    Подобно большой организации, большая компьютерная сеть нуждается в централизованном хранении как можно более полной справочной информации о самой себе. Решение многих задач в сети опирается на информацию о пользователях сети - их именах, используемых для логического входа в систему, паролях, правах доступа к ресурсам сети, а также о ресурсах и компонентах сети: серверах, клиентских компьютерах, маршрутизаторах, шлюзах, томах файловых систем, принтерах и т. п.

    Приведем примеры наиболее важных задач, требующих наличия в сети централизованной базы справочной информации:

    • Одной из наиболее часто выполняемых в системе задач, опирающихся на справочную информацию о пользователях, является их аутентификация, на основе которой затем выполняется авторизация доступа. В сети должны каким-то образом централизованно храниться учетные записи пользователей, содержащие имена и пароли.
    • Наличия некоторой централизованной базы данных требует поддержка прозрачности доступа ко многим сетевым ресурсам. В такой базе должны храниться имена этих ресурсов и отображения имен на числовые идентификаторы (например, IP-адреса), позволяющие найти этот ресурс в сети. Прозрачность может обеспечиваться при доступе к серверам, томам файловой системы, интерфейсам процедур RPC, программным объектам распределенных приложений и многим другим сетевым ресурсам.
    • Электронная почта является еще одним популярным примером службы, для которой желательна единая для сети справочная служба, хранящая данные о почтовых именах пользователей.
    • В последнее время в сетях все чаще стали применяться средства управления качеством обслуживания трафика (Quality of Service, QoS), которые также требуют наличия сведений обо всех пользователях и приложениях системы, их требованиях к параметрам качества обслуживания трафика, а также обо всех сетевых устройствах, с помощью которых можно управлять трафиком (маршрутизаторах, коммутаторах, шлюзах и т. п.).
    • Организация распределенных приложений может существенно упроститься, если в сети имеется база, хранящая информацию об имеющихся программных модулях-объектах и их расположении на серверах сети. Приложение, которому необходимо выполнить некоторое стандартное действие, обращается с запросом к такой базе и получает адрес программного объекта, имеющего возможность выполнить требуемое действие.
    • Система управления сетью должна располагать базой для хранения информации о топологии сети и характеристиках всех сетевых элементов, таких как маршрутизаторы, коммутаторы, серверы и клиентские компьютеры. Наличие полной информации о составе сети и ее связях позволяет системе автоматизированного управления сетью правильно идентифицировать сообщения об аварийных событиях и находить их первопричину. Упорядоченная по подразделениям предприятия информация об имеющемся сетевом оборудовании и установленном программном обеспечении полезна сама по себе, так как помогает администраторам составить достоверную картину состояния сети и разработать планы по ее развитию.

    Такие примеры можно продолжать, но нетрудно привести и контраргумент, заставляющий усомниться в необходимости использования в сети централизованной базы справочной информации - долгое время сети работали без единой справочной базы, а многие сети и сейчас работают без нее. Действительно, существует много частных решений, позволяющих достаточно эффективно организовать работу сети на основе частных баз справочной информации, которые могут быть представлены обычными текстовыми файлами или таблицами, хранящимися в теле приложения. Например, в ОС UNIX традиционно используется для хранения данных об именах и паролях пользователей файл passwd, который охватывает пользователей только одного компьютера. Имена адресатов электронной почты также можно хранить в локальном файле клиентского компьютера. И такие частные справочные системы неплохо работают - практика это подтверждает.

    Однако это возражение справедливо только для сетей небольших и средних размеров, в крупных сетях отдельные локальные базы справочной информации теряют свою эффективность. Хорошим примером, подтверждающим неприменимость локальных решений для крупных сетей, является служба имен DNS, работающая в Интернете. Как только размеры Интернета превысили определенный предел, хранить информацию о соответствии имен и IP-адресов компьютеров сети в локальных текстовых файлах стало неэффективно. Потребовалось создать распределенную базу данных, поддерживаемую иерархически связанными серверами имен, и централизованную службу над этой базой, чтобы процедуры разрешения символьных имен в Интернете стали работать быстро и эффективно.

    Для крупной сети неэффективным является также применение большого числа справочных служб узкого назначения: одной для аутентификации, другой - для управления сетью, третей - для разрешения имен компьютеров и т. д. Даже если каждая из таких служб хорошо организована и сочетает централизованный интерфейс с распределенной базой данных, большое число справочных служб приводит к дублированию больших объемов информации и усложняет администрирование и управление сетью. Например, в Windows NT имеется по крайней мере пять различных типов справочных баз данных. Главный справочник домена (NT Domain Directory Service) хранит информацию о пользователях, которая требуется при организации их логического входа в сеть. Данные о тех же пользователях могут содержаться и в другом справочнике, используемом электронной почтой Microsoft Mail. Еще три базы данных поддерживают разрешение адресов: WINS устанавливает соответствие Netbios-имен IP-адресам, справочник DNS (сервер имен домена) оказывается полезным при подключении NT-сети к Интернету, и наконец, справочник протокола DHCP используется для автоматического назначения IP-адресов компьютерам сети. Очевидно, что такое разнообразие справочных служб усложняет жизнь администратора и приводит к дополнительным ошибкам, когда учетные данные одного и того же пользователя нужно ввести в несколько баз данных. Поэтому в новой версии Windows 2000 большая часть справочной информации о системе может храниться службой Active Directory - единой централизованной справочной службой, использующей распределенную базу данных и интегрированной со службой имен DNS.

    Результатом развития систем хранения справочной информации стало появление в сетевых операционных системах специальной службы - так называемой службы каталогов (Directory Services), называемой также справочной службой (directory - справочник, каталог). Служба каталогов хранит информацию обо всех пользователях и ресурсах сети в виде унифицированных объектов с определенными атрибутами, а также позволяет отражать взаимосвязи между хранимыми объектами, такие как принадлежность пользователей к определенной группе, права доступа пользователей к компьютерам, вхождение нескольких узлов в одну подсеть, коммуникационные связи между подсетями, производственную принадлежность серверов и т. д. Служба каталогов позволяет выполнять над хранимыми объектами набор некоторых базовых операций, таких как добавление и удаление объекта, включение объекта в другой объект, изменение значений атрибута объекта, чтение атрибутов и некоторые другие. Обычно над службой каталогов строятся различные специфические сетевые приложения, которые используют информацию службы для решения конкретных задач: управления сетью, аутентификации пользователей, обеспечения прозрачности служб и других, перечисленных выше. Служба каталогов обычно строится на основе модели клиент-сервер: серверы хранят базу справочной информации, которой пользуются клиенты, передавая серверам по сети соответствующие запросы. Для клиента службы каталогов она представляется единой централизованной системой, хотя большинство хороших служб каталогов имеют распределенную структуру, включающую большое количество серверов, но эта структура для клиентов прозрачна.

    Важным вопросом является организация базы справочных данных. Единая база данных, хранящая справочную информацию большого объема, порождает все то же множество проблем, что и любая другая крупная база данных. Реализация справочной службы как локальной базы данных, хранящейся в виде одной копии на одном из серверов сети, не подходит для большой системы по нескольким причинам, и в первую очередь вследствие низкой производительности и низкой надежности такого решения. Производительность будет низкой из-за того, что запросы к базе от всех пользователей и приложений сети будут поступать на единственный сервер, который при большом количестве запросов обязательно перестанет справляться с их обработкой. То есть такое решение плохо масштабируется в отношении количества обслуживаемых пользователей и разделяемых ресурсов. Надежность также не может быть высокой в системе с единственной копией данных. Кроме снятия ограничений по производительности и надежности желательно, чтобы структура базы данных позволяла производить логическое группирование ресурсов и пользователей по структурным подразделениям предприятия и назначать для каждой такой группы своего администратора.

    Проблемы сохранения производительности и надежности при увеличении масштаба сети обычно решаются за счет распределенных баз данных справочной информации. Разделение данных между несколькими серверами снижает нагрузку на каждый сервер, а надежность при этом достигается за счет наличия нескольких реплик каждой части базы данных. Для каждой части базы данных можно назначить своего администратора, который обладает правами доступа только к объектам своей порции информации обо всей системе. Для пользователя же (и для сетевых приложений) такая распределенная база данных представляется единой базой данных, которая обеспечивает доступ ко всем ресурсам сети вне зависимости от того, с какой рабочей станции поступил запрос.

    Существуют два популярных стандарта для служб каталогов. Во-первых, это стандарт Х.500, разработанный ITU-T (во время разработки стандарта эта организация носила имя CCITT). Этот стандарт определяет функции, организацию справочной службы и протокол доступа к ней. Разработанный в первую очередь для использования вместе с почтовой службой Х.400 стандарт Х.500 позволяет эффективно организовать хранение любой справочной информации и служит хорошей основой для универсальной службы каталогов сети.

    Другим стандартом является стандарт LDAP (Light-weight Directory Access Protocol), разработанный сообществом Интернета. Этот стандарт определяет упрощенный протокол доступа к службе каталогов, так как службы, построенные на основе стандарта Х.500, оказались чересчур громоздкими. Протокол LDAP получил широкое распространение и стал стандартом де-факто в качестве протокола доступа клиентов к ресурсам справочной службы.

    Существует также несколько практических реализаций служб каталогов для сетевых ОС. Наибольшее распространение получила служба NDS компании Novell, разработанная в 1993 году для сетевой ОС NetWare 4.0, а сегодня реализованная также и для Windows NT/2000. Большой интерес вызывает служба каталогов Active Directory, разработанная компанией Microsoft для Windows 2000. Обе эти службы поддерживают протокол доступа LDAP и могут работать в очень крупных сетях благодаря своей распределенности.

    Служба каталогов NDS

    Служба NDS (NetWare Directory Services) - это глобальная справочная служба, опирающаяся на распределенную объектно-ориентированную базу данных сетевых ресурсов. База данных NDS содержит информацию обо всех сетевых ресурсах, включая информацию о пользователях, группах пользователей, принтерах, томах и компьютерах. ОС NetWare (а также другие клиенты NDS, работающие на других платформах) использует информацию NDS для обеспечения доступа к этим ресурсам.

    База данных NDS заменила в свое время справочник bindery предыдущих версий NetWare. Справочник bindery - это «плоская», или одноуровневая база данных, разработанная для поддержки одного сервера. В ней также использовалось понятие «объект» для сетевого ресурса, но трактовка этого термина отличалась от общепринятой. Объекты bindery идентифицировались простыми числовыми значениями и имели определенные атрибуты. Однако для этих объектов не определялись явные взаимоотношения наследования классов объектов, поэтому взаимоотношения между объектами bindery устанавливались администратором произвольно, что часто приводило к нарушению целостности данных.

    База данных службы NDS представляет собой многоуровневую базу данных, поддерживающую информацию о ресурсах всех серверов сети. Для совместимости с предыдущими версиями NetWare в службе NDS предусмотрен механизм эмуляции базы bindery.

    Служба NDS - это значительный шаг вперед по сравнению с предыдущими версиями за счет:

    • распределенности;
    • реплицируемости;
    • прозрачности;
    • глобальности.

    Распределенность заключается в том, что информация не хранится на одном сервере, а разделена на части, называемые разделами (partitions). NetWare хранит эти разделы на нескольких серверах сети (рис. 10.8). Это свойство значительно упрощает администрирование и управление большой сетью, так как она представляется администратору единой системой. Кроме того, обеспечивается более быстрый доступ к базе данных сетевых ресурсов за счет обращения к ближайшему серверу.

    Рис. 10.8. Разделы базы данных NDS

    Реплика - это копия информации раздела NDS. Можно создать неограниченное количество реплик каждого раздела и хранить их на разных серверах. Если один сервер останавливается, то копии этой информации могут быть получены с другого сервера. Это увеличивает отказоустойчивость системы, так как ни один из серверов не отвечает за всю информацию базы данных NDS.

    Прозрачность заключается в том, что NDS автоматически создает связи между программными и аппаратными компонентами, которые обеспечивают пользователю доступ к сетевым ресурсам. NDS при этом не требует от пользователя знаний физического расположения этих ресурсов. Задавая сетевой ресурс по имени, вы получите к нему корректный доступ даже в случае изменения его сетевого адреса или места расположения.

    Глобальность NDS заключается в том, что после входа вы получаете доступ к ресурсам всей сети, а не только одного сервера, как было в предыдущих версиях. Это достигается за счет процедуры глобального логического входа (global login). Вместо входа в отдельный сервер пользователь NDS входит в сеть, после чего он получает доступ к разрешенным для него ресурсам сети. Информация, предоставляемая во время логического входа, используется для идентификации пользователя. Позже, при попытке пользователя получить доступ к ресурсам, таким как серверы, тома или принтеры, фоновый процесс идентификации проверяет, имеет ли пользователь право на данный ресурс.

    Сетевые файловые системы

    Одна из наиболее полезных функций, которая может быть реализована с помощью сети, это разделение файлов через сетевую файловую систему. Обычно используется система, называемая Network File System или NFS, которая разработана корпорацией Sun.

    При работе с сетевой файловой системой любые операции над файлами, производимыми на локальном компьютере, передаются через сеть на удаленную машину. При работе сетевой файловой системы программа считает, что все файлы на удаленном компьютере находятся на компьютере, где она запущена. Таким образом, разделение информации посредством такой системы не требует внесения каких-либо изменений в программу.

    Почта

    Электронная почта является самым важным средством связи между компьютерами. Электронные письма хранятся в одном файле в специальном формате. Для чтения и отправления писем применяются специальные программы.

    У каждого пользователя имеется отдельный почтовый ящик, файл, где информация хранится в специальном формате, в котором хранится приходящая почта. Если на компьютер приходит письмо, то программа обработки почты находит файл почтового ящика соответствующего пользователя и добавляет туда полученное письмо. Если же почтовый ящик пользователя находится на другом компьютере, то письмо перенаправляется на этот компьютер, где проходит его последующая обработка.

    Почтовая система состоит из множества различных программ. Доставка писем к локальным или удаленным почтовым ящикам производится одной программой (например, sendmail или smail), в то время как для обычной отправки или просмотра писем применяется большое количество различных программ (например, Pine или elm).Файлы почтовых ящиков обычно хранятся в каталоге /var/spool/mail.

    Вопросы

    1. Что такое NOS и каково ее назначение?

    2. Какие функции сети выполняет сетевая операционная система?

    3. Из каких частей состоит структура NOS?

    4. Что такое редиректор?

    5. Как подразделяются сетевые операционные системы по правам доступа к ресурсам?

    6. Как подразделяются сетевые операционные системы по масштабу сетей?

    7. Как зависят свойства сетевой операционной системы от масштаба сетей?

    8. Дать характеристику сетевой операционной системы NetWare фирмы Novell.

    9. Из каких элементов состоит структура сетевой операционной системы NetWare?

    10. Дать характеристику файловой системы сетевой ОС NetWare.

    11. Какие уровни протоколов поддерживает сетевая операционная система NetWare?

    12. Перечислить функции протоколов IPX, SPX.

    13. Дать характеристику сетевой операционной системы Windows NT.

    14. Перечислить задачи сетевой операционной системы Windows NT.

    15. Из каких элементов состоит структура сетевой операционной системы Windows NT?

    16. Дать характеристику файловой системы сетевой ОС Windows NT.

    17. Какие принципы защиты используются в сетевой ОС Windows NT?

    18. Перечислить особенности сетевой операционной системы Windows NT с точки зрения реализации сетевых средств.

    19. Назвать свойства сетевой операционной системы Windows NT.

    20. Каковы области использования Windows NT?

    21. Дать характеристику сетевой операционной системы UNIX.

    22. Перечислить функции сетевой операционной системы UNIX.

    23. Дать характеристику файловой системы сетевой ОС UNIX.

    24. Какие принципы защиты используются UNIX?

    25. Дать обзор сетевой операционной системы Linux.

    Сетевая файловая система (NFS - Network File System) является решением об­щего доступа к файлам для организаций, которые имеют смешанные среды машин с Windows и Unix/Linux. Файловая система NFS дает возможность открывать общий доступ к файлам между указанными разными платформами при функционирую­щей операционной системе Windows Server 2012. Службы NFS в Windows Server 2012 включают следующие возможности и усовершенствования.

    1. Поиск в Active Directory. Вы имеете возможность применять Windows Active Directory для доступа к файлам. Расширение схемы Identity Management for Unix (Управление удостоверениями для Unix) для Active Directory содержит поля идентификатора пользователя Unix (Unix user identifier - UID) и иден­тификатора группы (group identifier - GID). Это позволяет службам Server for NFS (Сервер для NFS) и Client for NFS (Клиент для NFS) просматривать отображения учетных записей пользователей Windows на Unix прямо из служб домена Active Directory (Active Directory Domain Services). Компонент Identity Management for Unix упрощает управление отображением учетных записей пользователей Windows на Unix в Active Directory Domain Services.

    2. Улучшенная производительность сервера. Службы для NFS включают драйвер фильтра файлов, который значительно сокращает общие задержки при досту­пе к файлам на сервере.

    3. Поддержка специальных устройств Unix. Службы для NFS поддерживают спе­циальные устройства Unix (mknod).

    4. Расширенная поддержка Unix. Службы для NFS поддерживают следующие вер­сии Unix: Sun Microsystems Solaris версии 9, Red Hat Linux версии 9, IBM AIX версии 5L 5.2 и Hewlett Packard HP-UX версии 11i, а также многие современные дистрибутивы Linux.

    Один из наиболее распространенных сценариев, который создает необходи­мость в применении NFS, предусматривает открытие доступа пользователям в среде Windows к системе планирования ресурсов предприятия (enterprise resource planning - ERP), основанной на Unix. Находясь в системе ERP, пользователи могут создавать отчеты и/или экспортировать финансовые данные в Microsoft Excel для дальнейшего анализа. Файловая система NFS позволяет обращаться к этим файлам, по-прежнему находясь в среде Windows, что сокращает потребность в наличии специальных технических навыков и снижает временные затраты на экспорт файлов с использованием сценария Unix и последующий их импорт в определенное приложение Windows.

    Может также возникнуть ситуация, когда у вас имеется система Unix, которая применяется для хранения файлов в какой-то сети хранения данных (Storage Area Network - SAN). Запуск служб NFS на машине Windows Server 2012 позволяет пользователям в организации получать доступ к сохраненным там файлам без накладных расходов, связанных со сценариями на стороне Unix.

    До установки служб NFS вы должны удалить любые ранее установленные компоненты NFS, такие как компоненты NFS, которые были включены в состав Services for Unix.

    Компоненты служб NFS

    Доступны следующие два компонента служб NFS.

    1. Server for NFS (Сервер для NFS). Обычно компьютер, основанный на Unix, не может обращаться к файлам, расположенным на компьютере, основанном на Windows. Тем не менее, компьютер, на котором функционирует Windows Server 2012 R2 и компонент Server for NFS, может действовать в качестве файло­вого сервера для компьютеров с Windows и Unix.

    2. Client for NFS (Клиент для NFS). Обычно компьютер, основанный на Windows, не может обращаться к файлам, находящимся на компьютере, основанном на Unix. Тем не менее, компьютер, на котором функционирует Windows Server 2012 R2 и компонент Client for NFS, может получать доступ к файлам, которые хранятся на сервере NFS, основанном на Unix.

    Установка Server For NFS с помощью PowerShell

    Давайте посмотрим, как применять PowerShell для установки роли NFS на сервере и для создания общего файлового ресурса NFS.

    1. Откройте окно Windows PowerShell через панель задач от имени учетной запи­си администратора.

    2. Введите следующие команды, чтобы установить роль NFS на сервере:

    PS С:\> Import-Module ServerManager PS С:\> Add-WindowsFeature FS-NFS-Services PS С:\> Import-Module NFS

    3. Введите приведенную ниже команду, чтобы создать новый общий файловый ресурс NFS:

    PS С:\> New-NfsShare -Name "Test" -Path "C:\Shares\Test"

    4. Для просмотра всех новых командлетов PowerShell, относящихся к NFS, кото­рые доступны в Windows Server 2012 R2, выполните следующую команду:

    PS С:\> Get-Command -Module NFS

    5. Щелкните по папке C:\Shares\Test правой кнопкой мыши, выберите «свойства», далее перейдите на вкладку NFS Sharing (Общий доступ NFS). Нажмите на кнопку Manage NFS Sharing (Управлять общим доступом NFS), в появившемся диалоговом окне вы можете управлять разрешениями для доступа к папке, разрешить анонимный доступ, настроить параметры кодировки файлов. Вы можете открывать общий доступ к папке по NFS с помощью диалогового окна NFS Advanced Sharing без использования PowerShell.

    Установка стандартных разрешений

    Теперь нам потребуется открыть некоторые порты брандмауэра для функционирования NFS. Порты, необходимые для нормального функционирования служб NFS, представлены ниже в таблице.



    Рекомендуем почитать

    Наверх