Распространение радиоволн в свободном пространстве

Скачать Viber 30.05.2019
Скачать Viber

Влияние среды на распространение радиоволн проявляется в изменении амплитуды поля волны, изменении скорости и направления распространения волны, в повороте плоскости поляризации волны, в искажении передаваемых сигналов.

Условия распространения радиоволн по естественным трассам определяются многими факторами, так что полный их анализ оказывается слишком сложным. Поэтому в каждом конкретном случае строят модель трассы распространения радиоволн, выделяя те факторы, которые оказывают основное воздействие.

Земная поверхность оказывает существенное влияние на распространение радиоволн: поверхность Земли частично поглощает и отражает радиоволны; сферичность земной поверхности (средний радиус земного шара6370 км) также влияет на распространение радиоволн. Радиоволны, распространяющиеся в непосредственной близости (в масштабе длины волны) от поверхности Земли, называют земными радиоволнами.

При разработке модели распространения земных радиоволн атмосферу можно считать не поглощающей средой. При необходимости усложнения модели вносятся поправки с учетом диэлектрической и магнитной проницаемостей атмосферы.

В окружающей земной шар атмосфере различают две области, оказывающие влияние на распространение радиоволн: тропосферу и ионосферу.

Тропосфера – приземная область атмосферы, простирающаяся до высоты 10…15 км – неоднородна как в вертикальном направлении, так и вдоль земной поверхности; ее электрические параметры зависят от метеорологических условий. Тропосфера влияет на распространение земных волн и обеспечивает распространение так называемых тропосферных волн. Распространение тропосферных волн связано с рефракцией (искривлением траектории волны) в неоднородной тропосфере, а также с рассеянием и отражением радиоволн от неоднородностей тропосферы.

Ионосфера – от 50…80 км и примерно до 10000 км над поверхностью Земли. В этой области плотность газа весьма мала и газ ионизирован, т. е. имеется большое число свободных электронов (примерно 10 3 … 10 6 электронов в 1 см 3 воздуха). Присутствие свободных электронов существенно влияет на электрические свойства газа и обусловливает возможность отражения радиоволн от ионосферы. Путем последовательного отражения от ионосферы и поверхности Земли радиоволны распространяются на очень большие расстояния (например, короткие волны могут несколько раз огибать земной шар). Ионосфера является неоднородной средой, и радиоволны рассеиваются в ней, что также обусловливает возможность распространения радиоволн на большие расстояния. Радиоволны, распространяющиеся путем отражения от ионосферы или рассеяния в ней, будем называть ионосферными волнами. На условия распространения ионосферных волн свойства земной поверхности и тропосферы влияют мало.



За пределами ионосферы плотность газа и электронная плотность уменьшаются и на расстоянии 3…4,5 радиусов земного шара, атмосфера Земли переходит в космическое пространство, где газ полностью ионизирован, плотность протонов равна плотности электронов и составляет всего 2…20 эл/см 3 . Условия распространения радиоволн в космосе близки к условиям распространения в свободном пространстве. Таким образом, оказывается возможным рассматривать раздельно влияние на распространение радиоволн земной поверхности, тропосферы, ионосферы и космического пространства.

К радиоволнам относят электромагнитные колебания, длина волны которых лежит в пределах от 2×10 –9 до 10 5 м, что соответствует частотам колебаний от 15×10 10 до 3×10 –3 МГц.

Контрольные вопросы:

1. Классификация радиоволн по диапазонам частот.

2. Основные задачи теории распространения радиоволн.

3. Какие физические процессы сопровождают РРВ вдоль земной поверхности?

4. Поясните принцип отражательной трактовки влияния Земли.

5. Поясните назначение передающей и приемной антенн.

6. Перечислите основные задачи теории антенн.

7. Влияние среды на условия РРВ.

ГЛАВА 2. МЕХАНИЗМЫ РАСПРОСТРАНЕНИЯ РАДИОВОЛН. РАСПРОСТРАНЕНИЕ РАДИОВОЛН В СВОБОДНОМ ПРОСТРАНСТВЕ

2.1. Механизмы распространения радиоволн


Любой колеблющийся электрический заряд является источником переменного электромагнитного поля, излучающего в окружающее пространство. Излучение зарядом электромагнитной волны можно пояснить следующим образом. Рассмотрим два проводящих шара, находящихся на расстоянии L друг от друга (рис. 1). Такая сис­тема называется электрическим диполем. После выключения гене­ратора шары будут заряжаться и разряжаться. При этом по проводу L протекают токи зарядки и разрядки емкости, образованной шара­ми. Емкость шаров много больше емкости отрезков аb и сd провода L поэтому током смещения между отрезками провода можно пре­небречь. Можно считать, что ток проводимости, протекающий в проводе L, замыкается только через ток смещения, протекающий в пространстве между шарами. В этом случае амплитуда тока I вдоль провода L остается постоянной. Такой электрический диполь называют диполем Герца.

На рис. 1 графически изображено распределение амплитуды тока вдоль провода диполя. На этом же рисунке показаны силовые линии электрического поля диполя для момента времени, когда ша­ры заряжены. Линии тока смещения расположены в пространстве так же, как и линии электрического поля. При работе генератора переменный ток смещения вызывает появление переменного маг­нитного поля, силовые линии которого окружают линии тока смеще­ния. В свою очередь переменное магнитное поле по закону элек­тромагнитной индукции вызывает в окружающем пространстве по­явление переменного электрического поля и соответствующего тока смещения. Рассмотренный процесс распространяется в окру­жающей среде самоподдерживаясь. Если, например, выключить генератор, питающий диполь, то в окружающей среде продолжает распространяться возникшая электромагнитная волна - ток смеще­ния вызывает переменное магнитное поле, которое, в свою оче­редь, создает переменное электрическое поле и ток смещения в соседних областях пространства. Если генератор, возбуждающий диполь, генерирует напряжение, изменяющееся по гармоническому закону U = U m sinωt, то и электромагнитное поле изменяется во вре­мени по гармоническому закону с той же частотой ω.

Скорость распространения фазы электромагнитной волны назы­вают фазовой скоростью. Фазовая скорость электромагнитной вол­ны в диэлектрике равна

Где μ - магнитная проницаемость среды; ε - диэлектрическая про­ницаемость среды.

В свободном пространстве ε = ε 0 = 8,85·10 -12 Ф/м, μ = μ 0 = 4π·10 -7 Гн/м и М ф ≈ 3·10 -8 м/с, т.е. равна скорости света.

Расстояние, которое проходит определенная фаза волны за время одного периода колебаний Т, называется длиной волны:

λ = М ф Т = М ф /f.

Поверхность, на которой фаза волны одинакова, называется фронтом волны. На больших расстояниях r от диполя при выполне­нии условия r >> L фаза волны одинакова на поверхности сферы. Такая волна называется сферической.

Диполь Герца обычно в качестве антенны не применяют. Однако любую проволочную антенну можно представить состоящей из эле­ментарных отрезков провода, в пределах каждого из которых амплитуда тока может считаться неизменной. Такой отрезок назы­вают элементарным электрическим вибратором, аналогичным ди­полю Герца.

2.2. Энергетические соотношения в условиях свободного пространства

В свободном пространстве, амплитуда напряженности электрического поля в точке наблюде­ния (точке приема) определяется как

(1)

где Р 1 ’ - мощность, подводимая к передающей антенне; G 1 - коэффи­циент усиления передающей антенны относительно изотропного из­лучателя; r - расстояние от точки передачи до точки приема.

Произведение P 1 ’ G 1 = Р 1экв называют эквивалентной мощностью излучения, которую надо подвести к ненаправленной антенне, что­бы получить в точке приема такую же напряженность поля, как от на­правленной антенны с коэффициентом усиления G 1 к шторой подве­дена мощность Р 1 ’ .

Из (1) следует, что даже в свободном пространстве, среде без потерь, напряженность поля в точке приема убывает обратно пропор­ционально первой степени расстояния, что обусловлено уменьшением плотности мощности (среднего за период колебаний значения вектора Пойнтинга) при удалении от источника.

Во многих случаях, например при расчете радиолиний в диапа­зонах коротких (KB), средних (СВ) и длинных (ДВ) волн, пользуются не амплитудным, а действующим значением напряженности поля, ко­торое в условиях свободного пространства

(2)


При расчете и проектировании радиолиний, особенно в диапа­зонах сантиметровых и дециметровых волн, необходимо знать мощ­ность сигнала на входе приемника. Эта мощность определяется различно для радиолиний двух типов.

Рис. 2 – Обобщенная структура радиолинии

На радиолинии I типа передача информации ведется непосредственно из пункта передачи в пункт при­ема на радиолиниях II типа принимаются сигналы, испы­тавшие пассивную ретрансляцию на пути от передатчика к приемнику (рис. 2). На этих линиях непосредственная передача энергии волны от источника до точки приема по каким-либо причинам невозможна (например, этот путь перекрыт препятствием). На наземных радиоли­ниях с пассивной ретрансляцией на пути распространения имеется специальное антенное устройство, которое облучается первичным по­лем и переизлучает его в виде вторичного поля, предназначенного для приема. По такому же принципу работают системы пассивной радио­локации, где первичное поле облучает обнаруживаемую цель, а поле, переизлученное целью, принимается локатором.

Рис. 3 – Пассивная ретрансляция

На любой радиолинии мощность на входе приемника Р 2 связана с плотностью потока мощности в месте приема П 2 соотношением

где ή 2 - КПД фидера приемной антенны; S Д = G 2 λ 2 /4π - действующая площадь приемной антенны.

На радиолинии I типа в условиях свободного пространства плот­ность потока мощности в месте приема

(4)

где Р 1 ,ή, G 1 , r указаны на рис. 3.

Подставляя (4) в (3), получаем для радиолинии I типа мощность на входе приемника в условиях свободного пространства:

На радиолинии II типа значение П 02 зависит от тех же парамет­ров, что и на линии I типа, и, кроме того, от переизлучающих свойств ретранслятора. Если какое-либо тело облучается полем, то его способ­ность переизлучать это поле оценивается эффективной площадью рас­сеяния σ эф (ЭПР). Величина ЭПР зависит от формы, размеров, элект­рических свойств материала, из которого выполнен переизлучатель, а также от его ориентации относительно направления распространения первичного поля и направления на прием.

Согласно выше сказанного мощность на входе приемника для радиолинии I типа

Из (6) видно, что в свободном пространстве при от­сутствии пассивного ретранслятора на линии мощность на входе при­емника уменьшается обратно пропорционально квадрату расстояния, а при работе с ретранслятором - обратно пропорционально четвертой степени. Такое быстрое убывание поля на линиях II типа объясняется тем, что поле дважды испытывает расходимость: первичное поле - на пути от источника (передающей антенны) до ретранслятора и вторич­ное поле - на пути от источника (ретранслятора) до пункта приема.

При проектировании систем удобно иметь сведения о потерях при передаче электромагнитной энергии. Потерями передачи L назы­вают отношение мощности Р 1 подводимой к передающей антенне, к мощности Р 2 " на входе приемной антенны:

где Р 1 - мощность на выходе передатчика; Р 2 - мощность на входе приемника.

Для радиолинии I типа в условиях свободного пространства со­гласнo выше сказанного потери передачи

Расчеты упрощаются, если выделить составляющую L 0 , которая характеризует потери, обусловленные расходимостью вол­ны при G 1 = G 2 = 1. Составляющая L 0 называется основными потеря­ми передачи в условиях свободного пространства:

Полные потери передачи обычно выражают через L 0 . Можно записать:

(10)

Для радиолинии II типа в условиях свободного пространства при r 1 – r 2 = r потери передачи составят

(11).

Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.

Радиоволна

Длина волны(λ) - это расстояние между соседними гребнями волны.
Амплитуда(а) - максимальное отклонения от среднего значения при колебательном движении.
Период(T) - время одного полного колебательного движения
Частота(v) - количество полных периодов в секунду

Существует формула, позволяющая определять длину волны по частоте:

Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)

«УКВ», «ДВ», «СВ»
Сверхдлинные волны - v = 3-30 кГц (λ = 10-100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.

Длинные волны (ДВ) v = 150-450 кГц (λ = 2000-670 м).


Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.

Средние волны (СВ) v = 500-1600 кГц (λ = 600-190 м).


Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

Короткие волны (КВ) v= 3-30 МГц (λ = 100-10 м).

Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.

Ультракороткие Волны (УКВ) v = 30 МГц - 300 МГц (λ = 10-1 м).


Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:

Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.

Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц - 3 ГГц (λ = 1-0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.

Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц - 30 ГГц (λ = 0,1-0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

AM - FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:

AM - амплитудная модуляция


Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ - первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.

FM - частотная модуляция


Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.

На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.

Еще термины
Интерференция - в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.


Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».

Дифракция - явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.

PS:
Надеюсь, информация описанная мной будет полезна и принесет некоторое понимание по данной теме.

Радиоволны, излучаемые различными передатчиками, распространяются в окружающем передающую антенну пространстве прямолинейно и независимо от других электромагнитных колебаний. Но это правило справедливо только для случая распространения волны в идеальном диэлектрике и при отсутствии каких-либо препятствий.

На распространение радиоволн в околоземном пространстве существенное влияние оказывает земная поверхность и свойства земной атмосферы. Земная поверхность не является плоской и не обладает идеальной проводимостью. Различные неровности на поверхности земли (горы, строения) рассеивают и поглощают электромагнитные колебания, причём степень воздействия зависит от длины волны.

Земная атмосфера также неоднородна и свойства её сильно зависят от высоты над поверхностью Земли. Земная атмосфера простирается до высоты свыше тысячи километров, не имея резкой верхней границы. Слой атмосферы, расположенный непосредственно у поверхности Земли называется тропосферой . Свойства и состояние тропосферы характеризуется тремя параметрами: давлением воздуха, его температурой и влажностью. С изменением давления, влажности и температуры изменяется и показатель преломления слоёв тропосферы. Нормально этот показатель медленно уменьшается при подъёме. На высотах от 60 км и выше газы, входящие в состав атмосферы, под действием ультрафиолетовых и рентгеновских лучей солнечного спектра ионизируются . Поэтому слои атмосферы, лежащие на высотах от 60 км до 400 км над поверхностью Земли, называется ионосферой . Степень ионизации на разных высотах различна и неоднородна (Рис. 4).

Наиболее низкая ионизированная область – слой D – располагается на высотах от 60 км до 90 км. Он образуется в дневные часы под действием солнечных лучей и в ночные часы исчезает.

Рис. 4. Строение ионосферы Земли.

Следующая ионизированная область – слой Е – имеет максимум на высоте 120 км. Концентрация электронов в слое Е сильно зависит как от времени суток, так и от времени года. В летнее время концентрация электронов выше, чем зимой. На высотах 80 – 100 км наблюдаются сильные неоднородности ионизации.



Верхняя область ионосферы (от 180 до 400 км) называется слоем F . В дневные часы летних месяцев эта область распадается на два слоя F1 (180 – 240 км) и F2 (300 – 400 км). В остальное время суток и года остаётся только слой F2.

Закономерный ход электронной концентрации в слоях ионосферы нарушается в результате вспышек солнечной активности. Наиболее сильны такие изменения в слоях D и Е.

Каждый слой ионосферы имеет неравномерную концентрацию электронов. Эта концентрация с высотой постепенно возрастает, достигает максимума и постепенно уменьшается. Можно представить приближенно, что слой ионосферы (например, слой F), в свою очередь, имеет слоистую структуру. В результате такой структуры ионосферы, радиоволны преломляются и при определённых условиях могут возвращаться вновь на Землю (Рис. 5). Радиоволны, возвращающиеся к Земле после отражения в ионосфере, называют пространственными волнами.

Рис. 5. Влияние ионосферы на распространение радиоволн.

Радиоволны, распространяющиеся в непосредственной близости к земной поверхности и частично огибающие выпуклость земного шара благодаря дифракции, называются поверхностными (земными) волнами.

Разделение радиоволн на длинные, короткие и ультракороткие в значительной степени определяется особенностями их распространения (Рис. 7).

К сверхдлинным волнам относятся волны больше 10000м, а к длинным – от 10000 до 1000м.

Вода океанов и морей и даже влажная почва являются для этих волн почти проводником, т.е. также отражают их при любом угле падения. Этот процесс похож на распространение волн в гигантском волноводе (или коаксиальной системе), стенками которого служат ионосфера и земная поверхность (рис. 6). Именно такой «волноводный» характер распространения (а не простое явление дифракции) позволяет объяснить возможность длинноволновой связи на любые земные расстояния вплоть до антипода (около 20000км).

Рис. 6. Распространение длинных волн.

Выгодным свойством длинноволновой связи и радиовещания на длинных волнах является сравнительное постоянство напряженности поля в пункте приема в течение суток, года и 11-летнего периода солнечной активности.

Основным недостатком длинноволнового диапазона следует считать его малую частотную вместимость (общее число килогерц). Характерны также большие размеры антенных сооружений, соизмеримые с длиной волны. Кроме того, на длинных волнах очень сильны помехи радиоприему, создаваемые разрядами атмосферного электричества.

К средневолновому диапазону относятся волны от 1000 до 100м. На средних волнах работает много радиовещательных станций и связных станций торгового флота разных стран. Если для длинных волн характерным было «волноводное» распространение между земной поверхностью и слоем E, то для вертикального отражения средних волн концентрация электронов слоя E не всегда достаточна, а концентрация слоя D вовсе недостаточна.

По сравнению с длинными волнами, средние волны проникают в ионизированный слой до своего отражения гораздо глубже. Они сильно поглощаются в дневном слое Е, а также в слое D, сквозь который проходят дважды. Ночью, отражаясь от слоя Е только при наклонном падении (т.е. проникая в него не столь глубоко) и не встречая на пути распространения слой D, средние волны претерпевают гораздо меньшие потери.

Всем сказанным объясняется следующая особенность средних волн: в дневные часы они являются только поверхностными (земными), а ночью на более значительных удалениях от передатчика можно принимать и пространственные (ионосферные) волны.

Ввиду того что участие ионосферы в распространении средних волн носит перемежающийся характер, это распространение имеет ряд особенностей. Первой из этих особенностей следует считать замирания (резкие уменьшения) силы приема. Если днем в пункт приема доходили земные (и только земные волны), то ночью туда же могут попадать и волны, отраженные ионосферой. Тогда поле в пункте приема становится результатом интерференции земных и ионосферных волн и окажется усиленным при синфазности или ослабленным при противофазности этих волн.

Второй особенностью распространения средних волн нужно считать колебания силыприёма в течение суток. На близких расстояниях, где основным оказывается поле земных волн, сила приёма практически не меняется в течение суток. На средних расстояниях, куда земные волны доходят с ослаблением, днём слышимость может быть слабой, а ночью, когда главенствующим окажется поле пространственных волн, слышимость возрастает, сопровождаясь замираниями. На больших же расстояниях, куда земные волны практически не доходят, слышимость может появ­ляться лишь в ночное время за счёт ионосферных волн.

Условия связи на средних волнах изменяются и в течение го­да из-за того, что в летние месяцы возрастает уровень атмосфер­ных помех. Влияние же 11-летнего периода солнечной активности и воздействие ионосферных возмущений на средних волнах незначительно.

Короткими называют волны от 100 до 10м(частоты от 3*10 6 до 30*10 6 Гц). Эти волны, как и средние, могут распространяться и поверхностными, и пространственными лучами.

Поглощение энергии радиоволн в земной поверхности возрастает с увеличением частоты, а потому короткие волны распространяются вдоль земли на сравнительно небольшие расстояния: при мощностях излучения в десятки и даже сотни ватт лишь на десятки километров, особенно если речь идёт о волнах верхней половины коротковолнового диапазона (50-10м).

На коротких волнах основным способом передачи сигналов является однократное или даже многократное отражение от ионосферы. Таким способом осуществляются эко­номичные дальние связи и дальнее радиовещание. В нормаль­ных условиях распространения пространственных коротких волн отражающим служит слой F 2 а лежащие ниже него слои Е и D оказываются поглощающими, т. е. вредными.

Днём для дальних связей применяются наиболее короткие волны этого диапазона (примерно от 10 до 25м); они при малом угле возвышения способны отразиться от слоя F 2 . Конечно, более длинные волны и подавно стали бы отражаться, но при высокой концентрации электронов в слоях Е и D потери в этих слоях днем были бы слишком большими и потребовалось бы невыгодное увеличение мощности передатчика. Ночью для дальних связей используется нижняя часть коротковолнового диапазона (при­близительно от 35 до 100 м), так как при уменьшенной концентра­ции электронов в слое F 2 более короткие волны прошли бы сквозь ионосферу даже при малом угле возвышения. Потери в расположенных ниже слоях не столь опасны, ибо слой D ночью исчезает, а ионизация слоя Е сильно уменьшается.

Волны, занимающие участок между «дневными» и «ночными» (приблизительно от 25 до 35 м), успешно применяются для связи в часы полуосвещённости. Следует, конечно, помнить, что точное разграничение этих трёх участков коротковолнового диапазона невозможно, так как их границы зависят от сезона и от фазы 11-летнего периода солнечной активности.

При приёме пространственных коротких волн наблюдаются беспорядочно возникающие изменения напряжённости электри­ческого поля, с которыми связаны замирания и возрастания силы приёма. Замирания здесь бывают глубже и следуют друг за дру­гом чаще, чем на средних волнах.

На коротких волнах замирание обычно является ре­зультатом интерференции нескольких лучей, отражённых от ионо­сферы.

Основные пути борьбы с вредным действием замираний - автоматическая регулировка усиления и приём на разнесённые ан­тенны (а иногда и на антенны с взаимно перпендикулярной поля­ризацией).

На корот­ких волнах при удалении приёмника от передатчика часто наблюдается сначала уменьшение слышимости вплоть до полного её прекращения, а затем при большем удалении восстанавливается нормальный приём сигналов. Следовательно, между двумя зонами слыши­мости существует зона молчания.

Диапазон, ограниченный частотами 30 МГц ( = 10 м) и 30000 МГц ( см), называется диапазоном ультракоротких волн, (УКВ). В свою очередь, этот диапазон делится на волны метровые (К от 10 м до 1 м), дециметровые (К от 1 м, до 10 см) и сантиметровые ( от 10 см до 1 см). Волны короче 1см назы­ваются миллиметровыми и субмиллиметровыми волнами.

Связь и радиовещание на ультракоротких волнах имеют очень важные преимущества по сравнению с длинноволновой и корот­коволновой связью и радиовещанием. Передачи телевидения во­обще возможны лишь на УКВ.

Первое преимущество - возможность передачи значительно более широкого спектра частот сигнала (например, много радио­телефонных каналов или же телевизионный канал)

Второе преимущество ультракоротких волн - высокая направленность действия антенн в сторону корреспондента.

Ещё одним достоинством связи на УКВ, обеспечиваемым в полной мере при наличии прямой (геометрической) видимости между антеннами корреспондирующих станций, следует считать её устойчивость, т. е. постоянство уровня сигнала в приёмнике вне зависимости от часов суток, времени года и других внешних причин.

Требование прямой видимости между антеннами УКВ радиостанций, которое в течение десятилетий ограничивало примене­ние этого диапазона, вытекает из прямолинейности распростра­нения основного потока энергии этих волн.

Рис. 7. Особенность распространения

радиоволн различных диапазонов.

Лишь в пятидесятых годах стала возможна непосредственная дальняя связь на УКВ. Такая связь обеспечивается, во-первых, рассеянием УКВ на неоднородностях тропосферы, во-вторых, рас­сеянием на неоднородностях ионосферы и отражением от ионизированных следов метеоров и, в-третьих, ретрансляцией через искусственные спутники Земли.

Возможность дальней (и притом регулярной, сравни­тельно устойчивой) связи на УКВ создаётся рассеянием их энер­гии в местных (локальных) неоднородностях тропосферы. Такие неоднородности постоянно создаются и распадаются благодаря вихревым движениям воздуха. Они могут иметь либо плоскую, либо шарообразную форму. Лучи ультракоротких волн, проходя сквозь тропосферные неоднородности, испытывают частичное от­ражение рассеянного характера. Рассеянные лучи преимущественно направлены вперёд, и некоторая их часть до­стигает Земли в точках, отстоящих от пункта излучения на расстояниях, исчисляемых сотнями километров.

Другая возможность дальней связи на ультракоротких вол­нах - связь за счёт рассеяния волн в ионосфере. В нижних слоях ионосферы, особенно в слое D, есть неоднородности электронной концентрации. Эти неоднородности также рассеивают часть энергии проходящих сквозь них радиоволн, как рассеивали неод­нородности тропосферы.

Однако связь при по­мощи рассеянного отражения от неоднородностей в ионосфере имеет специфические свойства.

Метеор оставляет после себя ионизированный «след», рассеивающийся за промежуток времени от десятых долей секун­ды до нескольких секунд. Средняя длина следа, сохраняющего высокую плотность ионизации, принимается при расчётах равной 25км. Плотность ионизации метеорного следа достаточна для того, чтобы отражение метровых волн носило характер скорее зеркаль­ного, нежели рассеянного Рис. 8. При благоприятных сочетаниях на­правления метеорного следа и направления трассы связи поток энергии отражённых волн имеет гораздо большую плотность, не­жели поток рассеянных волн. Этим и объясняется повышенный уровень сигнала при метеорном отражении.

Геометрическое построение показывает, что метеорная связь возможна приблизительно от 700 до 2000км, как и ионосферная. Наибольший эффект в пункте приёма дают метеоры, перпендикулярные плоскости распространения радиоволн между пунктами передачи и приёма. Что касается диапазона волн, то выгодны частоты 30-60 Мгц (волны от 10 до 5м), так как для отражения более коротких волн уже значительная часть следов оказывается недостаточной.

Рис.8. Схема связи с отражением от метеорного следа.

Министерство образования Российской Федерации

Уральский государственный технический университет

РАСПРОСТРАНЕНИЕ РАДИОВОЛН

В МОБИЛЬНОЙ СВЯЗИ

Методические указания по курсу

“Распространение радиоволн и антенно-фидерные устройства в системах мобильной связи”

для студентов всех форм обучения

радиотехнических специальностей

Екатеринбург 2000

Составители,

Научный редактор доц., канд. техн. наук

РАСПРОСТРАНЕНИЕ РАДИОВОЛН В МОБИЛЬНОЙ СВЯЗИ: Методические указания по курсу “Распространение радиоволн и антенно-фидерные устройства в системах мобильной связи”/ , . Екатеринбург: УГТУ, 20с.

Методические указания содержат краткое описание расчета радиолиний связи с подвижными объектами на открытой местности и в сложных условиях городской и промышленной застройки. Приведены выражения для расчета ослабления сигнала в свободном пространстве, а также с учетом влияния земной поверхности и затеняющих препятствий. Рассмотрены эффекты отражения, дифракции и рассеяния радиоволн. В каждом разделе приведены практические упражнения.

Библиогр.: 6 назв. Рис.14. Табл.1.Прил.1.

Подготовлено кафедрой «Высокочастотные средства

радиосвязи и телевидения».

радиосвязи и телевидения”.

Ó Уральский государственный

технический университет, 2000

Целью данных методических указаний является научить студентов рассчитывать радиоканал связи между передающей и приемной антеннами в свободном пространстве и реальных условиях и связывать принятую мощность с напряжением в приемнике и амплитудой электрического поля, изучить технику анализа отражения, рассеяния и дифракции радиоволн, научиться учитывать влияние земной поверхности с помощью двухлучевой модели распространения радиоволн, уметь проводить оценку напряженности электромагнитного поля в условиях города.

ВВЕДЕНИЕ

Путь радиоволны от передатчика к приемнику в системах мобильной связи крайне разнообразен: от их прямой видимости до сильно закрытого препятствиями, домами, деревьями пути. В отличие от проводной связи, где параметры постоянны, в беспроводной связи радиоканалы имеют существенно случайные параметры, часто сложно анализируемые. Моделирование радиолинии - наиболее сложная задача проектирования радиосистем. Оно в основном выполняется статистически с использованием данных экспериментов, выполненных порой именно для такой же или аналогичной системы.

Механизм распространения радиоволн в системах связи различен, но в основном может быть представлен отражением, дифракцией и рассеянием. Большинство сотовых систем работают в городах, где нет прямой видимости антенн передатчика и приемника, а наличие высоких зданий вызывает большие дифракционные потери. Благодаря многократным переотражениям от различных объектов, радиоволны проходят различный путь. Интерференция этих волн вызывает сильное изменение уровня сигнала от положения абонента.

Моделирование распространения радиоволн основано на предсказании среднего уровня принимаемого сигнала на заданном расстоянии от излучателя, а также в определении разброса его значений в зависимости от конкретной ситуации на трассе. Расчет радиолинии позволяет определить зону обслуживания передатчика. Моделирование среднего уровня сигнала в зависимости от расстояния между передатчиком и приемником называется крупномасштабным моделированием, поскольку позволяет определить сигнал на большом удалении (несколько сотен и тысяч метров). С другой стороны, модели характеризуют быстроменяющиеся значения уровня принимаемого сигнала на малых смещениях (несколько длин волн) или за короткое время (секунды) - они называются мелкомасштабными моделями.

При перемещении мобильного приемника на малые расстояния принимаемый сигнал может меняться очень сильно. Это происходит из-за того, что принимаемый сигнал представляет собой сумму многих волн, приходящих с различных направлений, проходящих разное расстояние и имеющих различную амплитуду и фазу. Суммарный сигнал подчиняется закону Релея. В зависимости от трассы радиоканала мелкомасштабная девиация может меняться на 3-4 порядка, т. е. уровень сигнала может меняться на 30-40 дБ (рис.1). Если мобильный приемник будет достаточно далеко, средний уровень сигнала убывает. Ниже будет рассматриваться крупномасштабная зависимость сигнала на входе приемника.

Рис.1. Изменение напряженности поля в зависимости от расстояния до передающей антенны с учетом влияния случайных факторов на частоте 1800 МГц

2. РАСПРОСТРАНЕНИЕ ВОЛН В СВОБОДНОМ ПРОСТРАНСТВЕ

Модель распространения волн в свободном пространстве используется для расчета принятого сигнала в условиях, когда передающая и приемная антенны находятся на открытой незатененной препятствиями радиолинии. Эта модель применяется для анализа радиоканалов связи через спутники и для наземных радиолиний, работающих в диапазоне сверхвысоких частот. Мощность, принятая приемной антенной с усилением Gr, которая излучается антенной передатчика мощностью Pt c коэффициентом усиления Gt на длине волны l на расстоянии d на открытом неограниченном пространстве, рассчитывается по формуле

. (1)

Коэффициент усиления антенны определяется следующим образом:

, (2)

где Аэ - эффективная площадь поверхности антенны, м2.

Длина волны связана с несущей частотой соотношением

где с - скорость света.

Принимаемая антенной мощность в соответствии с (1) убывает с ростом расстояния d со скоростью 20 дБ на декаду, т. е. пропорционально множителю .

Потери передачи в радиоканале (отношение принятой и излученной мощностей)

, дБ. (4)

Для изотропных антенн (коэффициент усиления каждой из них G=1)

, дБ. (5)

Предыдущие выражения верны только для дальней зоны (или зоны Фраунгофера). Граница дальней зоны определяется условием:

где D - наибольший размер антенны.

Дополнительным условием дальней зоны должно быть выполнение соотношений:

На больших расстояниях при расчете напряженности поля в точке приема иногда используют значение принимаемой мощности на некотором фиксированном расстоянии d0 - Pr (d0). Тогда на ином расстоянии d:

, . (7)

Т. к. изменение уровня принимаемой мощности от расстояния очень велико, используют отсчет мощности в дБмВт (дБ по отношению к 1 милливатту) и дБВт (дБ по отношению к 1 ватту):

, , (8)

где Pr (d 0) подставляется в Вт.


Опорное расстояние d0 обычно выбирается равным 100 м или 1 км для связи вне зданий. Для радиоканалов внутри зданий типичное значение опорного расстояния d 0 = 1 м.

Иногда в расчетах используется параметр - эффективная излучаемая мощность (), который показывает, во сколько раз плотность потока мощности в точке расположения приемной антенны при излучении мощности Pt будет больше при использовании антенны с коэффициентом усиления Gt по сравнению с изотропной антенной. Выражение

(9)

показывает максимальную излучаемую мощность в направлении максимального излучения.

Плотность потока мощности на расстоянии d от передающей антенны:

где 377 Ом - характеристическое сопротивление свободного пространства,

Е - амплитуда электрического поля на расстоянии d, В/м.

Принимаемая мощность (мощность, перехватываемая приемной антенной из падающей плоской волны)

где AЭ - эффективная площадь поверхности приемной антенны, м2.

Эквивалентная схема приемной антенны, включенной на вход приемника, показана на рис.2. При условии согласования входного сопротивления антенны и приемника () напряжение на входе последнего будет равно половине ЭДС антенны. Действующее напряжение U связано с принятой мощностью выражением

. (12)

Рис.2. Эквивалентная схема приемной антенны, включенной на вход приемника

Напряжение на входе приемника определяется по формуле

, В. (13)


3. ТРИ ОСНОВНЫХ СПОСОБА РАСПРОСТРАНЕНИЯ РАДИОВОЛН

1. Отражение - имеет место при падении волны на объекты с размерами много больше длины волны. Наблюдаются, например, отражения от земли, стен зданий и т. п.

2. Дифракция - явление возникновения вторичных волн при падении радиоволны на препятствие с острыми кромками. Дифракцией обусловлено наличие поля за препятствиями в зоне геометрической тени. На высоких частотах дифракция, как и отражение, существенно зависит от геометрии объекта, а также амплитуды, фазы и поляризации поля.

3. Рассеяние - имеет место при распространении волны в среде с мелкими объектами (меньше длины волны).

3.1. Отражение радиоволн

3.1.1. Отражение радиоволн от плоской границы раздела двух сред

Если волна падает на границу раздела сред с разными параметрами, наблюдается частичное прохождение волны во вторую среду.

Амплитуды поля падающей Ei и отраженной Er волн связаны через коэффициенты отражения Френеля Г, а прошедшая Et волна - через коэффициент прохождения Т:

Рис.3. Отражение и преломление волн на границе раздела сред

Падающая волна произвольной поляризации раскладывается на две: с вертикальной и горизонтальной поляризацией.

В диэлектрике с потерями диэлектрическая проницаемость имеет комплексный характер:

, (14)

где er - относительная диэлектрическая проницаемость cреды, s - проводимость среды, Cм/м. В хороших проводниках, когда выполняется условие f < s/e0er, вещественной частью в (14) можно пренебречь.

Коэффициент отражения для поля вертикальной поляризации

. (15)

Коэффициент отражения для поля горизонтальной поляризации

, (16)

где Zi - характеристическое сопротивление 1-й или 2-й среды.

.

Граничные условия требуют выполнения соотношений:

E r = Г. E i, (18а)

E t = (1 + Г) . E i. (18б)

Если первая среда - свободное пространство (e1=1), а вторая среда не обладает магнитными свойствами (m1 = m0), то выражения (15), (16) упрощаются:

, (19)

. (20)

Для углов падения, близких к скользящим , коэффициенты отражения .


Для некоторого угла коэффициент отражения для волны вертикальной поляризации . Этот угол называется углом Брюстера qБР (угол, для которого нет отраженной волны вертикальной поляризации):

. (21)

Если первая среда - воздух, а диэлектрическая проницаемость второй среды er, то

. (22)

Рис.4. Зависимость коэффициента отражения волны вертикальной

и горизонтальной поляризации от угла падения ,

падающей на поверхность сухой земли (er = 4)


Угол Брюстера имеет место только для вертикальной поляризации поля.

3.1.2. Отражение от поверхности идеального проводника

В случае падения плоской волны на поверхность идеального проводника происходит полное отражение.

Если вектор лежит в плоскости падения (вертикальная поляризация), то

Для случая, когда вектор перпендикулярен плоскости падения (горизонтальная поляризация),

Из (следует, что для углов падения, близких к скользящим, коэффициенты отражения и .

3.1.3. Отражение от поверхности земли (2- лучевая модель)

В задачах мобильной связи прямое распространение радиоволн между передающей и приемной антеннами встречается достаточно редко, поэтому модель распространения волн в свободном пространстве имеет ограниченное применение. Полезная для практики двухлучевая модель распространения волн (рис.5) основана на законах геометрической оптики.

Рис.5. Прямой и отраженный лучи в точке приема радиоволн

Суммарное поле в точке приема обусловлено влиянием прямого и отраженного от земной поверхности лучей:

.

Из рис.6 видно, что разность хода прямого луча и луча с отражением от земли

Рис.6. Мнимый излучатель поля

Если расстояние , то (27) может быть упрощено с помощью разложения Тейлора:

, м. (28)

Тогда разность фаз прямого и отраженного лучей

. (29)

Суммарное электрическое поле в точке приема прямого и отраженного лучей при сделанных допущениях вычисляется по формуле

, , (30)

где Е0 - напряженность поля, создаваемая излучающей антенной на некотором опорном расстоянии d0 в свободном пространстве (без учета отражения), .

На больших удалениях, когда выполняется соотношение ,

. (31)

Суммарное поле в этом случае может быть аппроксимировано выражением

, , (32)

где К - константа, связанная с амплитудой поля Е0 , высотами подвеса антенн и длиной волны. Мощность, принятая приемной антенной, пропорциональна квадрату напряженность поля:

. (33)

Из формулы (33) видно, что на больших расстояниях принятая мощность убывает обратно пропорционально d4 или 40 дБ на декаду. Это существенно быстрее, чем в свободном пространстве.

Для двухлучевой модели в соответствии с (33) потери мощности в радиоканале определяются выражением


3.2. Дифракция радиоволн

Явление дифракции позволяет радиоволнам распространяться вокруг сферической земной поверхности за горизонт и за различные препятствия. Несмотря на перекрытие прямой видимости и существенное уменьшение уровня сигнала, он все таки остается достаточным для приема.

Феномен дифракции объясняется принципом Гюйгенса - вторичного переизлучения точек фронта волны с различной фазой (зон Френеля). Напряженность поля определяется векторной суммой вклада вторичных излучателей.

3.2.1. Геометрия зон Френеля

Пусть между излучателем и приемником расположено препятствие - экран высотой h бесконечных размеров в поперечном сечении. Расстояние от экрана до излучателя - d1 , до приемника - d2 .

Рис.7. Дифракция радиоволн на клиновидном препятствии

Ясно, что путь через кромку препятствия больше прямого. Полагая, что h<>l, разность хода прямого и через кромку лучей будет:

. (35)

Соответствующая ему разность фаз

, (36)

где используется приближение для малого аргумента tg x » x, а угол a аппроксимирован выражением

.

Выражение (36) может быть аппроксимировано с использованием безразмерного дифракционного параметра Френеля - Кирхгофа:

, (37)

где a подставляется в радианах, все остальные параметры в метрах. Таким образом, разность фаз Ф может быть вычислена из выражения

Из выражения (38) следует, что сдвиг фазы между прямым и дифракционным лучами является функцией высоты h и взаимного расположения препятствия, излучателя и приемника.

Дифракционные потери мощности в радиоканале могут быть объяснены с помощью зон Френеля. Зоны Френеля представляют собой области, разность хода через которые от излучателя до приемника составляет nl/2 по сравнению с прямым лучом (l - длина волны, n - целое число).

В мобильной связи обычно наблюдается затенение части зон (источников вторичных волн) и, следовательно, уменьшение доли принятой мощности. В зависимости от геометрии препятствия принятая энергия определяется через векторное суммирование вторичных волн.

Рис.8. Формирование зон Френеля

Если препятствие не затеняет первую зону Френеля, то дифракционные потери минимальны и ими пренебрегают. Используют следующее свойство: если открыто не менее 55% первой зоны Френеля, то дальнейшее открытие первой зоны Френеля не уменьшает дифракционные потери.

3.2.2. Модель дифракции радиоволн на одиночном клине

Определение степени ослабления поля холмами и зданиями является достаточно сложной задачей при расчете зон обслуживания. Обычно точный расчет ослабления невозможен, поэтому используют методы расчета поля с необходимыми экспериментальными поправками.

Препятствие в виде одиночного холма или горы может быть обсчитано с использованием модели клина. Это простейшая модель препятствия, и быстрый расчет ослабления возможен с использованием классического решения Френеля для дифракции поля на полуплоскости.

Рис.9. Варианты перекрытия видимости антенн препятствием

Напряженность поля в точке расположения приемной антенны определяется векторной суммой вторичных источников, лежащих в плоскости, расположенной над препятствием. Напряженность поля при дифракции на клине определяется выражением

, (39)

где Е0 - напряженность поля в точке расположения приемной антенны при отсутствии препятствия и земли, а F(n) - комплексный интеграл Френеля. Значение интеграла F(n) определяется из графиков и таблиц.

Коэффициент дифракционного усиления с препятствием (обычно он меньше 1) по сравнению со свободным пространством

, дБ. (40)

График этой функции показан на рис.10.

Рис.10. Зависимость коэффициента дифракционного усиления

от значения параметра дифракции n

(41д)


2.2.3. Дифракция на нескольких клиньях

Если на пути между излучателем и приемником имеется несколько препятствий, то все они аппроксимируются одним эквивалентным препятствием (рис.11).

Рис.11. Эквивалентное клиновидное препятствие в задаче связи

с двумя препятствиями

Эта модель хорошо работает для двух препятствий, для нескольких - возникают определенные математические трудности.

2.3. РАССЕЯНИЕ РАДИОВОЛН

Потери от рассеяния радиоволн на препятствиях обычно много меньше потерь отражения и дифракции. Это объясняется тем, что рассеяние волн происходит во всех направлениях (на таких объектах, как мачты, лампы, деревья и т. д.).

Плоские поверхности с размерами много больше длины волны могут моделироваться как отражающие поверхности. Однако наличие неровностей изменяет отражение. Неровность поверхности определяется критерием Релея, который определяет критическую высоту hc неровностей при падении волны под углом qi:

. (42)

Поверхность считается гладкой, если разброс минимальных и максимальных высот меньше hc. Для неровных поверхностей коэффициент отражения Г умножается на коэффициент потерь рассеяния ps.

Полагая, что высота неровностей h распределена случайным образом с гауссовым законом распределения, коэффициент потерь рассеяния

, (43)

где sh - стандартная девиация высоты поверхности вокруг среднего значения высоты. После некоторых уточнений коэффициент потерь рассеяния с хорошим совпадением с практикой определяется выражением

где I0 - функция Бесселя первого рода нулевого порядка. Коэффициент отражения электромагнитного поля для неровностей h>hc определяется выражением

. (45)

Степень рассеяния радиоволн от препятствий больших размеров, например, крупных домов, может характеризоваться поперечником рассеяния. Поперечник рассеяния объекта (RCS) определяется как отношение плотности потока мощности рассеянного поля в направлении приемника к плотности потока мощности, падающей на рассеивающий объект, и имеет размерность м2. Анализ основан на геометрической теории дифракции и физической оптике и может быть использован для задач расчета поля, рассеянного большими зданиями. Для городских условий используется бистатическое уравнение излучения, описывающее распространение волны в свободном пространстве и поле, рассеянное между объектами и затем переизлученное в направлении приемника.

где dt и dr - расстояние от рассеивающего объекта до излучателя и приемника. Это уравнение корректно для дальней зоны излучателя и приемника.

3. ПРАКТИЧЕСКИЕ МОДЕЛИ, ИСПОЛЬЗУЕМЫЕ ДЛЯ РАСЧЕТА ОСЛАБЛЕНИЯ СИГНАЛА В РАДИОКАНАЛАХ

Большинство моделей, используемых при решении задач распространения радиоволн, учитывают одновременно аналитические и экспериментальные данные. Экспериментальный подход основан на использовании графиков и аналитических выражений, описывающих данные предварительных измерений. Преимущество этого подхода состоит в учете большинства факторов, влияющих на распространение радиоволн. Иногда в задачах мобильной связи используются классические модели радиолиний, которые позволяют моделировать в крупном масштабе линии связи. Например, двухлучевая модель позволила предсказать работоспособность сотовых систем до их появления. Ниже представлены некоторые модели радиолиний.

3.1. Потери передачи в удаленных линиях

Как теоретические, так и экспериментальные исследования подтвердили, что принимаемая мощность изменяется по логарифмическому закону. Этот закон выполняется как для радиолиний вне зданий, так и внутри их. Средние крупномасштабные потери при произвольном расстоянии излучатель - приемник описываются выражением

(47)

или в логарифмическом масштабе

, дБ, (48)

где n - показатель степени, который показывает, с какой скоростью возрастают потери передачи от расстояния; d0 - расстояние от излучателя до границы отсчета, d - расстояние между излучателем и приемником. Черта в (47), (48) означает среднее из возможных значений потерь для данного расстояния d. На диаграмме в логарифмическом масштабе график ослабления описывается наклонной прямой с коэффициентом наклона 10.n дБ на декаду. Показатель n зависит от конкретных параметров среды распространения.

Показатель n ослабления поля для различных условий распространения радиоволн

Важно правильно выбрать подходящее расстояние d0 для исследования условий распространения. В сотовой связи с большими зонами действия обычно используется расстояние 1 км, в микросотовых системах много меньше - 100 м. Это расстояние должно соответствовать дальней зоне антенны для исключения эффектов ближнего поля. Эталонное значение ослабления рассчитывается с помощью формулы распространения в свободном пространстве (4) или через поля, измеренные на расстоянии d0 .

Уравнение (48) не учитывает того, что параметры среды могут быстро изменяться между измерениями. Измерения показали, что величина ослабления мощности в радиоканале описывается нормально-логарифмическим (равномерным в дБ) законом:

где xs - случайная величина c нормально-логарифмическим законом распределения со стандартной девиацией s, дБ.

Данные формулы могут быть использованы для расчета поля в реальных системах связи при наличии случайных ослабляющих сигнал факторов. На практике величины n и s обычно определяются из экспериментальных исследований (рис. 12).

Поскольку значение PL(d) - случайная величина с нормальным распределением по шкале дБ от расстояния d, также случайно распределена и функция Pr(d). Для определения вероятности того, что принятый сигнал будет выше (или ниже) особого уровня, может быть использована функция Q:

, (50а)

где выполняется условие . (50б)

Вероятность того, что принятый сигнал будет выше некоторой заданной величины g, может быть вычислена из накопительной функции плотности как

. (51)

Аналогично вероятность того, что принятая мощность будет меньше g:

(52)


Рис.12. Экспериментальные данные, иллюстрирующие ослабление радиоволн в условиях города (приведены данные измерений ослабления мощности радиоканалов для 6 городов Германии, из этих экспериментальных данных определены параметры n=2.7, s=11.8 дБ)

3.2. Модели радиолиний вне зданий

Радиолинии в мобильной связи часто проходят по неровным местностям. В этом случае следует учитывать реальный профиль трассы. Трасса может изменяться от гладкой до сильно пересеченной местности. Также следует учесть наличие зданий, деревьев и других препятствий при связи в условиях города. Негладкие трассы рассчитываются разными методами. Существующие методы расчета поля в реальных условиях связи сильно отличаются по подходу, сложности и точности. Большинство основано на использовании экспериментальных данных для обслуживаемого района. Ниже описаны некоторые методы.

3.2.1. Метод Okumura

Этот метод является одним из широко используемых методов для расчета радиолиний в условиях города. Он пригоден для частот МГц (хотя может быть экстраполирован до 3000 МГц) и расстояний от 1 до 100 км. Данный метод может быть использован, если эффективная высота подвеса базовой антенны составляет от 01.01.01 м.

Okumura предложил сетку кривых для расчета среднего ослабления относительно ослабления в свободном пространстве Amu в условиях города с квазигладким профилем с изотропной передающей антенной, поднятой на эффективную высоту hte = 200 м и мобильной антенной высотой hre = 3 м. Графики получены в результате многих измерений с ненаправленными антеннами базовой станции и мобильного приемника и представлены в виде графика для диапазона частот МГц как функция дальности от 1 до 100 км.

Для определения потерь на радиолинии рассчитывается ослабление поля в свободном пространстве, затем по кривым графика (рис.13) определяется величина Ama(f, d) и добавляются к ослаблению в свободном пространстве с корректирующей поправкой, зависящей от степени неровности профиля трассы:

где L50 - средняя величина потерь,

LF - потери в свободном пространстве,

Ama - усредненное дополнительное ослабление, обусловленное влиянием земной поверхности,

G(hte) - эффективное усиление передающей антенны,

G(hre) - эффективное усиление приемной антенны,

GAREA - поправочный коэффициент из графика на рис.14.

Рис.13. Частотная зависимость усредненного ослабления

сигнала по отношению к свободному пространству

для квазигладкого профиля трассы

Рис.14. Поправочный коэффициент, обусловленный профилем радиотрассы

Кроме того, Okumura нашел, что величина G(hte) изменяется по закону 20 дБ/декада, а G(hre) для высот менее 3 м - 10 дБ/декада:

, 1000 м > h te> 10 м; (54а)

, hre < 3 м; (54б)

, 10 м > hre >3 м. (54в)

Модель Okumura полностью построена на экспериментальных данных. Графики, полученные Okumura, можно экстраполировать. Модель Okumura наиболее простая и достаточно точная для расчета потерь в сотовых системах связи и мобильной связи. Она является стандартом при расчете сот для мобильной связи в Японии.

Главный недостаток модели - работа с графиками и невозможность полноценно учесть быстроизменяющиеся условия в профиле трассы.

В основном рассмотренный метод используется для расчета радиолиний в урбанизированных и сверхурбанизированных районах. Разница расчетных и экспериментально измеренных напряженностей поля обычно не превышает 10-13 дБ.


3.2.2. Модель Hata

Hata обработал экспериментальные данные Okumura для частот МГц и предложил рассчитывать потери распространения в условиях города по стандартной формуле с учетом корректирующих уравнений для иных условий. Стандартная формула для расчета средних потерь мощности в условиях города:

где fc - частота от 150 до 1500 МГц,

hte - эффективная высота базовой антенны (от 30 до 200 м),

hre - эффективная высота мобильной антенны (от 1 до 10 м),

d - расстояние от передатчика до приемника, км,

a(hre) - корректирующий фактор для эффективной высоты мобильной антенны, который является функцией величины зоны обслуживания.

Для небольших и среднего размера населенных пунктов:

Для крупных городов:

Для fc<300 МГц; (57a)

Для fc>300 МГц. (57б)

В сверхурбанизированных районах стандартная (основная) формула Hata (55) модифицируется следующим образом:

, дБ, (58)

а для открытых районов:

Хотя формулы Hata не позволяют учесть все специфические поправки, которые доступны в методе Okumura, они имеют существенное практическое значение. Расчеты по формулам Hata хорошо совпадают с данными модели Okumura для дальностей, больших 1 км.

3.2.3. Уточнение метода Hata

Европейская ассоциация EVRO-COST предложила новую версию метода Hata, верную для частот до 2 ГГц. Стандартная формула для расчета средних потерь мощности в условиях города записывается следующим образом:

где a(hre) определяется формулами (56) и (57),

Gm = 0 дБ для городов средних и крупных размеров,

Gm = 3 дБ для столиц.

Допустимые границы параметров в (60): fc 1500...2000 МГц,

hte 30...200 м,

Использование вышезаписанных выражений позволяет рассчитывать широкий класс радиоканалов связи с учетом конкретных условий распространения волн. Выбор конкретной модели, описывающей распространение радиоволн, существенно зависит от частоты несущей, высоты подвеса передающей и приемной антенн, окружающего пространства. Адекватность расчетов и экспериментальных данных определяется корректностью используемых методов, а также сильно зависит от практического опыта специалиста.

Радиотехника исторически развивалась с неуклонной тенденцией к освоению все более высокочастотных диапазонов. Это было связано прежде всего с необходимостью создавать высокоэффективные антенные системы, концентрирующие энергию в пределах узких телесных углов. Дело в том, что антенна с узкой ДН обязательно должна иметь поперечные размеры, существенно превышающие рабочую длину волны. Такое условие легко выполнить в метровом, а тем более, в сантиметровом диапазоне, в то время как остронаправленная антенна для длин волн порядка 10 км имела бы совершенно неприемлемые габариты.

Всякая система передачи сигналов состоит из трех основных частей: передающего устройства, приемного устройства и промежуточного звена - соединяющей линии. Для радиосистем промежуточным звеном является среда - пространство, в котором распространяются радиоволны. При распространении радиоволн по естественным трассам, т.е. в условиях, когда средой служат земная поверхность, атмосфера, космическое пространство, среда является тем звеном радиосистемы, которое практически не поддается управлению.

Вторым фактором, определяющим ценные свойства высокочастотных диапазонов, служит то обстоятельство, что здесь удается реализовать большое число радиоканалов с не пересекающимися полосами частот. Это дает возможность, с одной стороны, широко использовать принцип частотного разделения каналов, а с другой - применять широкополосные системы модуляции, например, частотную модуляцию. При определенных условиях такие системы модуляции способны обеспечить высокую помехоустойчивость работы радиоканала.

При распространении радиоволн в среде происходит изменение амплитуды поля волны (обычно - уменьшение), изменение скорости и направления распространения, поворот плоскости поляризации и искажение передаваемых сигналов. В связи с этим, проектируя линии радиосвязи, необходимо:

  • рассчитать энергетические параметры линии радиосвязи (определить мощность передающего устройства или мощность сигнала на входе приемного устройства);
  • определить оптимальные рабочие волны при заданных условиях распространения;
  • определить истинную скорость и направление прихода сигналов;
  • учесть возможные искажения передаваемого сигнала и определить меры по их устранению.

Для решения этих задач необходимо знать электрические свойства земной поверхности и атмосферы, а также физические процессы, происходящие при распространении радиоволн.

Земная поверхность оказывает существенное влияние на распространение радиоволн: в полупроводящей поверхности Земли радиоволны поглощаются; при падении на земную поверхность они отражаются; сферическая форма земной поверхности препятствует прямолинейному распространению радиоволн.

Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли (в масштабе длины волны), называют земными радиоволнами (1 на рис. 6.1). Рассматривая распространение земных волн, атмосферу считают средой без потерь, с относительной диэлектрической проницаемостью е , равной единице. Влияние атмосферы учитывают отдельно, внося необходимые поправки.

В окружающей Землю атмосфере различают три области, оказывающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не резко и зависят от времени и географического места.

Тропосферой называется приземной слой атмосферы, простирающийся до тропопаузы (переходного слоя между тропосферой и стратосферой), лежащей над экватором на высоте 16-18 км, в умеренных широтах - на 10-12 км и в полярных областях - на 7-10 км. В тропосфере происходит искривление траектории земных радиоволн, называемое рефракцией. Распространение тропосферных радиоволн (2 на рис. 6.1) возможно из-за рассеяния и отражения их от неоднородностей тропосферы. Радиоволны миллиметрового и сантиметрового диапазона в тропосфере поглощаются.

Рис. 6.1.

Стратосфера простирается от тропопаузы до высот 50-60 км. Стратосфера отличается от тропосферы существенно меньшей плотностью воздуха и законом распределения температуры по высоте: до высоты 30-35 км температура постоянна, а далее до высоты 60 км резко повышается. На распространение радиоволн стратосфера оказывает то же влияние, что и тропосфера, но оно проявляется в меньшей степени из-за малой плотности воздуха.

Ионосферой называется область атмосферы на высотах 60-10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т.е. имеется большое число свободных электронов (примерно 10 3 ... 10 6 электронов в 1 см 3 воздуха). Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы радиоволн длиннее 10 м. При однократном отражении радиоволны могут перекрывать расстояние по поверхности Земли до 4000 км. В результате многократного отражения от ионосферы и поверхности Земли радиоволны могут распространяться на любые расстояния по земной поверхности. Радиоволны, распространяющиеся путем отражения от ионосферы или рассеяния в ней, называют ионосферными волнами (3 на рис. 6.1). На условия распространения ионосферных волн свойства земной поверхности и тропосферы влияют мало.

Условия распространения радиоволн (4 , 5 на рис. 6.1) при космической радиосвязи обладают некоторыми специфическими особенностями, а на радиоволны 4 основное влияние оказывает атмосфера Земли.



Рекомендуем почитать

Наверх