Объект атрибут значение. Объектно-ориентированные технологии проектирования прикладных программных систем. Моделирование подмножества при помощи типа

Прочие модели 28.03.2019
Прочие модели

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

Российский экономический университет имени Г.В. Плеханова

Уфимский институт (филиал)

Факультет экономики и менеджмента

Курс 2

Специальность 230700.62 Прикладная информатика

Габбасов Тимур Айдарович

Курсовая работа

По дисциплине: «Программная инженерия»

На тему: «Понятие класса и объекта. Что может быть объектом. Атрибут и операции»

Руководитель: Садртдинов Ф.А.

Уфа 2014

Введение ……………………………………………………………………….3

1.Понятие объекта в программировании …………………………………4

2.Определение класса ………………………………………………………..6

2.1.Атрибуты классов ………………………………………………………..7

2.2.Операции ………………………………………………………………….8

2.3.Зависимости между классами, объектами …………………………..11

Заключение ………………………………………………………………….15

Список используемой литературы……………………………………….17

Введение

Актуальность данной работы заключается в том, что благодаря таким понятиям как «Объект» и «Класс», появилось объектно-ориентированное программирование, как систематизированный подход к алгоритмической формализации сложных предметных областей, что значительно упростило решение объемных задач.

Предмет исследования - понятие класса и объекта.

Объект исследования - объект и класс, и их взаимосвязь с атрибутом и операциями.

Цель данной работы: раскрыть суть понятий объект и класс, указать их связь с понятиями атрибута и операции, указать их роль в концепции объектно-ориентированного программирования.

Задачи:


1.Изучить понятия объект и класс.

2.Привести примеры
3.Изучить понятия атрибут и операция.

4.Указать роль в концепции объектно-ориентированного программирования.

1.Понятие объекта в программировании

В любом обычном директивном языке программирования выделяются такие понятия, как данные и типы данных. Данные - это числа, строки символов, различные двоичные коды, которые можно хранить в оперативной памяти ЭВМ и совершать над ними различные операции. Типы данных - это наименование групп данных, одинаковых по размеру, занимаемому в оперативной памяти и способу внешнего представления, например, целые числа или символы.

Аналогичное деление существует и в объектно-ориентированных языках программирования. Объект - это понятие наиболее близкое к понятию данных. Это - то, что должно реально существовать в программе, занимая определенную его типом оперативную память. Вместе с тем, объект - более сложное понятие, чем просто данное или множество данных. Наиболее просто объектом можно было бы назвать неразрывную совокупность данных с набором функций (или, так называемых методов), достаточных для обработки этих данных, необходимой в программе.

Для того, чтобы начать составлять объектно-ориентированную программу, необходимо не пожалеть довольно продолжительного времени на выделение и классификацию объектов, которые необходимы для решения задачи программной системой.

Объектом можно назвать некоторую самостоятельно выделяющуюся программную модель, как систему моделей предметов, понятий и отношений между ними с их характерным поведением во времени и возможными способами изменения, играющую важную функциональную роль при решении конкретной задачи программирования.

Приведем общие признаки объектов.

Объект распознаваем, т.е. имеет некоторые, возможно не четко очерченные, границы.

Объект характеризуется множеством возможных состояний, в которых он пребывает в определенные интервалы времени. Состояния сменяют одно другое на протяжении всего существования объекта.

Объект проявляет свои свойства при взаимодействии с другими объектами. Это свойство иногда называют поведением объекта.

Объект уникален, т.е. имеет свойства, которые позволяют отличить его от других объектов.

Объект имеет определенные рамки жизненного цикла. Он “рождается”, функционирует, меняя состояние за состоянием, и “умирает”. Это свойство связано с существованием в программе явно очерченных рамок функционирования объекта. Меньшую “жизнь” имеют локальные объекты программы, максимальную - глобальные объекты, появляющиеся сразу после старта программы и исчезающие непосредственно перед ее завершением.

Перечисленные свойства объектов, выделяемых при решении какой-либо конкретной задачи, практически полностью соответствуют будущим функциям объектов в программе. Функционирование объекта начинается обычно с выделения для него оперативной памяти ЭВМ и установления некоторого начального состояния (начальных значений при инициализации). При последующей работе программы область памяти, занимаемая объектом, изменяется, характеризуя новые состояния объекта, объект взаимодействует с другими объектами. И, наконец, при завершении своей работы, объект освобождает занимаемую им память.

Свойства объекта позволяют отличить понятие “объект” от некоторым образом противоположного ему понятия “класс”.

2.Определение класса

В класс объединяются объекты с одинаковыми свойствами и методами.

Одним из первых действий, предпринимаемых человеком при попытке понять окружающий мир, является применение к нему некоторой структурной формы. При встрече с неизвестным объектом мы пытаемся втиснуть его в нашу существующую структуру: другими словами, классифицировать его. Большинство людей знакомо по крайней мере с несколькими классификационными структурами или иерархиями.

Использование иерархии классов вводит необходимость абстракции. Классы становятся более абстрактными по мере продвижения вверх по иерархии.

Объектно-ориентированные языки используют такой же подход. Иерархии обычно начинаются с нескольких абстрактных классов. Каждый новый класс представляется как подкласс существующего класса (называемого его суперклассом). Он наследует данные и методы от классов, стоящих выше в иерархии. Только те данные и методы, которые являются новыми для этого класса, следует определить и реализовать.

Класс - это абстрактное понятие, сравнимое с понятием категория в его обычном смысле.

По определенным свойствам любого элемента определенной категории можно установить, что он принадлежит к ней. Сама категория определяется общими свойствами, которые имеют все экземпляры этой категории.

Это можно пояснить на примере музыкальных инструментов. Музыкальные инструменты делятся на следующие категории: духовые, ударные и струнные.

Все эти категории принадлежат к категории музыкальных инструментов. В свою очередь, категория музыкальных инструментов входит в категорию инструментов. На рис.1 эта структура категорий графически представлена в виде дерева.

Все объекты одного и того же класса характеризуются одинаковыми наборами атрибутов. Однако объединение объектов в классы определяется не наборами атрибутов, а семантикой. Так, например, объекты конюшня и лошадь могут иметь одинаковые атрибуты: цена и возраст. При этом они могут относиться к одному классу, если рассматриваются в задаче просто как товар, либо к разным классам, что более естественно.

Рис 2.1 Рис.2.2

2.1.Атрибуты классов

Атрибут - это значение, характеризующее объект в его классе. Примеры атрибутов: категория, баланс, кредит (атрибуты объектов класса счет); имя, возраст, вес (атрибуты объектов класса человек) и т.д.

Среди атрибутов различаются постоянные атрибуты (константы) и переменные атрибуты. Постоянные атрибуты характеризуют объект в его классе (например, номер счета, категория, имя человека и т.п.). Текущие значения переменных атрибутов характеризуют текущее состояние объекта (например, баланс счета, возраст человека и т.п.); изменяя значения этих атрибутов, мы изменяем состояние объекта.

Атрибуты перечисляются во второй части прямоугольника, изображающего класс (см. рисунок 2.1). Иногда указывается тип атрибутов (ведь каждый атрибут - это некоторое значение) и начальное значение переменных атрибутов (совокупность начальных значений этих атрибутов задает начальное состояние объекта).

Следует отметить, что, говоря об объектах и их классах, мы не подразумеваем никакого объектно-ориентированного языка программирования. Это, в частности, выражается в том, что на данном этапе разработки программной системы следует рассматривать только такие атрибуты, которые имеют смысл в реальности (все атрибуты объектов класса счет - рисунок 2.1 - обладают этим свойством).

Атрибуты связаны с особенностями общей реализации. Например, если известно, что будет использоваться база данных, в которой каждый объект имеет уникальный идентификатор, то включать этот идентификатор в число атрибутов объекта на данном этапе не следует. Дело в том, что, вводя такие атрибуты, мы ограничиваем возможности реализации системы. Так, вводя в качестве атрибута уникальный идентификатор объекта в базе данных, мы уже в самом начале проектирования отказываемся от использования СУБД, которые такой идентификатор не поддерживают.

2.2.Операция

Операция - это функция (или преобразование), которую можно применять к объектам данного класса. Примеры операций: проверить, снять, поместить (для объектов класса счет -), открыть, читать, закрыть (для объектов класса файл - рисунок 3.1) и т.п.

Рис3.1

Все объекты данного класса используют один и тот же экземпляр каждой операции (т.е. увеличение количества объектов некоторого класса не приводит к увеличению количества загруженного программного кода). Объект, из которого вызвана операция, передается ей в качестве ее неявного аргумента (параметра).

Одна и та же операция может, вообще говоря, применяться к объектам разных классов: такая операция называется полиморфной, так как она может иметь разные формы для разных классов. Например, для объектов классов вектор и комплексное_число можно определить операцию +; эта операция будет полиморфной, так как сложение векторов и сложение комплексных чисел, вообще говоря, разные операции.

Каждой операции соответствует метод - реализация этой операции для объектов данного класса. Таким образом, операция - это спецификация метода, метод - реализация операции. Например, в классе файл может быть определена операция печать (print). Эта операция может быть реализована разными методами: (а) печать двоичного файла; (б) печать текстового файла и др. Логически эти методы выполняют одну и ту же операцию, хотя реализуются они разными фрагментами кода.

Каждая операция имеет один неявный аргумент - объект к которому она применяется. Кроме того, операция может иметь и другие аргументы (параметры). Эти дополнительные аргументы параметризуют операцию, но не связаны с выбором метода. Метод связан только с классом и объектом (некоторые объектно-ориентированные языки, например C++, допускают одну и ту же операцию с разным числом аргументов, причем используя то или иное число аргументов, мы практически выбираем один из методов, связанных с такой операцией; на этапе предварительного проектирования системы удобнее считать эти операции различными, давая им разные имена, чтобы не усложнять проектирование).

Операция (и реализующие ее методы) определяется своей сигнатурой, которая включает, помимо имени операции, типы (классы) всех ее аргументов и тип (класс) результата (возвращаемого значения). Все методы, реализующие операцию должны иметь такую же сигнатуру, что и реализуемая ими операция.

Операции перечисляются в нижней части прямоугольника (рисунок 3.1), описывающего класс. Каждая операция должна быть представлена своей сигнатурой, однако на ранних стадиях проектирования можно ограничиваться указанием имени операции, отложив полное определение сигнатуры на конец рассматриваемой фазы жизненного цикла (либо даже на последующие фазы). В графическом языке технологии OMT тип любого объекта данных указывается вслед за именем этого объекта после двоеточия (как в языке Паскаль).

При моделировании системы полезно различать операции, имеющие побочные эффекты (эти эффекты выражаются в изменении значений атрибутов объекта, т.е. в изменении его состояния), и операции, которые выдают требуемое значение, не меняя состояния объекта. Эти последние операции называются запросами.

Значения некоторых атрибутов объекта могут быть доступны только операциям этого объекта. Такие атрибуты называются закрытыми . На рисунке 2.3 показаны закрытые атрибуты для объектов класса счет. Значения закрытых атрибутов объекта можно узнать вне объекта только в том случае, если среди операций этого объекта определены соответствующие запросы. Аналогично, в объекте можно определить и закрытые (вспомогательные) операции, однако на ранних стадиях проектирования этого, как правило, не делают, так как выделение закрытых операций связано, в основном, с реализацией системы.

Рис 3.2 Открытые и закрытые атрибуты и операции

Запросы без аргументов (за исключением неявного аргумента - объекта, к которому применяется операция) могут рассматриваться как производные атрибуты. Значения производных атрибутов зависят от значений основных атрибутов. В этом их отличие от основных атрибутов, значения которых независимы. Следовательно, значения основных атрибутов объекта определяют как его состояние, так и значения его производных атрибутов. Так, например, длина, ширина и высота комнаты - ее основные атрибуты, а площадь и кубатура - производные атрибуты; такой атрибут как кубатура нужен для того, чтобы не вычислять кубатуру комнаты всякий раз, когда понадобится ее значение.

Выбор основных атрибутов объектов произволен, но в число основных атрибутов не следует включать такие атрибуты, значения которых определяются значениями других атрибутов, так что на самом деле они являются производными.

Таким образом, для задания класса необходимо указать имя этого класса, а затем перечислить его атрибуты и операции (или методы). Полное описание объекта на графическом языке OMT имеет вид, изображенный на рисунке 3.3. Однако иногда удобно бывает пользоваться сокращенным описанием класса, когда в прямоугольнике, изображающем этот класс, указывается только имя класса. Так, на рисунке 2.5 приведены сокращения обозначения классов для нашего основного примера - системы обслуживания клиентов банковского консорциума.

Рис. 3.3. Полное представление объекта в OMT

Рис. 2.5. Возможные классы для системы AMT (банковское обслуживание)

2.3.Зависимости между классами, объектами

С каждым объектом связана структура данных, полями которой являются атрибуты этого объекта и указатели функций (фрагментов кода), реализующих операции этого объекта (отметим, что указатели функций в результате оптимизации кода обычно заменяются на обращения к этим функциям). Таким образом, объект - это некоторая структура данных, тип которой соответствует классу этого объекта.

Между объектами можно устанавливать зависимости по данным. Эти зависимости выражают связи или отношения между классами указанных объектов. Примеры таких зависимостей изображены на рисунке 3.6 (первые две зависимости - бинарные, третья зависимость - тренарная). Зависимость изображается линией, соединяющей классы над которой надписано имя этой зависимости, или указаны роли объектов (классов) в этой зависимости (указание ролей - наиболее удобный способ идентификации зависимости).

Рис. 3.6. Зависимости между классами

Зависимости между классами являются двусторонними: все классы в зависимости равноправны. Это так даже в тех случаях, когда имя зависимости как бы вносит направление в эту зависимость. Так, в первом примере на рисунке 3.6 имя зависимости «имеет столицу» предполагает, что зависимость направлена от класса страна к классу город (двусторонность зависимости вроде бы пропала); но следует иметь в виду, что эта зависимость двусторонняя в том смысле, что одновременно с ней существует и обратная зависимость является столицей. Точно таким же образом, во втором примере на рисунке 3.6 можно рассматривать пару зависимостей владеет-принадлежит. Подобных недоразумений можно избежать, если идентифицировать зависимости не по именам, а по наименованиям ролей классов, составляющих зависимость.

В языках программирования зависимости между классами (объектами) обычно реализуются с помощью ссылок (указателей) из одного класса (объекта) на другой. Представление зависимостей с помощью ссылок обнаруживает тот факт, что зависимость является свойством пары классов, а не какого-либо одного из них, т.е. зависимость - это отношение. Отметим, что хотя зависимости между объектами двунаправлены, их не обязательно реализовать в программах как двунаправленные, оставляя ссылки лишь в тех классах, где это необходимо для программы.

Дальнейшие примеры зависимостей между классами приведены на рисунке 3.7. Первый пример показывает зависимость между клиентом банка и его счетами. Клиент банка может иметь одновременно несколько счетов в этом банке, либо вовсе не иметь счета (когда он впервые становится клиентом банка). Таким образом, нужно изобразить зависимость между клиентом и несколькими счетами, что и сделано на рисунке 3.7. Второй пример показывает зависимость между пересекающимися кривыми (в частности, прямыми) линиями. Можно рассматривать 2, 3, и более таких линий, причем они могут иметь несколько точек пересечения. Наконец, третий пример показывает необязательную (optional) зависимость: компьютер может иметь, а может и не иметь мышь.

Зависимостям между классами соответствуют зависимости между объектами этих классов. На рисунке 3.8 показаны зависимости между объектами для первого примера рисунка 2.6; на рисунке 3.9 показаны зависимости между объектами для примеров, изображенных на рисунке 3.7.

Рис. 3.7. Дальнейшие примеры зависимостей. Обозначения

Рис. 3.8. Зависимости между объектами

Отметим, что при изображении зависимостей между объектами мы, как правило, знаем количество объектов и не нуждаемся в таких обозначениях как "несколько", "два и более", "не обязательно".

При проектировании системы удобнее оперировать не объектами, а классами.

Рис. 3.9. Более сложные зависимости между объектами

Понятие зависимости перенесено в объектно-ориентированную технологию проектирования программных систем из технологии проектирования (и моделирования) баз данных, где зависимости используются с давних пор. Языки программирования, как правило, не поддерживают явного описания зависимостей. Тем не менее описание зависимостей очень полезно при разработке программных систем. Технология OMT использует зависимости при интерпретации диаграмм, описывающих систему.

Заключение

Объекты в программе работают как слаженный коллектив вполне самостоятельных программ, которые сами знают, когда им в зависимости от текущей ситуации нужно начать работу, когда ее временно приостановить, и наконец, когда совсем покинуть коллектив программ, не оставив о себе никакого воспоминания кроме необходимых полезных результатов работы. Как правило, каждый объект, начиная свою работу, заказывает у операционной системы оперативную память под свои данные, а заканчивая работу, возвращает эту память назад системе. Тем самым оптимизируется объем памяти, занимаемый всей программой в процессе ее работы.

Для того, чтобы объекты четко знали свое место и полномочия в едином коллективе, и не выполняли одну и ту же работу, они подвергаются специальной классификации, результатом которой является выделение классов объектов. Если два класса обладают общими свойствами, значит для них должен существовать более общий класс, который имеет только те свойства, которые для этих двух объектов являются общими. В этом случае объектам классов с общими свойствами нужно заботиться только о выполнении своих функций, связанных с их различающимися свойствами. Общую же часть может выполнить объект более общего класса.

Мы рассмотрели определения класса, объекта, атрибутов, операций, основные составляющие объектно-ориентированного подхода.
Его можно разбить на четыре этапа.

Первый этап заключается в выделении абстракций. Выделение абстракций означает анализ предметной области, для которой составляется программа, с целью определения основных объектов предметной области, их свойств, отношений между объектами, а также возможных операций над объектами и их составляющими.

Второй этап состоит в типизации объектов и синтезе абстрактных типов данных. Этап предполагает определение новых производных типов данных и наборов специфических функций или операций, применяемых к этим типам данных, таким образом, чтобы исключить возможность смешивания или взаимозамены различных типов.

Третий этап заключается в объектной декомпозиции как выделении подтипов или подобъектов и их составляющих для каждого из типов объектов.

Четвертый этап представляет собой композиционную иерархизацию объектов как выделение родовидовых и композиционных отношений над объектами.

В результате объектно-ориентированного подхода к проектированию программ процесс разработки программы превращается в процесс эволюционного программирования, при котором для внесения каких-либо изменений и дополнений в программу не требуется кардинального пересмотра составляющих ее алгоритмов. Эволюционный способ программирования опирается на сохранение целостности объектов программы, т.е. внесение изменений в программу не должно затрагивать внутреннюю организацию существующих в ней объектов.

Важным свойством объектно-ориентированных языков является возможность разработки на них программ, работающих в системах со сложными параллельными вычислительными процессами, изначально присущими техническим средствам вычислительной техники. Это свойство опирается на концепцию активных и неактивных объектов в период функционирования программы. Одновременная активность различных объектов становится возможной за счет их строгой типизации и закрытости для изменений другими объектами.

Список литературы:

1. М. Уэйт, С. Прата, Д. Мартин Язык Си: Пер с англ.-М.: Мир, 2007.-463 с.,ил.

2. Уинер Р. Язык Турбо Си: Пер с англ.-М.: Мир, 2010.-384 с., ил.

3. Берри Р., Микинз Б. Язык Си: введение для программистов: Пер. с англ.-М.:Финансы и статистика, 2007.-с.,ил.

4. TURBO C++. Borland International. Inc. 2010.

ER-диаграммы

Логическая модель

Общим способом представления логической модели БД является построение ER-диаграмм (Entity-Relationship - сущность-связь). В этой модели сущность определяется как дискретный объект, для которого сохраняются элементы данных, а связь описывает отношение между двумя объектами.

В примере менеджера турфирмы имеются 5 основных объектов:

Туристы

Путевки

Отношения между этими объектами могут быть определены простыми терминами:

Каждый турист может купить одну или несколько (много) путевок.

Каждой путевке соответствует ее оплата (оплат может быть и несколько, если путевка, например, продана в кредит).

Каждый тур может иметь несколько сезонов.

Путевка продается на один сезон одного тура.

Эти объекты и отношения могут быть представлены ER- диаграммой, как показано на рис 2.

Рисунок 3.2. ER-диаграмма для приложения БД менеджера турфирмы

Далее модель развивается путем определения атрибутов для каждого объекта. Атрибуты объекта - это элементы данных, относящиеся к определенному объекту, которые должны сохраняться. Анализируем составленный словарь данных, выделяем в нем объекты и их атрибуты, расширяем словарь при необходимости. Атрибуты для каждого объекта в рассматриваемом примере представлены в таблице 2.

Таблица 3.2. Объекты и атрибуты БД

Следует обратить внимание, что несколько элементов отсутствуют. Опущена регистрационная информация, упомянутая в функциональной спецификации. Как ее учесть, вы подумаете самостоятельно и доработаете предложенный пример. Но более важно то, что пока отсутствуют атрибуты, необходимые для связи объектов друг с другом. Эти элементы данных в ER-модели не представляются, так как не являются, собственно, «натуральными» атрибутами объектов. Они обрабатываются по-другому и будут учтены в реляционной модели данных.

Реляционная модель характеризуется использованием ключей и отношений. Существует отличие в контексте реляционной базы данных терминов relation (отношение) и relationship (схема данных). Отношение рассматривается как неупорядоченная, двумерная таблица с несвязанными строками. Схема данных формируется между отношениями (таблицами) через общие атрибуты, которые являются ключами.



Существует несколько типов ключей, и они иногда отличаются только с точки зрения их взаимосвязи с другими атрибутами и отношениями. Первичный ключ уникально идентифицирует строку в отношении (таблице), и каждое отношение может иметь только один первичный ключ, даже если больше чем один атрибут является уникальным. В некоторых случаях требуется более одного атрибута для идентификации строк в отношении. Совокупность этих атрибутов называется составным ключом. В других случаях первичный ключ должен быть специально создан (сгенерирован). Например, в отношение «Туристы» имеет смысл добавить уникальный идентификатор туриста (код туриста) в виде первичного ключа этого отношения для организации связей с другими отношениями БД.

Другой тип ключа, называемый внешним ключом, существует только в терминах схемы данных между двумя отношениями. Внешний ключ в отношении - это атрибут, который является первичным ключом (или частью первичного ключа) в другом отношении. Это - распределенный атрибут, который формирует схему данных между двумя отношениями в БД.

Для проектируемой БД расширим атрибуты объектов кодовыми полями в качестве первичных ключей и используем эти коды в отношениях БД для ссылки на объекты БД следующим образом (табл. 3).

Построенную схему БД еще рано считать законченной, так как требуется ее нормализация. Процесс, известный как нормализация реляционной БД, используется для группировки атрибутов специальными способами, чтобы минимизировать избыточность и функциональную зависимость.

Таблица 3.3. Объекты и атрибуты БД с расширенными кодовыми полями

2.1.2. Атрибуты объектов

Атрибут - это значение, характеризующее объект в его классе. Примеры атрибутов: категория, баланс, кредит (атрибуты объектов класса счет); имя, возраст, вес (атрибуты объектов класса человек) и т.д.

Среди атрибутов различаются постоянные атрибуты (константы) и переменные атрибуты . Постоянные атрибуты характеризуют объект в его классе (например, номер счета, категория, имя человека и т.п.). Текущие значения переменных атрибутов характеризуют текущее состояние объекта (например, баланс счета, возраст человека и т.п.); изменяя значения этих атрибутов, мы изменяем состояние объекта.

Атрибуты перечисляются во второй части прямоугольника, изображающего класс (см. рисунок 2.1). Иногда указывается тип атрибутов (ведь каждый атрибут - это некоторое значение) и начальное значение переменных атрибутов (совокупность начальных значений этих атрибутов задает начальное состояние объекта).

Следует отметить, что, говоря об объектах и их классах, мы не подразумеваем никакого объектно-ориентированного языка программирования. Это, в частности, выражается в том, что на данном этапе разработки программной системы следует рассматривать только такие атрибуты, которые имеют смысл в реальности (все атрибуты объектов класса счет - рисунок 2.1 - обладают этим свойством). Атрибуты связаны с особенностями общей реализации. Например, если известно, что будет использоваться база данных, в которой каждый объект имеет уникальный идентификатор, то включать этот идентификатор в число атрибутов объекта на данном этапе не следует. Дело в том, что, вводя такие атрибуты, мы ограничиваем возможности реализации системы. Так, вводя в качестве атрибута уникальный идентификатор объекта в базе данных, мы уже в самом начале проектирования отказываемся от использования СУБД, которые такой идентификатор не поддерживают.

ER -диаграммы

Общим способом представления логической модели БД является построение ER-диаграмм (Entity-Relationship - сущность-связь). В этой модели сущность определяется как дискретный объект, для которого сохраняются элементы данных, а связь описывает отношение между двумя объектами.

В примере менеджера турфирмы имеются 5 основных объектов:

Туристы

Путевки

Отношения между этими объектами могут быть определены простыми терминами:

Каждый турист может купить одну или несколько (много) путевок.

Каждой путевке соответствует ее оплата (оплат может быть и несколько, если путевка, например, продана в кредит).

Каждый тур может иметь несколько сезонов.

Путевка продается на один сезон одного тура.

Эти объекты и отношения могут быть представлены ER- диаграммой, как показано на рис 2.

Рис. 2. ER-диаграмма для приложения БД менеджера турфирмы

Объекты, атрибуты и ключи

Далее модель развивается путем определения атрибутов для каждого объекта. Атрибуты объекта - это элементы данных, относящиеся к определенному объекту, которые должны сохраняться. Анализируем составленный словарь данных, выделяем в нем объекты и их атрибуты, расширяем словарь при необходимости. Атрибуты для каждого объекта в рассматриваемом примере представлены в таблице 2.

Таблица 2. Объекты и атрибуты БД

Объект

Туристы

Путевки

Туры

Сезоны

Оплаты

Название

Дата начала

Дата оплаты

Дата конца

Отчество

Информация

Атрибуты

Следует обратить внимание, что несколько элементов отсутствуют. Опущена регистрационная информация, упомянутая в функциональной спецификации. Как ее учесть, вы подумаете самостоятельно и доработаете предложенный пример. Но более важно то, что пока отсутствуют атрибуты, необходимые для связи объектов друг с другом. Эти элементы данных в ER-модели не представляются, так как не являются, собственно, «натуральными» атрибутами объектов. Они обрабатываются по-другому и будут учтены в реляционной модели данных.

Реляционная модель характеризуется использованием ключей и отношений. Существует отличие в контексте реляционной базы данных терминов relation (отношение) и relationship (схема данных). Отношение рассматривается как неупорядоченная, двумерная таблица с несвязанными строками. Схема данных формируется между отношениями (таблицами) через общие атрибуты, которые являются ключами.

Существует несколько типов ключей, и они иногда отличаются только с точки зрения их взаимосвязи с другими атрибутами и отношениями. Первичный ключ уникально идентифицирует строку в отношении (таблице), и каждое отношение может иметь только один первичный ключ, даже если больше чем один атрибут является уникальным. В некоторых случаях требуется более одного атрибута для идентификации строк в отношении. Совокупность этих атрибутов называется составным ключом. В других случаях первичный ключ должен быть специально создан (сгенерирован). Например, в отношение «Туристы» имеет смысл добавить уникальный идентификатор туриста (код туриста) в виде первичного ключа этого отношения для организации связей с другими отношениями БД.

Другой тип ключа, называемый внешним ключом, существует только в терминах схемы данных между двумя отношениями. Внешний ключ в отношении - это атрибут, который является первичным ключом (или частью первичного ключа) в другом отношении. Это - распределенный атрибут, который формирует схему данных между двумя отношениями в БД.

Для проектируемой БД расширим атрибуты объектов кодовыми полями в качестве первичных ключей и используем эти коды в отношениях БД для ссылки на объекты БД следующим образом (табл. 3).

Построенную схему БД еще рано считать законченной, так как требуется ее нормализация. Процесс, известный как нормализация реляционной БД, используется для группировки атрибутов специальными способами, чтобы минимизировать избыточность и функциональную зависимость.

Таблица 3. Объекты и атрибуты БД с расширенными кодовыми полями

Объект

Туристы

Путевки

Туры

Сезоны

Оплаты

Атрибуты

Код туриста

Код путевки

Код сезона

Код оплаты

Код туриста

Название

Дата начала

Дата оплаты

Код сезона

Дата конца

Отчество

Информация

Код путевки

Нормализация

Функциональные зависимости проявляются, когда значение одного атрибута может быть определено из значения другого атрибута. Атрибут, который может быть определен, называется функционально зависимым от атрибута, который является детерминантом. Следовательно, по определению, все неключевые (без ключа) атрибуты будут функционально зависеть от первичного ключа в каждом отношении (так как первичный ключ уникально определяет каждую строку). Когда один атрибут отношения уникально не определяет другой атрибут, но ограничивает его набором предопределенных значений, это называется многозначной зависимостью. Частичная зависимость имеет место, когда атрибут отношения функционально зависит от одного атрибута составного ключа. Транзитивные зависимости наблюдаются, когда неключевой атрибут функционально зависит от одного или нескольких других неключевых атрибутов в отношении.

Процесс нормализации состоит в пошаговом построении БД в нормальной форме (НФ).

1. Первая нормальная форма (1НФ) очень проста. Все таблицы БД должны удовлетворять единственному требованию - каждая ячейка в таблицах должна содержать атомарное значение, другими словами, хранимое значение в рамках предметной области приложения БД не должно иметь внутренней структуры, элементы которой могут потребоваться приложению.

2. Вторая нормальная форма (2НФ) создается тогда, когда удалены все частичные зависимости из отношений БД. Если в отношениях не имеется никаких составных ключей, то этот уровень нормализации легко достигается.

3. Третья нормальная форма (3НФ) БД требует удаления всех транзитивных зависимостей.

4. Четвертая нормальная форма (4НФ) создается при удалении всех многозначных зависимостей.

БД нашего примера находится в 1НФ, так как все поля таблиц БД атомарные по своему содержанию. Наша БД также находится и во 2НФ, так как мы искусственно ввели в каждую таблицу уникальные коды для каждого объекта (Код Туриста, Код Путевки и т. д.), за счет чего и добились 2НФ для каждой из таблиц БД и всей базы данных в целом. Осталось разобраться с третьей и четвертой нормальными формами.

Обратите внимание, что они существуют только относительно различных видов зависимостей атрибутов БД. Есть зависимости - нужно стоить НФ БД, нет зависимостей - БД и так находится в НФ. Но последний вариант практически не встречается в реальных приложениях.

Итак, какие же транзитивные и многозначные зависимости присутствуют в нашем примере БД менеджера турфирмы?

Давайте проанализируем отношение «Туристы». Рассмотрим зависимости между атрибутами «Код туриста», «Фамилия», «Имя», «Отчество» и «Паспорт» (рис. 3). Каждый турист, представленный в отношении сочетанием «Фамилия- Имя-Отчество», имеет на время поездки только один паспорт, при этом полные тезки должны иметь разные номера паспортов. Поэтому атрибуты «Фамилия- Имя-Отчество» и «Паспорт» образуют в отношении туристы составной ключ.

Рис. 3. Пример транзитивной зависимости

Как видно из рисунка, атрибут «Паспорт» транзитивно зависит от ключа «Код туриста». Поэтому, чтобы исключить данную транзитивную зависимость, разобьем составной ключ отношения и само отношение на 2 по связям «один-к-одному». В первое отношение, оставим ему имя «Туристы», включаются атрибуты «Код туриста» и «Фамилия», «Имя», «Отчество». Второе отношение, назовем его «Информация о туристах», образуют атрибуты «Код туриста» и все оставшиеся атрибуты отношения «Туристы»: «Паспорт», «Телефон», «Город», «Страна», «Индекс». Эти два новых отношения уже не имеют транзитивной зависимости и находятся в 3НФ.

Многозначные зависимости в нашей упрощенной БД отсутствуют. Для примера предположим, что для каждого туриста должны храниться несколько контактных телефонов (домашний, рабочий, сотовый и пр., что весьма характерно на практике), а не один, как в примере. Получаем многозначную зависимость ключа - «Код туриста» и атрибутов «Тип телефона» и «Телефон», в этой ситуации ключ перестает быть ключом. Что делать? Проблема решается также путем разбиения схемы отношения на 2 новые схемы. Одна из них должна представлять информацию о телефонах (отношение «Телефоны»), а вторая о туристах (отношение «Туристы»), которые связываются по полю «Код туриста». «Код туриста» в отношении «Туристы» будет первичным ключом, а в отношении «Телефоны» - внешним.

Описательные атрибуты представляют факты, внутренне присущие каждому описанию объекта. Пример - логическая функция элемента цифровой схемы.

Если значение описательного атрибута меняется, это говорит о том, что данный аспект экземпляра объекта изменен, но объект остался прежним.

Указывающие атрибуты используются для задания имени или обозначения экземпляра.

Указывающие атрибуты используются как идентификаторы объекта.

Вспомогательные атрибуты используются для связи экземпляра одного объекта с экземпляром другого объекта. Например, экземпляра объекта «Микросхема» с экземпляром «Схема электрическая принципиальная».

Если значение вспомогательного атрибута изменяется, то это говорит о том, что теперь другие экземпляры объекта связаны между собой.

Описание атрибутов

Для описательных атрибутов описание устанавливает реальную характеристику, абстрагируемую как атрибут.

В этом случае описание дается в виде:

    Перечислением всех возможных значений, которые атрибут может принимать;

    Формулировкой правила, определяющего, какие значения допустимы;

    Определением диапазона возможных значений.

Описание значений указывающего атрибута определяет форму указания и в какой степени этот атрибут может использоваться как идентификатор.

Описание вспомогательного атрибута должно содержать описание реального отношения, определяемое атрибутом.

Правила атрибутов

Поскольку любая информационная модель, формируемая нами, не должна содержать информационных ошибок (погрешностей). Для этого она должна стремиться быть реляционной моделью, т.е. все отношения между данными информационной модели должны соответствовать правилам реляционной алгебры.

1-е правило атрибута

Один экземпляр объекта имеет одно единственное значение для каждого атрибута в любое данное время.

2-е правило атрибута

Атрибут не должен иметь никакой внутренней структуры. Все атрибуты простые.

3-е правило атрибута

Если объект имеет составной идентификатор, т.е. идентификатор, состоящий более чем из одного атрибута, то каждый атрибут, не вошедший в состав составного идентификатора должен характеризовать весь объект, а не его часть.

Связи между объектами

Связи – это абстракция набора отношений, которые систематически возникают между различными видами предметов в реальном мире.

Каждая связь в информационной модели задается парой имен, которые описывают связь из перспективы каждого участвующего объекта.

Пример: схема включает элементы – элементы входят в состав схемы.

Связь графически представляется линией между соотносимыми элементами.

Пример: возьмем экономический объект:

Связи непосредственного отношения разделяются на:

    Безусловные связи

    Условные связи

Среди безусловных связей выделяются 3 фундаментальных типа связей. Это связи:

    «Один к одному» – связь, при которой один экземпляр одного объекта связан с одним экземпляром другого объекта

    «Один ко многим» – связь, при которой один экземпляр некоторого объекта связан с одним или более экземплярами другого объекта, при этом каждый экземпляр другого объекта связан только с одним экземпляром первого объекта

    «Многие ко многим» – связь, при которой один экземпляр некоторого объекта связан с одним или более экземплярами другого объекта и каждый экземпляр другого объекта связан с одним или более экземплярами первого.

2-й тип связи отношений – условные связи.

У условной связи могут существовать такие экземпляры объекта, которые не принимают участие в связи.

Например:

Все связи требуют описания. Описание включает:

    Идентификатор связи

    Формулировку имен связи с точки зрения участвующих объектов

    Вид связи (ее множественность и условность)

    Формулировку того, как связь была формализована (почему мы эту связь вводим)

Формализация связи (ее определение) состоит а том, чтобы установить связи экземпляров объекта. Делается это с помощью вспомогательных средств.

Если в объекте есть вспомогательные атрибуты, то говорят, что связь формализована.

Для формализации связи «один ко многим» вспомогательный атрибут устанавливается на стороне «много».

Если у нас существует связь «многие ко многим», чтобы не нарушить 3-е правило атрибутов создают вспомогательный (ассоциативный) объект, который содержит ссылки на идентификаторе каждого участвующего экземпляра.

Связи, которые возникают из-за наличия других связей между объектами, называются композиционными связями.

Если в информационных моделях существует наследование, то существуют подтипы и супертипы.

Супертип – это родительский объект.

Подтип – это порожденный объект.



Рекомендуем почитать

Наверх