Первичный ключ отношения обязан быть уникальным. Базы данных. Типы связей и их реализация. Ссылочная целостность и ее обеспечение

Новости 18.03.2019
Новости

Можно отметить следующие функции риска:

1. стимулирующая функция риска , которая проявляется в двух аспектах:

    конструктивный аспект, который состоит в исследовании источников риска при проектировании операций и систем, конструировании специальных устройств, операций, форм сделок, исключающих или снижающих возможные последствия риска как отрицательного отклонения;

    деструктивный аспект, который проявляется в том, что реализация решений с неисследованным или необоснованным риском может приводить к реализации объектов или операций, которые относятся к авантюрным, волюнтаристским;

2. защитная функция риска имеет так же два аспекта:

    историко-генетический аспект состоит в том, что юридические и физические лица вынуждены искать средства и формы защиты от нежелательной реализации риска;

    социально-правовой аспект заключается в объективной необходимости законодательного закрепления понятия "правомерности риска", правового регулирования страховой деятельности;

3. компенсирующая функция риска может обеспечить компенсирующий эффект (положительная компенсация), т.е. дополнительную по сравнению с плановой прибыль в случае благоприятного исхода (реализации шанса);

4. социально-экономическая функция риска , которая состоит в том, что в процессе рыночной деятельности риск и конкуренция позволяет выделить социальные группы эффективных собственников в общественных классах, а в экономике - отрасли деятельности, в которых риск приемлем. Вмешательство государства в рисковые ситуации на рынках (включая гарантии, например, в финансово-кредитной сфере) ограничивает эффективность социально-экономической функции риска. В социальном плане это искажает принципы равенства для всех участников рынка из различных отраслей хозяйства, что может порождать дисбаланс рисков в отраслях экономики.

Лекция 2. Классификация рисков

Эффективность организации управления рисками во многом оп­ределяется идентификацией его местоположения в общей системе классификации.

Риски могут быту классифицированы по следующим при­знакам

В зависимости от возможного результата (рискового события ) риски можно разделить на две большие группы: чистые и спекулятивные.

Чистые риски – возможность получения отрицательного или нулевого результата. К ним относятся: природно-естественные, экологические, политические, транспортные, имущественные, производственные, торговые риски.

Спекулятивные риски выражаются в возможности получения как положительного, так и отрицательного результата. К спекулятивным относятся все финансовые риски , являющиеся частью коммерческих рисков (рис. 1 ).

Финансовые риски, связанные с вероятностью потерь финансовых ресурсов, включают (см. рис. 1):

1) риски, связанные с покупательской способностью денег (инфляционный, дефляционный, валютный риски и риск ликвидности);

2) риски, связанные с вложением капитала ,- инвестиционные риски (риск упущенной выгоды, риск снижения доходов, риск прямых финансовых потерь).

Используются в любой деятельности: в банковской и финансовой отраслях, туристическом бизнесе, складских хозяйствах, на производстве и в обучении. Они представляют собой совокупность таблиц, имеют четкие свойства и подчиняются строгим требованиям. В реляционных БД таблицы называют отношениями.

Что такое первичный ключ в БД

В базе данных первичный ключ таблицы - это один из ее столбцов (Primary key). Разберемся на примере, как это выглядит. Представим простое отношение студентов университета (назовем его "Студенты").

Нам необходимо однозначно определить студента по одному столбцу. Для этого информация в этом столбце для каждой записи должна быть уникальной. Но имеющиеся данные в этом отношении не дают нам однозначно идентифицировать запись, так как на одном курсе и одном факультете могут учиться однофамильцы, тезки и учащиеся с одинаковыми фамилиями и именами. Первичный ключ в базе данных служит для точного определения необходимой строки в отношении. Чаще всего в этом качестве используется числовое поле, автоматически возрастающее с вводом записи (автоинкрементный столбец-идентификатор).

Простой и составной первичный ключ

Primary key может быть простым и составным. Если уникальность записи определяется значением только в одном поле, как описано выше, мы имеем дело с простым ключом. Составной ключ - это первичный ключ базы данных, состоящий из двух и более полей. Рассмотрим следующее отношение клиентов банка.

Ф. И. О. Дата рождения Серия паспорта Номер паспорта
Иванов П.А. 12.05.1996 75 0553009
Сергеев В.Т. 14.07.1958 71 4100654
Краснов Л.В. 22.01.2001 73 1265165

Паспорта людей могут содержать одни и те же серии либо номера, но паспортов с одним и тем же сочетанием серии и номера не существует. Таким образом, поля "Серия паспорта" и "Номер паспорта" станут составным ключом указанного отношения, однозначно идентифицируя человека.

Связи между отношениями

Итак, первичный ключ в базе данных - это один или несколько столбцов таблицы, позволяющий однозначно идентифицировать строку этого отношения. Для чего же он нужен?

Вернемся к первому примеру с отношением "Студенты". В базе данных, кроме этого отношения, хранится и другая информация, например, успеваемость каждого учащегося. Чтобы не повторять всю информацию, что уже содержится в БД, пользуются ключом, ссылаясь на нужную запись. Это выглядит так.

В двух отношениях примера мы видим поле ID. Это первичные ключи в базе данных для этих таблиц. Как видим, в успеваемости содержатся только ссылки на эти поля из других таблиц без необходимости указывать всю информацию из них.

Естественный и суррогатный ключ

Как определяют первичный ключ таблицы базы данных? Два рассмотренных нами примера - "Студенты" и "Клиенты банка" - иллюстрируют понятия естественного и суррогатного ключа. В таблице клиентов банка мы определили ключ, состоящий из полей "Номер" и "Серия паспорта", использовав уже имеющиеся столбцы. Такой ключ называется естественным, для его определения мы не производили никаких изменений и дополнений. В случае с отношением "Студенты" ни одно поле или сочетание полей не давали нам уникальности. Это вынудило нас ввести дополнительное поле с кодом учащегося. Такой ключ называется суррогатным, для него мы добавили еще один служебный столбец в таблицу. Этот столбец не несет никакой полезной информации и служит только для идентификации записей.

Внешний ключ и целостность данных в БД

Все вышеизложенное приводит нас к внешнему ключу (Foreign key) и целостности БД. Foreign key - это поле, ссылающееся на Primary key внешнего отношения. В таблице успеваемости это столбцы "Студент" и "Дисциплина". Их данные отсылают нас к внешним таблицам. То есть поле "Студент" в отношении "Успеваемость" - это Foreign key, а в отношении "Студент" это первичный ключ в базе данных.

Важным принципом построения баз данных является их целостность. И одно из ее правил - целостность по ссылкам. Это значит, что внешний ключ таблицы не может ссылаться на несуществующий Primary key другого отношения. Нельзя удалить из отношения "Студент" запись с кодом 1000 - Иванов Иван, если на нее ссылается запись из таблицы успеваемости. В правильно построенной БД при попытке удаления вы получите ошибку, что это поле используется.

Существуют и другие группы правил целостности, а также другие ограничения баз данных, которые также заслуживают внимания и должны быть учтены разработчиками.

  • Перевод

Выкладываю продолжение перевода цикла статей для новичков.
В настоящих и последующих - больше информации по существу.
Начало - .

4. ТАБЛИЦЫ И ПЕРВИЧНЫЕ КЛЮЧИ

Как вы уже знаете из прошлых частей, данные хранятся в таблицах , которые содержат строки или по-другому записи . Ранее я приводил пример таблицы, содержащей информацию об уроках. Давайте снова на нее взглянем.

В таблице имеются 6 уроков. Все 6 – разные, но для каждого урока значения одинаковых полей хранятся в таблице, а именно: tutorial_id (идентификатор урока), title (заголовок)и category (категория). Tutorial_id первичный ключ таблицы уроков. Первичный ключ – это значение, которое уникально для каждой записи в таблице.
В таблице клиентов ниже customer_id – первичный ключ. В данном случае первичный ключ – также уникальное значение (число) для каждой записи.

Первичные ключи в повседневной жизни
В базе данных первичные ключи используются для идентификации. В жизни первичные ключи вокруг нас везде. Каждый раз, когда вы сталкиваетесь с уникальным числом это число может служить первичным ключом в базе данных (может, но не обязательно должно использоваться как таковое. Все базы данных способны автоматически генерировать уникальное значение для каждой записи в виде числа, которое автоматически увеличивается и вставляется вместе с каждой новой записью [Т.н. синтетический или суррогатный первичный ключ – прим.перев.]).

Несколько примеров

  • Номер заказа, который вы получаете при покупке в интернет-магазине может быть первичным ключом какой-нибудь таблицы заказов в базе данных этого магазина, т.к. он является уникальным значением.
  • Номер социального страхования может быть первичным ключом в какой-нибудь таблице в базе данных государственного учреждения, т.к. она также как и в предыдущем примере уникален.
  • Номер счета-фактуры может быть использован в качестве первичного ключа в таблице базы данных, в которой хранятся выданные клиентам счета-фактуры.
  • Числовой номер клиента часто используется как первичный ключ в таблице клиентов.

Что объединяет эти примеры? То, что во всех из них в качестве первичного ключа выбирается уникальное, не повторяющееся значение для каждой записи. Еще раз. Значения поля таблицы базы данных, выбранного в качестве первичного ключа, всегда уникально.

Что характеризует первичный ключ? Характеристики первичного ключа.
Первичный ключ служит для идентификации записей.

Первичный ключ используется для идентификации записей в таблице, для того, чтобы каждая запись стала уникальной. Еще одна аналогия… Когда вы звоните в службу технической поддержки, оператор обычно просит вас назвать какой-либо номер (договора, телефона и пр.), по которому вас можно идентифицировать в системе.
Если вы забыли свой номер, то оператор службы технической поддержки попросит предоставить вас какую-либо другую информацию, которая поможет уникальным образом идентифицировать вас. Например, комбинация вашего дня рождения и фамилия. Они тоже могут являться первичным ключом, точнее их комбинация.

Первичный ключ уникален.

Первичный ключ всегда имеет уникальное значение. Представьте, что его значение не уникально. Тогда его бы нельзя было использовать для того, чтобы идентифицировать данные в таблице. Это значит, что какое-либо значение первичного ключа может встретиться в столбце, который выбран в качестве первичного ключа, только один раз. РСУБД устроены так, что не позволят вам вставить дубликаты в поле первичного ключа, получите ошибку.
Еще один пример. Представьте, что у вас есть таблица с полями first_name и last_name и есть две записи:

| first_name | last_name |
| vasya |pupkin |
| vasya |pupkin |

Т.е. есть два Васи. Вы хотите выбрать из таблицы какого-то конкретного Васю. Как это сделать? Записи ничем друг от друга не отличаются. Вот здесь и помогает первичный ключ. Добавляем столбец id (классический вариант синтетического первичного ключа) и…

Id | first_name | last_name |
1 | vasya |pupkin |
2 | vasya |pupkin |

Теперь каждый Вася уникален.

Типы первичных ключей.

Обычно первичный ключ – числовое значение. Но он также может быть и любым другим типом данных. Не является обычной практикой использование строки в качестве первичного ключа (строка – фрагмент текста), но теоретически и практически это возможно.
Составные первичные ключи.
Часто первичный ключ состоит из одного поля, но он может быть и комбинацией нескольких столбцов, например, двух (трех, четырех…). Но вы помните, что первичный ключ всегда уникален, а значит нужно, чтобы комбинация n-го количества полей, в данном случае 2-х, была уникальна. Подробнее об этом расскажу позднее.

Автонумерация.

Поле первичного ключа часто, но не всегда, обрабатывается самой базой данных. Вы можете, условно говоря, сказать базе данных, чтобы она сама автоматически присваивала уникальное числовое значение каждой записи при ее создании. База данных, обычно, начинает нумерацию с 1 и увеличивает это число для каждой записи на одну единицу. Такой первичный ключ называется автоинкрементным или автонумерованным. Использование автоинкрементных ключей – хороший способ для задания уникальных первичных ключей. Классическое название такого ключа – суррогатный первичный ключ [Как и упоминалось выше. – прим. перев.]. Такой ключ не содержит полезной информации, относящейся к сущности (объекту), информация о которой хранится в таблице, поэтому он и называется суррогатным.

5. СВЯЗЫВАНИЕ ТАБЛИЦ С ПОМОЩЬЮ ВНЕШНИХ КЛЮЧЕЙ

Когда я начинал разрабатывать базы данных я часто пытался сохранять информацию, которая казалась родственной, в одной таблице. Я мог, например, хранить информацию о заказах в таблице клиентов. Ведь заказы принадлежат клиентам, верно? Нет. Клиенты и заказы представляют собой отдельные сущности в базе данных. И тому и другому нужна своя собственная таблица. А записи в этих двух таблицах могут быть связаны для того, чтобы установить отношения между ними. Проектирование базы данных – это решение двух вопросов:
  • определение того, какие сущности вы хотите хранить в ней
  • какие связи между этими сущностями существуют
Один-ко-многим.
Клиенты и заказы имеют связь (состоят в отношениях) один-ко-многим потому, что один клиент может иметь много заказов, но каждый конкретный заказ (их множество ) оформлен только одним клиентом, т.е. может иметь только одного клиента. Не беспокойтесь, если на данный момент понимание этой связи смутно. Я еще расскажу о связях в следующих частях.

Одно является важных сейчас – то, что для связи один-ко-многим необходимо две отдельные таблицы. Одна для клиентов, другая для заказов. Давайте немного попрактикуемся, создавая эти две таблицы.

Какую информацию мы будем хранить? Решаем первый вопрос.
Для начала мы определимся какую информацию о заказах и о клиентах мы будем хранить. Чтобы это сделать мы должны задать себе вопрос: “Какие единичные блоки информации относятся к клиентам, а какие единичные блоки информации относятся к заказам?”

Проектируем таблицу клиентов.

Заказы действительно принадлежат клиентам, но заказ – это это не минимальный блок информации , который относится к клиентам (т.е. этот блок можно разбить на более мелкие: дата заказа, адрес доставки заказа и пр., к примеру).
Поля ниже – это минимальные блоки информации, которые относятся к клиентам:

  • customer_id (primary key) – идентификатор клиента
  • first_name - имя
  • last_name - отчество
  • address - адрес
  • zip_code – почтовый индекс
  • country - страна
  • birth_date – дата рождения
  • username – регистрационное имя пользователя (логин)
  • password – пароль

Давайте перейдем к непосредственному созданию этой таблицы в SQLyog (естественно, что вы можете использовать любую другую программу). Ниже приведен пример того, как могла бы выглядеть таблица в программе SQLyog после создания. Все графические приложения для управления базами данных имеют приблизительно одинаковую структуру интерфейса. Вы также можете создать таблицу с помощью командной строки без использования графической утилиты.


Создание таблицы в SQLyog. Обратите внимание, что выбран флажок первичного ключа (PK) для поля customer_id. Поле customer_id является первичным ключом. Также выбран флажок Auto Incr, что означает, что база данных будет автоматически подставлять уникальное числовое значение, которое, начиная с нуля, будет каждый раз увеличиваться на одну единицу.

Проектируем таблицу заказов.
Какие минимальные блоки информации, необходимые нам, относятся к заказу?

  • order_id (primary key) – идентификатор заказа
  • order_date – дата и время заказа
  • customer – клиент, который сделал заказ

Ниже – пример таблицы в SQLyog.

Эти две таблицы (клиентов и заказов ) связаны потому, что поле customer в таблице заказов ссылается на первичный ключ (customer_id ) таблицы клиентов. Такая связь называется связью по внешнему ключу . Вы должны представлять себе внешний ключ как простую копию (копию значения) первичного ключа другой таблицы. В нашем случае значение поля customer_id из таблицы клиентов копируется в таблицу заказов при вставке каждой записи. Таким образом, у нас каждый заказ привязан к клиенту. И заказов у каждого клиента может быть много, как и говорилось выше.

Создание связи по внешнему ключу.

Вы можете задаться вопросом: “Каким образом я могу убедиться или как я могу увидеть, что поле customer в таблице заказов ссылается на поле customer_id в таблице клиентов”. Ответ прост – вы не можете сделать этого потому, что я еще не показал вам как создать связь.
Ниже – окно SQLyog с окном, которое я использовал для создания связи между таблицами.


Создание связи по внешнему ключу между таблицами заказов и клиентов.

В окне выше вы можете видеть, как поле customer таблицы заказов слева связывается с первичным ключом (customer_id) таблицы клиентов справа.

Теперь, когда вы посмотрите на данные, которые могли бы быть в таблицах, вы увидите, что две таблицы связаны.


Заказы связаны с клиентами через поле customer, которое ссылается на таблицу клиентов.

На изображении вы видите, что клиент mary поместила три заказа, клиент pablo поместил один, а клиент john – ни одного.
Вы можете спросить: “А что же именно заказали все эти люди?” Это хороший вопрос. Вы возможно ожидали увидеть заказанные товары в таблице заказов. Но это плохой пример проектирования. Как бы вы поместили множественные продукты в единственную запись? Товары – это отдельные сущности, которые должны храниться в отдельной таблице. И связь между таблицами заказов и товаров будет являться связью один-ко-многим. Я расскажу об этом далее.

6. СОЗДАНИЕ ДИАГРАММЫ СУЩНОСТЬ-СВЯЗЬ

Ранее вы узнали как записи из разных таблиц связываются друг с другом в реляционных базах данных. Перед созданием и связыванием таблиц важно, чтобы вы подумали о сущностях , которые существуют в вашей системе (для которой вы создаете базу данных) и решили каким образом эти сущности бы связывались друг с другом. В проектировании баз данных сущности и их отношения обычно предоставляются в диаграмме сущность-связь (англ. entity-relationship diagram, ERD) . Данная диаграмма является результатом процесса проектирования базы данных.
Сущности.
Вы можете задаться вопросом, что же такое сущность. Нуу… это “вещь” в системе. Там. Моя Мама всегда хотела, чтобы я стал учителем потому, что я очень хорошо объясняю различные вещи.

В контексте проектирования баз данных сущность – это нечто, что заслуживает своей собственной таблицы в модели вашей базы данных. Когда вы проектируете базу данных, вы должны определить эти сущности в системе, для которой вы создаете базу данных. Это скорее вопрос диалога с клиентом или с собой с целью выяснения того, с какими данными будет работать ваша система.

Давайте возьмем интернет-магазин для примера. Интернет-магазин продает товары . Товар мог бы стать очевидной сущностью в системе интернет-магазина. Товары заказываются клиентами . Вот мы с вами и увидели еще две очевидных сущности: заказы и клиенты .

Заказ оплачивается клиентом… это интересно. Мы собираемся создавать отдельную таблицу для платежей в базе данных нашего интернет-магазина? Возможно. Но разве платежи – это минимальный блок информации, который относится к заказам? Это тоже возможно.

Если вы не уверены, то просто подумайте о том, какую информацию о платежах вы хотите хранить. Возможно, вы захотите хранить метод платежа или дату платежа . Но это все еще минимальные блоки информации, которые могли бы относиться к заказу . Можно изменить формулировки. Метод платежа - метод платежа заказа. Дата платежа – дата платежа заказа. Таким образом, я не вижу необходимости выносить платежи в отдельную таблицу, хотя концептуально вы бы могли выделить платежи как сущность, т.к. вы могли бы рассматривать платежи как контейнер информации (метод платежа, дата платежа).

Давайте не будет слишком академичными.

Как вы видите, есть разница между сущностью и непосредственно таблицей в базе данных, т.е. это не одно и то же. Специалисты отрасли информационных технологий могут быть ОЧЕНЬ академичными и педантичными в этом вопросе. Я не такой специалист. Эта разница зависит от вашей точки зрения на ваши данные, вашу информацию. Если вы смотрите на моделирование данных с точки зрения программного обеспечения, то вы можете прийти к множеству сущностей, которые нельзя будет перенести напрямую в базу данных. В данном руководстве мы смотрим на данные строго с точки зрения баз данных и в нашем маленьком мире сущность – это таблица.


Держитесь там, вы действительно близки к получению вашей ученой степени по базам данных.

Как вы видите определение того, какие сущности имеет ваша система – это немного интеллектуальный процесс, который требует некоторого опыта и часто – это предмет для внесения изменений, пересмотров, раздумий, но, конечно, это не ракетостроение.


Диаграмма сущность-связь может быть достаточно большой, если вы работаете над сложным приложением. Некоторые диаграммы могут содержать сотни или даже тысячи таблиц.

Связи.
Второй шаг в проектировании баз данных – это выбор того, какие связи существуют между сущностями в вашей системе. Сейчас это может быть немного сложно для понимания, но, повторюсь еще раз, это не ракетостроение. С приобретением некоторого опыта и переосмысления выполненной работы вы будете завершать очередную модель базы данных верным или почти верным образом.

Итак. Я рассказал вам о связи один-ко-многим и я расскажу вам больше о связях в дальнейших частях этого руководства, поэтому сейчас я больше не буду останавливаться на этом. Просто запомните, что решение о том, какие связи будут иметь ваши сущности – важная часть проектирования баз данных и эти связи отображаются в диаграмме сущность-связь .

Таблицы

В реляционной базе данных информация организована в виде реляционных таблиц, разделенных на строки и столбцы, на пересечении которых содержатся значения данных .

Таблица – это некоторая регулярная структура, состоящая из конечного набора однотипных записей.

Таблица отражает тип объекта реального мира (сущность). Строки соответствуют экземпляру объекта, конкретному событию или явлению. Столбцы соответствуют атрибутам(признакам, характеристикам, параметрам) объекта, события, явления. У каждой таблицы имеется уникальное имя внутри базы данных, описывающее ее содержимое.

У каждого столбца в таблице есть свое имя, которое обычно служит заголовком столбца. Все столбцы в одной таблице должны иметь уникальные имена, однако разрешается присваивать одинаковые имена столбцам, расположенным в различных таблицах. В реляционной модели данных атрибуты отношений не упорядочены, т. е. обращение к полям всегда происходит по именам, а не по расположению. Однако в языке SQL допускается индексное указание столбцов таблиц, при этом столбцы рассматриваются в порядке слева направо (их порядок определяется при создании таблицы) .

В любой таблице всегда есть как минимум 1 столбец. В стандарте ANSI/ISO не указывается максимально допустимое число столбцов в таблице, однако почти во всех коммерческих СУБД этот предел существует. В СУБД Firebird этот предел составляет 32 767 столбцов.

В РМДреляционной модели данных для обозначения строки отношения используется понятие кортеж. Представлением кортежа на физическом уровне является строка таблицы базы данных. Строки таблицы не имеют имен и определенного порядка. В таблице может содержаться любое количество строк. Вполне допустимо существование таблицы с нулевым количеством строк. Такая таблица называется пустой. Пустая таблица сохраняет структуру, определенную ее столбцами, просто в ней не содержатся данные. Как правило, не накладывается ограничений на количество строк в таблице, и во многих СУБД размер таблиц ограничен лишь свободным дисковым пространством компьютера. В других СУБД имеется максимальный предел, однако он весьма высок – около двух миллиардов строк, а иногда и больше.

Проиллюстрируем более наглядно структуру одной из таблиц учебной базы данных (см. приложение А). На рис. 1.1 приведена структура таблицы Abonent, содержащей сведения об абонентах компаний жилищно-комму­нального хозяйства.

Рис. 1.1. Структурареляционной таблицы Abonent

Каждая горизонтальная строка этой таблицы представляет отдельную физическую сущность – одного абонента. Двенадцать строк таблицы вместе представляют всех абонентов. Все данные, содержащиеся в конкретной строке таблицы, представляют собой набор значений атрибутов конкретного абонента, который описывается этой строкой.


Каждый вертикальный столбец таблицы представляет совокупность значений конкретного атрибута объекта. Например, в столбце AccountCD содержатся уникальные номера лицевых счетов абонентов. В столбце Phone содержатся номера телефонов абонентов.

На пересечении каждой строки с каждым столбцом таблицы содержится в точности одно значение данных. Например, в строке, представляющей абонента Конюхова В. С., в столбце Fio содержится значение "Конюхов В.С.". В столбце AccountCD той же строки содержится значение "015527", которое является номером лицевого счета абонента с ФИО Конюхов В. С.

Все значения, содержащиеся в одном и том же столбце, являются данными одного типа. Например, в столбце Fio содержатся только слова, а в столбце StreetCD содержатся целые числа, представляющие идентификаторы улиц. В реляционной модели данных общая совокупность значений, из которой берутся действительные значения для определенных атрибутов (столбцов), называется доменом . Доменом столбца Fio, например, является множество фамилий, имен и отчеств (ФИО) абонентов. Каждый столбец всегда определяется на одном домене.

В реляционных базах данных домен определяется путем задания как минимум некоторого базового типа данных, к которому относятся элементы домена, а часто также и произвольного логического выражения, применяемого к элементам этого типа данных (ограничения домена).

В учебной базе данных определены следующие домены:

§ Boollean (Логический): SMALLINT . Поля, определяемые на этом домене, могут принимать только целочисленные значения, равные 0 или 1. Это достигается наложением в домене условия проверки (CHECK) на принимаемые этим доменом значения.

§ Money (Деньги): NUMERIC(15,2) . Домен предназначен для определения в таблицах полей, хранящих денежные суммы.

§ PKField (Поле ПК): INTEGER . Домен предназначен для определения первичных и внешних ключей таблиц. Ограничение обязательности данных (NOT NULL) на этот домен не наложено. Оно накладывается при объявлении первичного ключа таблицы. Это сделано для того, чтобы можно было определить внешний ключ на этом домене без условия NOT NULL.

§ TMonth (Месяц): SMALLINT . Домен предназначен для определения в таблицах полей, содержащих номера месяцев. Целочисленные значения в таком поле могут находиться в диапазоне 1...12.

§ TYear (Год): SMALLINT . Домен предназначен для определения полей, содержащих номер года. Целочисленные значения могут находиться в диапазоне 1990...2100.

Поскольку строки в реляционной таблице не упорядочены, то нельзя выбрать строку по ее номеру в таблице. В таблице нет «первой», «последней» или «тринадцатой» строки. Тогда каким же образом можно указать в таблице конкретную строку, например строку для абонента с ФИО Аксенов С.А.?

Ключевым элементом данных называется такой элемент, по которому можно определить значения других элементов данных.

В реляционной базе данных в каждой таблице есть 1 или несколько столбцов, значения в которых во всех строках разные. Этот столбец (столбцы) называется первичным ключом таблицы.

Первичный ключ – это атрибут или группа атрибутов, которые единственным образом идентифицируют каждую строку в таблице.

Вернемся к рассмотрению таблицы Abonent учебной базы данных (рис. 1.1). На первый взгляд, первичным ключом таблицы Abonent могут служить и столбец AccountCD, и столбец Fio. Однако в случае если будут зарегистрированы 2 абонента с одинаковыми ФИО, то столбец Fio больше не сможет исполнять роль первичного ключа. На практике в качестве первичных ключей таблиц обычно следует выбирать идентификаторы, такие как уникальный номер лицевого счета абонента (AccountCD в таблице Abonent), идентификатор улицы (StreetCD в таблице Street) и т. д.

Если в таблице нет полей, значения в которых уникальны, для создания первичного ключа в нее обычно вводят дополнительное поле, значениями которого СУБД может распоряжаться по своему усмотрению.

Если первичный ключ представляет собой комбинацию столбцов, то такой первичный ключ называется составным .

Вторичные ключи устанавливаются по полям, которые часто используются при поиске или сортировке данных. В отличие от первичных ключей поля для вторичных ключей могут содержать не уникальные значения.

В данной теме, на примере двух таблиц, определяются основные понятия реляционных баз данных, а именно:

  • первичный ключ;
  • внешний ключ;
  • простой и составной ключ;
  • отношение, типы отношений;
  • искусственный и естественный ключи;
  • главная (master) и подчиненная (detail) таблицы.

Входные данные

Пусть задана база данных работников предприятия, которая состоит из двух таблиц. Первая таблица содержит данные о работнике. Вторая таблица содержит сведения о заработной плате работника.

Таблицы имеют следующую структуру.

«Работник» . Содержит данные о работнике «Зарплата» . Содержит сведения о заработной плате работников.

Вопрос/ответ

1. Что такое первичный ключ в таблице базы данных? Для чего используются первичные ключи?

При работе с таблицами в реляционных базах данных, желательно (необходимо), чтобы каждая таблица имела так называемый первичный ключ .

Первичный ключ – это поле, которое используется для обеспечения уникальности данных в таблице. Это означает, что значение (информация) в поле первичного ключа в каждой строке (записи) таблицы может быть уникальным.

Уникальность необходима во избежание неоднозначности, когда неизвестно к какой записи таблицы можно обратиться, если в таблице есть повторяющиеся записи (две записи имеют одинаковые значения во всех полях таблицы).

Пример. Для таблицы «Работник» можно ввести дополнительное поле, которое будет первичным ключом. Однако, поле (атрибут) «Табельный номер» также обеспечивает уникальность. Так как, теоретически, не может быть двух одинаковых табельных номеров. На практике могут быть случаи, что один и тот же табельный номер будет введен по ошибке и совпадут значения всех полей таблицы. В результате возникнут два одинаковых записи в таблице. Во избежание такой ошибки, лучше создать в таблице дополнительное поле-счетчик, которое обеспечит уникальность.

Также для таблицы «Зарплата» можно ввести дополнительное поле, которое будет первичным ключом.

2. Что такое отношение (связь) между таблицами (relationship)? Пример

Таблицы в реляционной модели данных могут иметь связи между собой. Такие связи называются отношениями. Для таблиц «Работник» и «Зарплата» можно установить связь по полю «Табельный номер».

Пример. Проанализируем таблицы «Работник» и «Зарплата». В этих таблицах можно установить отношение между таблицами на основе поля «Табельный номер». То есть, связь между таблицами происходит на основе поля (атрибуту) «Табельный номер».

Это означает следующее. Если нужно найти начисленную заработную плату в таблице «Зарплата» для работника Иванов И.И., то нужно выполнить следующие действия:

  • найти табельный номер работника Иванов И.И. в таблице «Работник». Значение табельного номера равно 7585;
  • в таблице «Зарплата» найти все значения, которые равны 7585 (табельный номер);
  • выбрать из таблицы «Зарплата» все значения поля «Начислено», которые соответствуют табельному номеру 7585.

Рис. 1. Иллюстрация связи между таблицами. Табельный номер 2145 таблицы «Работник» отображается в таблице «Зарплата»

Рис. 2. Связь (отношение) между полями таблиц

3. Что такое внешний ключ (foreign key)? Пример

Понятие «внешний ключ» есть важным при рассмотрении связанных таблиц.

Внешний ключ – это одно или несколько полей (атрибутов), которые являются первичными в другой таблице и значение которых заменяется значениями первичного ключа другой таблицы.

Пример. Пусть между таблицами «Работник» и «Зарплата» существует взаимосвязь по полю «Табельный номер». В этом случае, поле «Табельный номер» таблицы «Работник» может быть первичным ключом, а поле «Табельный номер» таблицы «Зарплата» внешним ключом. Это означает, что значения поля «Табельный номер» таблицы «Зарплата» заменяются значениями поля «Табельный номер» таблицы «Работник».

4. Что такое рекурсивный внешний ключ?

Рекурсивный внешний ключ – это внешний ключ, который ссылается на одну и ту же таблицу, к которой он принадлежит. В этом случае поле (атрибут), которое соответствует внешнему ключу, есть ключом одного и того же отношения (связи).

5. Могут ли первичный и внешний ключи быть простыми или составными (сложными)?

Первичный, вторичный и внешний ключи могут быть как простыми так и составными (сложными). Простые ключи – это ключи, которые содержат только одно поле (один атрибут). Составные (сложные) ключи – это ключи, которые содержат несколько полей (атрибутов).

6. Какое отличие между искусственным и естественным ключом? Пример

Естественной ключ обеспечивает уникальность из самой сущности предметной области. Бывают случаи, когда значения записей некоторого поля (полей) таблицы есть уникальными. Это поле может быть естественным ключом.

Искусственный ключ вводится дополнительно для обеспечения уникальных значений. Чаще всего искусственный ключ есть полем типа счетчик (counter). В таком поле, при добавлении новой записи (строки) в таблицу, значение счетчика увеличивается на 1 (или другую величину). Если запись удалить из таблицы, то максимальное значение счетчика строк уже не уменьшается, а остается как есть. Как правило, за этим все следит система управления базами данных.

Пример. В таблице «Работник» естественном ключом есть поле (атрибут) «Табельный номер». Поле «Табельный номер» есть само по себе уникальным, так как не может быть двух работников с одинаковым табельным номером.

В таблице «Зарплата» значение во всех четырех полях могут случайно повториться. Поэтому, здесь целесообразно добавить дополнительное поле-счетчик, которое будет искусственным ключом. В этом случае таблица «Зарплата» с дополнительным полем может иметь приблизительно следующий вид:

где поле «Номер» есть искусственным ключом, который обеспечивает уникальность.

7. Какие существуют способы выбора первичного ключа?

Существует 3 способа выбора первичного ключа:

  • использовать поле-инкремент (поле-счетчик) как искусственный ключ;
  • выбрать из данных одно поле, которое может обеспечить уникальность;
  • выбрать из данных несколько полей, которые могут обеспечить уникальность. В этом случае ключ еще будет называться сложным (составным).
8. Что означают термины «главная таблица» (master) и «подчиненная таблица» (detail)?

Если между таблицами есть связь, то одна из них может быть главной (master), а другая подчиненной (detail). Главная таблица отображает все записи, которые помещаются в ней. Подчиненная таблица отображает только те записи, которые соответствуют значению ключа главной таблицы, который на данный момент есть активным (текущим). Если изменяется текущая запись главной таблицы, то изменяется множество доступных записей подчиненной таблицы.

Пример. Если рассмотреть таблицы «Работник» и «Зарплата», то таблица «Работник» есть главной, а таблица «Зарплата» есть подчиненной.

9. Какие существуют типы отношений (связей) между таблицами?

Существует 4 основных типа отношений между таблицами:

  • «один к одному» . В этом случае каждой записи одной таблицы соответствует только одна запись другой таблицы;
  • «один ко многим» . Это когда одной записи главной таблицы (master) соответствует несколько записей подчиненной таблицы (detail). То есть, каждой записи, которая есть первичным ключом одной таблицы, соответствует несколько записей связанной таблицы;
  • «много к одному» . Это когда нескольким записям главной таблицы отвечает одна запись подчиненной таблицы;
  • «много ко многим» . Это когда в обоих таблицах существует несколько взаимосвязанных записей.

Пример. Если рассмотреть отношение между таблицами «Работник» и «Зарплата», то это отношения есть типа «один ко многим». Таблица «Работник» есть главной. Таблица «Зарплата» есть подчиненной.



Рекомендуем почитать

Наверх