Магистральные сети связи. Магистральные сети и сети доступа. Наименование характеристики ВОК

Для Андроид 12.04.2019
Для Андроид

Лекция 8 08.03.2017 4:50:00

Магистральные каналы передачи данных

Аналоговые магистральные каналы

Первые дальние линии передачи данных появились ещё в эпоху телеграфа. С развитием телефонии потребности в передаче данных на большие расстояния резко увеличились. Появилась необходимость в линиях связи, способных обеспечивать одновременное обслуживание нескольких телефонных разговоров. Такие линии связи получили название «магистральных». Первые магистральные линии телефонной связи представляли просто несколько обычных телефонных линий, проложенных параллельно. Это было не самое экономичное решение и в 30-х годах прошлого века появились первые системы уплотнения телефонных сигналов с частотным разделением каналов.

Принцип работы систем с частотным уплотнением следующий: стандартный телефонный канал обеспечивает передачу аналогового сигнала в диапазоне частот от 300 до 3400 Гц, т.е. имеет полосу пропускания в 3100 Гц. С учетом особенностей человеческого голосового аппарата и возможностей распознания речи такая полоса пропускания обеспечивает понимание не менее 90% слов и 99% фраз. Для уплотнения (или мультиплексирования) несколько низкочастотных голосовых сигналов с помощью модулирования и фильтрации переносятся в более высокочастотный диапазон, причем каждому выделяется своя собственная полоса. Для исключения интерференции каждому сигналу шириной 3100 Гц выделяется полоса в 4000 Гц и они оказываются отделены друг от друга защитной полосой в 900 Гц.

Так первичный групповой тракт К-12 позволяет объединить 12 голосовых каналов и поместить их в диапазоне от 60 до 108 КГц. Вторичный тракт К-60 объединяет 5 первичных в диапазоне от 312 до 552 КГц. Его ширина 240 КГц что соответствует 60 полосам по 4 КГц для голосовых каналов.

Аналоговые магистральные линии разрабатывались задолго до цифровой эры и предназначались только для передачи голосового трафика. Конечно, с помощью модема в каждый голосовой канал можно нагрузить цифровым потоком мощностью в несколько килобит в секунду, но реализовывать столь экзотические схемы не потребовалось по причине прихода на магистральные линии цифровых технологий.

Технология плезиохронной цифровой иерархии (PDH)

Развитие полупроводниковых технологий позволило в начале 60-х годов перейти к цифровым методам передачи, которые имели значительные преимущества по сравнению с аналоговой передачей сигнала (достаточно сказать о возможности практически без потерь восстанавливать цифровой сигнал на регенерационном участке). Для оцифровки речевого сигнала стал применяться метод, названный импульсно-кодовой модуляцией (PCM - Pulse Code Modulation), согласно которому дискретные отсчеты сигнала, взятые с частотой 8 КГц, кодировались 8-ми битной последовательностью (квантовались), что давало цифровой поток 8КГц х 8бит = 64 Кбит/сек. Этот цифровой сигнал получил название DS0 (Digital Signal level zero), и, именно, он является тем строительным "кирпичиком", на базе которого создаются более мощные цифровые системы передач, емкость которых измеряется числом DS0, содержащихся в них.

Цифровая аппаратура мультиплексирования и коммутации была разработана в конце 60-х годов компанией AT&T для решения проблемы связи крупных коммутаторов телефонных сетей между собой. Каналы с частотным уплотнением, применяемые до этого на участках АТС-АТС, исчерпали свои возможности по организации высокоскоростной многоканальной связи по одному кабелю. .

Для решения этой задачи была разработана аппаратура Т1, которая позволяла в цифровом виде мультиплексировать, передавать и коммутировать данные 24 абонентов. Для соединения магистральных АТС каналы Т1 представляли собой слишком слабые средства мультиплексирования, поэтому в технологии была реализована идея образования каналов с иерархией скоростей . Четыре канала типа Т1 объединяются в канал следующего уровня цифровой иерархии - Т2, передающий данные со скоростью 6,312 Мбит/с, а семь каналов Т2 дают при объединении канал ТЗ, передающий данные со скоростью 44,736 Мбит/с. Аппаратура T1, T2 и ТЗ может взаимодействовать между собой, образуя иерархическую сеть с магистральными и периферийными каналами трех уровней скоростей.

С середины 70-х годов выделенные каналы, построенные на аппаратуре T1, стали сдаваться телефонными компаниями в аренду на коммерческих условиях, перестав быть внутренней технологией этих компаний. Сети T1, а также более скоростные сети T2 и ТЗ позволяют передавать не только голос, но и любые данные, представленные в цифровой форме, - компьютерные данные, телевизионное изображение, факсы и т. п.

Технология цифровой иерархии была позже стандартизована для международного применения. При этом в нее были внесены некоторые изменения, что привело к несовместимости американской и международной версий цифровых сетей. Американская версия распространена сегодня кроме США также в Канаде и Японии (с некоторыми различиями), а в Европе применяется международный стандарт. Аналогом каналов Т в международном стандарте являются каналы типа El, E2 и ЕЗ с другими скоростями - соответственно 2,048 Мбит/с, 8,488 Мбит/с и 34,368 Мбит/с. Американский вариант технологии также был стандартизован ANSI.

Несмотря на различия американской и международных версий технологии цифровой иерархии, для обозначения иерархии скоростей принято использовать одни и те же обозначения - DSn (Digital Signal n). В таблице приводятся значения для всех введенных стандартами уровней скоростей обеих технологий.

Иерархия цифровых скоростей

Или в графической форме:

На практике в основном используются каналы Т1/Е1 и ТЗ/ЕЗ.

При передаче компьютерных данных канал Т1 предоставляет для пользовательских данных только 23 канала, а 24-й канал отводится для служебных целей.

Пользователь может арендовать несколько каналов 64 Кбит/с (56 Кбит/с) в канале Т1/Е1. Такой канал называется «дробным» (fractional) каналом Т1/Е1. В этом случае пользователю отводится несколько тайм - слотов работы мультиплексора.

Физический уровень технологии PDH поддерживает различные виды кабелей: витую пару, коаксиальный кабель и волоконно-оптический кабель.

Коаксиальный кабель благодаря своей широкой полосе пропускания поддерживает канал Т2/Е2 или 4 канала Т1/Е1. Для работы каналов ТЗ/ЕЗ обычно используется либо коаксиальный кабель, либо волоконно-оптический кабель, либо каналы СВЧ.

Физический уровень международного варианта технологии определяется стандартом G.703.

Как американский, так и международный варианты технологии PDH обладают несколькими недостатками.

Одним из основных недостатков является сложность операций мультиплексирования и демультиплексирования пользовательских данных. Сам термин «плезиохронный», используемый для этой технологии, говорит о причине такого явления - отсутствии полной синхронности потоков данных при объединении низкоскоростных каналов в более высокоскоростные. Поскольку мультиплексируемые потоки не были синхронными, их скорости могли различаться в пределах допустимой нестабильности тактовых генераторов, формирующих битовые последовательности, каждого из них. Поэтому при мультиплексировании таких потоков, необходимо производить вставку либо исключение бит для согласования скоростей.

Наличие в PDH потоках выравнивающих битов, делает невозможным прямое извлечение из потока, составляющих его компонентов. Так, чтобы извлечь из потока 140 Мбит/сек (Е4) поток 2 Мбит/сек (Е1) необходимо демультиплексировать Е4 на четыре потока 34Мбит/сек (Е3), затем один из Е3 на четыре потока 8 Мбит/сек (Е2), и только после этого можно вывести требуемый Е1. А для организации ввода/вывода требуется трехуровневое демультиплексирование, а затем трехуровневое мультиплексирование (Рис.2). Такой подход был самоочевидным для обслуживания телефонного трафика с его иерархической системой узлов коммутации каналов. Но использование системы PDH в сетях передачи данных требует большого количества мультиплексоров, что значительно удорожает сеть и усложняет ее эксплуатацию.

Другим существенным недостатком технологии PDH является отсутствие развитых встроенных процедур контроля и управления сетью. Служебные биты дают мало информации о состоянии канала, не позволяют его конфигурировать и т. п. Нет в технологии и процедур поддержки отказоустойчивости, которые очень полезны для первичных сетей, на основе которых строятся ответственные междугородные и международные сети. В современных сетях управлению уделяется большое внимание, причем считается, что управляющие процедуры желательно встраивать в основной протокол передачи данных сети.

Третий недостаток состоит в слишком низких по современным понятиям скоростях иерархии PDH.

Целесообразно делить территориальные сети, используемые для построения корпоративной сети, на две большие категории:

магистральные сети;

сети доступа.

Магистральные территориальные сети (backbone wide-area networks) используются для образования одноранговых связей между крупными локальными сетями, принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как на магистрали объединяются потоки большого количества подсетей. Кроме того, магистральные сети должны быть постоянно доступны, то есть обеспечивать очень высокий коэффициентом готовности, так как по ним передается график многих критически важных для успешной работы предприятия приложений (business-critical applications). Ввиду особой важности магистральных средств им может «прощаться» высокая стоимость. Так как у предприятия обычно имеется не так уж много крупных сетей, то к магистральным сетям не предъявляются требования поддержания разветвленной инфраструктуры доступа. Обычно в качестве магистральных сетей используются цифровые выделенные каналы со скоростями от 2 до 622 Мбит/с, по которым передается трафик IP, IPX или протоколов архитектуры SNA компании IBM, сети с коммутацией пакетов frame relay, ATM, X.25 или TCP/IP. Под сетями доступа понимаются территориальные сети, необходимые для связи небольших локальных сетей и отдельных удаленных компьютеров с центральной локальной сетью предприятия. Если организации магистральных связей при создании корпоративной сети всегда уделялось большое внимание, то организация удаленного доступа сотрудников

предприятия перешла в разряд стратегически важных вопросов только в последнее время. Быстрый доступ к корпоративной информации из любой географической точки определяет для многих видов деятельности предприятия качество принятия решений его сотрудниками. Важность этого фактора растет с увеличением числа сотрудников, работающих на дому (telecommuters - телекоммьютеров), часто находящихся в командировках, и" с ростом количества небольших филиалов предприятий, находящихся в различных городах и, может быть, разных странах.

В качестве отдельных удаленных узлов могут также выступать банкоматы или кассовые аппараты, требующие доступа к центральной базе данных для получения информации о легальных клиентах банка, пластиковые карточки которых необходимо авторизовать на месте. Банкоматы или кассовые аппараты обычно рассчитаны на взаимодействие с центральным компьютером по сети Х.25, которая в свое время специально разрабатывалась как сеть для удаленного доступа неинтеллектуального терминального оборудования к центральному компьютеру.


К сетям доступа предъявляются требования, существенно отличающиеся от требований к магистральным сетям. Так как точек удаленного доступа у предприятия может быть очень много, одним из основных требований является наличие разветвленной инфраструктуры доступа, которая может использоваться сотрудниками предприятия как при работе дома, так и в командировках. Кроме того, стоимость удаленного доступа должна быть умеренной, чтобы экономически оправдать затраты на подключение десятков или сотен удаленных абонентов. При этом требования к пропускной способности у отдельного компьютера или локальной сети, состоящей из двух-трех клиентов, обычно укладываются в диапазон нескольких десятков килобит в секунду (если такая скорость и не вполне удовлетворяет удаленного клиента, то обычно удобствами его работы жертвуют ради экономии средств предприятия).

В качестве сетей доступа обычно применяются телефонные аналоговые сети, сети ISDN и реже - сети frame relay. При подключении локальных сетей филиалов также используются выделенные каналы со скоростями от 19,2 до 64 Кбит/с. Качественный скачок в расширении возможностей удаленного доступа произошел в связи со стремительным ростом популярности и распространенности Internet. Транспортные услуги"Мегпе! дешевле, чем услуги междугородных и международных телефонных сетей, а их качество быстро улучшается.

Программные и аппаратные средства, которые обеспечивают подключение компьютеров или локальных сетей удаленных пользователей к корпоративной сети, называются средствами удаленного Ооступа. Обычно на клиентской стороне эти средства представлены модемом и соответствующим программным обеспечением.

Организацию массового удаленного доступа со стороны центральной локальной сети обеспечивает сервер удаленного доступа (Remote Access Server, RAS). Сервер удаленного доступа представляет собой программно-аппаратный комплекс, который совмещает функции маршрутизатора, моста и шлюза. Сервер выполняет ту или иную функцию в зависимости от типа протокола, по которому работает удаленный пользователь или удаленная сеть.

Прокладка кабеля в грунт.


DWDM с подключенными клиентами

Привет!
Я планирую магистральные сети «ВымпелКома» - куда идти, что строить и так далее. Сразу предупрежу – города для нас это как «материальные точки», внутри работают другие люди. В них мы заглядываем только для того, чтобы добраться до своих магистральных узлов.

Протяженность магистральной сети - 137 тысяч километров, пропускная способность уже более 8 Тб/с. Сейчас мы уже перешли Урал, находимся в Сибири, переходим Красноярск и планируем добраться до Читы.

Ниже - ещё фото, рассказ про оборудование и действия при обрывах.

Сеть растёт за счёт прокладки магистральных междугородных кабелей непосредственно «ВымпелКомом», покупки уже готовых каналов связи и аренды сетей там, где нет нашего присутствия. За последние годы строительство сети достаточно сильно активизировалось, так как аренда сетей основных магистральных провайдеров стала достаточно дорогой: требования по ширине канала постоянно растут. Ещё несколько лет назад необходимые ресурсы исчислялись сотнями мегабайт, а сейчас на многих участках уже нужны десятки гигабайт. Это в некоторой степени связано с увеличением количества абонентов, но в большей – с ростом популярности интернет-сервисов. В будущем эксперты предсказывают рост трафика и из-за доступности потокового видео, и из-за роста M2M-устройств типа различных датчиков с SIM-картой внутри.

Конечно необходимость любой стройки определяется экономикой, и, чем больше информационные потоки, тем лучше экономика строительства. К примеру, в сторону Урала из Москвы - сечение 440 Гигабит. Для связи междугородных узлов очень редко используем радиорелейное оборудование (оно осталось ещё кое-где на арендованных участках), в труднодоступных местах используем спутниковые каналы (например, на севере). Чаще всего прокладываем обычный кабель. В основном используется кабель с волокнами производства Corning или Fujikura рекомендации G.652, потом к нему подключаем магистральное DWDM оборудование.


Стойки с магистральным оборудованием DWDM


Ещё стойки с магистральным оборудование DWDM

Уплотнённая передача

Если абонент совершает звонок по телефону, то “голос” идет через контроллер (RNC) на коммутатор. Если он выходит во всемирную сеть, то пакетный трафик (дата) через SGSN и GGSN идет в интернет. Магистральная сеть используется для передачи как голоса, так и пакетного трафика между городами России, причем, независимо от расстояния.


DWDM с подключенными высокоскоростными client

Между узловыми точками (крупными маршрутизаторами) мы используем DWDM - спектральное уплотнение канала, мультиплексирование с разделением по длине волны. Работает это так: данные падают в аппаратуру спектрального уплотнения, через неё пробрасываем IP, выделенные каналы и так далее. Нагрузки соединяются в групповой сигнал и одним «чихом» передаются в другой город. Ключевые элементы этой системы – мультиплексор, объединяющий сигналы, и демультиплексор, осуществляющий «распаковку», самые дорогостоящие элементы – транспондеры. К ним непосредственно и подключаются потребители. Основные производители - Ciena и Huawei.


DWDM Ciena - все работает исправно (о чем свидетельствуют синие лампочки)

Раньше мы использовали SDH, сейчас перешли к гибкой и хорошо масштабируемой DWDM. Переход потребовал глубокой модернизации сети с установкой нового оборудования в точках концентрации трафика, а также на всей протяженности линии.


SDH с ограниченными возможностями и DWDM с «безграничными» возможностями

Кольца

Понятно, что обрыв магистральной сеть означает проблемы для тех, кто остался на изолированном участке. Соответственно, многие соединения закольцованы, то есть имеют как минимум по одному резервному каналу.

Правда, пару лет назад случилось практически невероятное – в двух местах кольца почти одномоментно порвали два канала. Теперь мы строим рассечки, чтобы увеличить надёжность и защититься от двойной или тройной аварии на сети.

Магистральные кабели рвут чаще, чем кажется, в основном - в городской черте. Типичные причины – застройка без разрешений, без проверки того, что закопано на участке, внезапный ремонт без согласований. Обычно вы такие аварии даже не замечаете, потому что практически везде - кольца, и для сети в целом это некритично. Мы выезжаем, ремонтируем.

Лет десять назад много обрывов было в сельской местности: деревенские жители с интересом наблюдали за прокладкой кабеля, для того чтобы выкопать, перерубить его лопатой в поисках меди. Сейчас люди уже догадались, что меди внутри оптических кабелей как-то нет. На моей памяти, за последние 10 лет только дважды обрывы кабеля были вызваны действиями охотников за медью. Ещё вспоминается, как магистраль рвало селевым потоком, как её перебивал экскаватор (вообще экскаватор - враг телекоммуникаций №1). Однажды прямо в кабель забили сваю.


Борьба людей и природы (cель)

Обрывы

В случае обрыва кабеля мы фиксируем аварию, сообщаем обслуживающей организации на месте, с которой заключен договор (режим работы 24/7). Есть сложные случаи, особенно они часты зимой, когда на системе управления сложно определить координаты обрыва кабеля. Тогда на месте инженеры берут рефлектометр и начинают искать обрыв. Рефлектометр - это такая штука, которая подаёт оптический импульс, и измеряет время возврата отраженного сигнала от места излома. Прибор, зная скорость сигнала, рассчитывает расстояние до места аварии. «Стрельнули» с одной стороны, потом с другой – стало понятно, где обрыв. Как правило, место видно – например, как я говорил выше, свая торчит или стоит экскаватор со свежей землёй на ковше. Иногда приходится искать подольше, но найти – не проблема. Под землёй оптоволокно само не рвётся, всегда что-то видно на поверхности.

Бригада делает ремонтную вставку - вырезается испорченный кабель, как правило, 20-120 метров. Понятно, что вставка ухудшает соотношение сигнал/шум, но линии строятся с запасом 3 децибелла (этот запас позволит построить около 15 километров вставок). Есть такие места (например на Кавказе), где на линии произошло уже по 20 аварий, резерва хватает. Скорость передачи данных от вставок не падает, ухудшаются характеристики линии. На практике, такого, чтобы из-за вставок пришлось перекладывать кабель, пока не было.


Укладка муфты в кабельную канализацию

Новый участок

Когда нужен новый участок сети, мы готовим бизнес-кейс, считаем затраты. Плюс добавляем данные по тому, что сэкономим при отказе от аренды, коммерческие специалисты прикидывают, сколько будет дополнительных продаж из-за возможности предоставления более широкого спектра услуг. Отдаём план финансистам, они дают заключение, строим или нет. Дальше делается детальное техническое решение, позволяющее нанять подрядчика и построить.


Ввод оптического кабеля в контейнер связи

Сейчас кабель стараемся по возможности закапывать в защитной полиэтиленовой трубе - это самый благоприятный метод. Не везде получается. Где нет возможности, тянем подвесом, используя опоры энергосетей или городских служб… Между городами – оптический кабель может быть размещен в грозотросе ЛЭП, или же используем самонесущий кабель по столбам освещения. Хорошо защищены кабели связи в метро, но там магистрали как таковой нет, обычные – местные сети, а это уже не моя стихия.


Информационные аншлаги через пару лет после прокладки


Спуск кабеля с опоры ЛЭП


НРП


Запас оптического кабеля на опоре


Укладка оптического кабеля (в ЗПТ) в грунт

Средние сроки реализации магистральных междугородных проектов в зависимости от сложности грунтов, характера землевладельцев составляют от года до двух, трех лет. Финалом строительства Мг магистрали являются: проверка участка сертифицированной измерительной аппаратурой, сдача линии в эксплуатацию. Собирается авторитетная комиссия, оформляется куча актов, документов и разрешений. Все это называется красивым словом – легализация. После этого - ура. Линия заработала.

Целесообразно делить территориальные сети, используемые для построения кор-
поративной сети, на две большие категории:

Магистральные сети;

Сети доступа

Магистральные территориальные сети (backbone wide-area networks) использу-
ются для образования одноранговых связей между крупными локальными сетями,
принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как
на магистрали объединяются потоки большого количества подсетей. Кроме того,
магистральные сети должны быть постоянно доступны, то есть обеспечивать очень
высокий коэффициентом готовности, так как по ним передается график многих
критически важных для успешной работы предприятия приложений (business-critical
applications). Ввиду особой важности магистральных средств им может «прощать-
ся» высокая стоимость. Так как у предприятия обычно имеется не так уж много
крупных сетей, то к магистральным сетям не предъявляются требования поддер-
жания разветвленной инфраструктуры доступа.

Обычно в качестве магистральных сетей используются цифровые выделенные
каналы со скоростями от 2 до 622 Мбит/с, по которым передается трафик IP, IPX
или протоколов архитектуры SNA компании IBM, сети с коммутацией пакетов
frame relay, ATM, X.25 или TCP/IP. При наличии выделенных каналов для обеспе-
чения высокой готовности магистрали используется смешанная избыточная топо-
логия связей, как это показано на рис. 5.

Под сетями доступа понимаются территориальные сети, необходимые для свя-
зи небольших локальных сетей и отдельных удаленных компьютеров с централь-
ной локальной сетью предприятия. Если организации магистральных связей при
создании корпоративной сети всегда уделялось большое внимание, то организация
удаленного доступа сотрудников предприятия перешла в разряд стратегически
важных вопросов только в последнее время. Быстрый доступ к корпоративной
информации из любой географической точки определяет для многих видов дея-
тельности предприятия качество принятия решений его сотрудниками. Важность
этого фактора растет с увеличением числа сотрудников, работающих на дому
(telecommuters - телекоммыотеров), часто находящихся в командировках, и с рос-
том количества небольших филиалов предприятий, находящихся в различных го-
родах и, может быть, разных странах.

Рис. 5. Структуре глобальной сети предприятия

В качестве отдельных удаленных узлов могут также выступать банкоматы или
кассовые аппараты, требующие доступа к центральной базе данных для получения
информации о легальных клиентах банка, пластиковые карточки которых необходи-
мо авторизовать на месте. Банкоматы или кассовые аппараты обычно рассчитаны на
взаимодействие с центральным компьютером по сети Х.25, которая в свое время
специально разрабатывалась как сеть для удаленного доступа неинтеллектуального
терминального оборудования к центральному компьютеру.

К сетям доступа предъявляются требования, существенно отличающиеся от тре-
бований к магистральным сетям. Так как точек удаленного доступа у предприятия
может быть очень много, одним из основных требований является наличие разветв-
ленной инфраструктуры доступа, которая может использоваться сотрудниками пред-
приятия как при работе дома, так и в командировках. Кроме того, стоимость
удаленного доступа должна быть умеренной, чтобы экономически оправдать затраты
на подключение десятков или сотен удаленных абонентов. При этом требования к
пропускной способности у отдельного компьютера или локальной сети, состоящей
из двух-трех клиентов, обычно укладываются в диапазон нескольких десятков кило-
бит в секунду (если такая скорость и не вполне удовлетворяет удаленного клиента, /
то обычно удобствами его работы жертвуют ради экономии средств предприятия).

В качестве сетей доступа обычно применяются телефонные аналоговые сети,
сети ISDN и реже - сети frame relay. При подключении локальных сетей филиалов
также используются выделенные каналы со скоростями от 19,2 до 64 Кбит/с. Ка-
чественный скачок в расширении возможностей удаленного доступа произошел в
связи со стремительным ростом популярности и распространенности Internet. Транс-
портные услуги Internet дешевле, чем услуги междугородных и международных
телефонных сетей, а их качество быстро улучшается.

Программные и аппаратные средства, которые обеспечивают подключение
компьютеров или локальных сетей удаленных пользователей к корпоративной
сети, называются средствами удаленного доступа. Обычно на клиентской сторо-
не эти средства представлены модемом и соответствующим программным обес-
печением.

Организацию массового удаленного доступа со стороны центральной локаль-
ной сети обеспечивает сервер удаленного доступа (Remote Access Server, RAS). Сер-
вер удаленного доступа представляет собой программно-аппаратный комплекс,
который совмещает функции маршрутизатора, моста и шлюза. Сервер выполняет
ту или иную функцию в зависимости от типа протокола, по которому работает
удаленный пользователь или удаленная сеть. Серверы удаленного доступа обычно имеют достаточно много низкоскоростных портов для подключения пользователей
через аналоговые телефонные сети или ISDN.

Показанная на рис. 5. структура глобальной сети, используемой для объеди-
нения в корпоративную сеть отдельных локальных сетей и удаленных пользователей,
достаточно типична. Она имеет ярко выраженную иерархию территориальных транс-
портных средств, включающую высокоскоростную магистраль (например, каналы
SDH 155-622 Мбит/с), более медленные территориальные сети доступа для под-
ключения локальных сетей средних размеров (например, frame relay) и телефон-
ную сеть общего назначения для удаленного доступа сотрудников.

Цель:

1. Ознакомить слушателей с назначением, основными характеристиками, структурой МЦСС, а также с характеристиками ее основных элементов.

2. Сформировать у слушателей представление о МЦСС как об основной, базовой подсистеме новой телекоммуникационной сети МПС.

Время и дата проведения занятия: 9.15 – 10г.

Место: аудитория № 000 ПГУПС

Учебные вопросы и планируемое время:

Вводная часть

Структура МЦСС МПС РФ. Характеристика основных элементов

Система управления МЦСС

Основные системы обеспечения функционирования МЦСС

Система технической эксплуатации МЦСС

Заключительная часть

Синхронные цифровые сети SDH

Волоконно-оптические сети

ВВЕДЕНИЕ

Как и для любой системы управления, эффективность управления федеральным железнодорожным транспортом в значительной степени определяется характеристиками телекоммуникационной сети – одной из важнейших составляющих инфраструктуры системы управления МПС России.

Проведенный в начале 90-х годов анализ показателей функционирования этой сети показал, что основу ее составляет первичная сеть связи МПС, базирующаяся в основном на симметричных кабелях связи. Протяженность сети достигает 86000 километров, при этом сеть связи МПС обслуживает приблизительно миллион пользовательских линий связи. Характеристики действующей сети связи перестали удовлетворять технологическим потребностям МПС и не имели существенных перспектив улучшения при неизменном составе ее структуры.

Исходя из всего вышеизложенного, МПС решило создать новую, полностью цифровую сеть связи с целью предоставления всего спектра современных услуг связи как внутриотраслевым, так другим пользователям. Последнее обусловлено тем, что МПС имеет лицензию Госкомсвязи России на предоставление услуг местной связи на территории России. Используя свою обширную технологическую сеть, МПС является вторым по величине (по количеству пользовательских линий связи) телекоммуникационным провайдером, действующим сегодня в России.

При разработке проекта создания новой телекоммуникационной сети МПС с учетом результатов анализа развития потребностей мирового и российского телекоммуникационных рынков было предусмотрено и существенное увеличение резерва емкости создаваемой сети связи МПС для предполагаемого роста информационных потоков. (Данные анализа развития международного трафика свидетельствуют о том, что в настоящее время спрос на услуги сети Интернет характеризуется экспоненциальным ростом. Для междугородного российского трафика характерен устойчивый рост спроса на услуги телефонии для населения и передачи данных для предприятий. Потребности внедрения новых информационных технологий на железнодорожном транспорте, в основном, характеризуются ростом спроса на услуги по передаче данных. При этом резерв емкости ранее созданных сетей связи, рассчитанный на перспективу развития на 10 лет, расходуется за 3-4 года.) .

Проект создания новой телекоммуникационной сети МПС РФ имел важные достоинства, обеспечивающие его значительную конкурентоспособность при предоставлении услуг местной, междугородной и международной связи. Эти достоинства основывались:

На использовании для строительства готовой инфраструктуры федерального железнодорожного транспорта (земельная полоса отвода, контактная сеть, устройства электроснабжения, технические здания и сооружения), что значительно сокращало сроки и стоимость строительства;

На географическом положении российских железных дорог, обеспечивающем соединение Европы с Америкой и Азией посредством высокоскоростных линий связи по кратчайшему пути.

Таким образом, создаваемая новая сеть телекоммуникаций МПС РФ должна была, во-первых, полностью обеспечить ведомственные потребности в услугах связи, а, кроме того, стать:

Кратчайшим маршрутом на направлении восток-запад для транзита международного трафика;

Тем резервом телекоммуникационной емкости, который уже сегодня мог бы быть реализован, и в первую очередь зарубежными потребителями на договорной основе;

Взаимоувязанной сетью коммутационных портов (шлюзов), расположенных в крупных городах России (управления железных дорог и центры субъектов Российской Федерации) и обеспечивающих сопряжение (подключение) местных операторов связи различной формы собственности с международными и междугородными сетями связи.

Для реализации широкомасштабного проекта модернизации информационно-технологического сегмента инфраструктуры МПС РФ в феврале 1997 года было создано Закрытое Акционерное Общество "Компания ТрансТелеКом" (КТТК). Основным видом деятельности КТТК стало строительство и эксплуатация высокоскоростной телекоммуникационной сети в полосе отвода железных дорог МПС РФ с целью обеспечения требуемых услуг связи в интересах МПС РФ, а также использования этой сети в коммерческих целях. Акционерами КТТК в настоящее время выступают все 17 российских железных дорог , каждая из которых владеет 3% акций (всего МПС принадлежит 51% акций компании).

КТТК состоит из шести управлений (эксплуатация сети связи; развитие и научно-техническая политика; экономика и финансы; коммерческое; строительство сети связи; управление делами), возглавляемых вице-президентами , и бухгалтерии .

Президент, вице-президенты и главный бухгалтер образуют правление ТТК , которое обеспечивает оперативное руководство повседневной деятельностью компании.

Совет директоров КТТК состоит из 9 человек.

Для организации процесса продаж, технической эксплуатации и поддержки телекоммуникационной сети в регионах России и ближнего зарубежья ТрансТелеКом» к настоящему времени создало 18 региональных компаний (региональных операторов связи):

2. ТрансТелеКом ДВ (Хабаровск);

3. ТрансТелеКом Чита (Чита);

4. Байкал ТрансТелеКом (Иркутск);

5. Сиб - ТрансТелеКом (Красноярск);

6. Зап - Сиб ТрансТелеКом (Новосибирск);

7. ЮжноУрал ТрансТелеКом (Челябинск);

8. Уральские мобильные сети (Екатеринбург);

9. Самара ТрансТелеКом (Самара);

10. Волга ТрансТелеКом (Саратов);

11. Транс ТелеКом - НН (Нижний Новгород);

12. Центр ТрансТелеКом (Москва);

13. СеверТрансТелеКом (Ярославль);

14. Санкт-петербургский ТЕЛЕПОРТ (Санкт-Петербург);

15. Юго - Восток ТрансТелеКом (Воронеж);

16. Кавказ - ТрансТелеКом (Ростов-на-Дону);

17. Калининград ТрансТелеКом;

18. СП ЗАО "БелТрансТелеКом".

В течение всего лишь трех лет КТТК создала первую и единственную пока в России полностью волоконно-оптическую сеть связи - МЦСС МПС РФ и в настоящее время с учетом перспективы объема и качества предоставления услуг связи претендует на роль одного из ведущих операторов в России (после).

С учетом вышеизложенного новая телекоммуникационная сеть МПС РФ, и в первую очередь, ее ядро – МЦСС представляет несомненный интерес для более детального знакомства с назначением, структурой, основными характеристиками и возможностями по предоставлению услуг связи.

1. СТРУКТУРА МАГИСТРАЛЬНОЙ ЦИФРОВОЙ СЕТИ СВЯЗИ МПС РФ. ХАРАКТЕРИСТИКА ОСНОВНЫХ ЭЛЕМЕНТОВ

Телекоммуникационная сеть КТТК - представляет собой совокупность Единой Магистральной цифровой сети связи (ЕМЦСС), сети АТМ, сети IP MPLS и сетей доступа, интегрированных в единую взаимоувязанную мультисервисную сеть. Основу телекоммуникационной сети КТТК, на которой базируются остальные ее элементы, составляет Единая магистральная цифровая сеть связи – первичная (транспортная) сеть по своей сути.

1.1. Единая магистральная цифровая сеть связи.

ЕМЦСС представляет собой первичную сеть связи, состоящую из двух важнейших элементов:

Магистральной Цифровой Сети Связи (МЦСС), образованной волоконно-оптическими линиями передачи (ВОЛП);

Сети Фиксированной спутниковой службы (ФСС) «Транстелесат».

МЦСС ЗАО "Компания ТрансТелеКом" имеет в настоящее время протяженность более 48 тысяч километров и представляет собой единый технический комплекс, основу которого составляют: линейно-кабельные сооружения (ЛКС), каналообразующее оборудование, единая система контроля и управления, а также обеспечивающие системы электропитания, синхронизации и служебной связи.

По своему пространственному размаху и объему предоставления услуг МЦСС сопоставима с сетями других крупных национальных операторов. Топология сети в значительной степени повторяет существующую топологию железных дорог МПС РФ. Ячеистая структура МЦСС охватывает 70 из 89 регионов РФ - практически всю густонаселенную территорию страны. Общая протяженность оптического кабеля МЦСС к концу 2001 г. превысит 45000 км. В составе МЦСС более 950 сетевых узлов (станций) - точек выделения ресурса сети, в том числе и потенциальные точки взаимодействия с операторами других государств (Финляндии, стран Балтии, Польши, Украины, Казахстана, Монголии, Китая, Кореи).

В МЦСС по показателям протяженности и пропускной способности выделяются две основные линии связи:

- в направлении Восток – Запад : линия «Находка – Хабаровск – Москва – Санкт-Петербург – Бусловская (государственная граница с Финляндией)»;

- в направлении Север - Юг – линия «Москва – Новороссийск».

Монтаж линейно-кабельных сооружений сети осуществлен способом подвески волоконно-оптического кабеля на опорах контактной сети (опорах линий автоблокировки) МПС, либо прокладкой ВОК в грунте (в пластмассовых трубопроводах) в полосе отвода железных дорог МПС.

Созданная топология сети позволяет обеспечить резервирование связи в случае аварии на кабельных трассах. Высокая надежность сети обеспечивается резервированием волоконно-оптических линий связи (ВОЛП) по географически разнесенным маршрутам и налаженной системой эксплуатации линейно-кабельных сооружений.

Базовой технологией для построения магистральной первичной сети выбрана SDH-технология (Synchronous Digital Hierarchy), обеспечивающая требуемую масштабируемостьМбит/с), как по пропускной способности, так и по зоне покрытия, позволяющая наиболее активно эксплуатировать оптические каналы.

Сеть построена с использованием SDH мультиплексоров в основном производства Lucent Technologies, способных мультиплексировать стандартные сигналы PDH и SDH до уровня 2.5 Гбит/с (STM-16). Широкий диапазон, высокая пропускная способность и гибкие возможности подключения делают SDH мультиплексоры основным элементом эффективных и экономичных магистральных сетей.

Применяемое оборудование в совокупности с SDH-технологией позволяют повысить надежность первичной транспортной сети за счет объединения ее узлов в кольцевые структуры, что дает возможность системе управления сетью автоматически переключать основной канал на обходной в случае отклонения качественных параметров основного канала от нормы. Переключения в сети происходят без потери передаваемой информации.

Сеть ФСС

Сеть ФСС «Транстелесат» представляет собой второй элемент ЕМЦСС и состоит из космического и наземного сегментов.

В качестве основного варианта космического сегмента используются два арендуемых ствола (транспондера) КА LM-1 с общим частотным ресурсом 54 Мгц. Геостационарный спутник связи LMI-1 (собственник – «Интерспутник») выведен на орбитальную позицию 75 градусов в. д. в апреле 1999 г. Ретранслятор имеет 28 транспондеров диапазона С (6 / 4 ГГц) и 16 транспондеров диапазона Ku (14 /11-12 ГГц). Ширина полосы в С-диапазоне 36 МГц, в Ku-диапазоне – 27 МГц. Передающие устройства транспондеров Северной зоны в Ku-диапазоне. При этом обеспечивается уровень излучаемой мощности 48 dBW с зоной покрытия всей территории России. Зона покрытия охватывает и приполярные области (выше 70 градусов северной широты), что, как правило, не возможно для геостационарных спутников. Срок службы ретранслятора – 15 лет.

Наземный сегмент сети (группировка земных станций спутниковой связи) базируется на технологии VSAT (Very Small Aperture Terminal) и представлен системой «SuperVSAТ» (фирма-производитель - NERA). При этом в сети «Транстелесат» обеспечиваются:

Передача информации на скоростях до 8448 Кбит/c (для резервирования МЦСС);

Работа любой станции сети одновременно в 2-х транспондерах;

Передача и прием цифрового телевидения в формате MPEG-2.

Группировка земных станций сети «Транстелесат» включает в себя:

Центральная станция спутниковой связи (ЦС) – диаметр антенны 7,3 м, мощность передатчика - 500 Вт;

20 Узловых станций спутниковой связи (УС) – диаметр антенны 3,7 м, мощность передатчика - 350 Вт;

До 96 Абонентских станций спутниковой связи (АС) – диаметр антенны 2,4 м, мощность передатчика - 60 Вт.

Частотный ресурс стволов КА в зависимости от задач может динамически перераспределяться между станциями спутниковой связи. В сети ФСС «Транстелесат» применяется многостанционный доступ с частотным разделением (МДЧР) в режиме закрепленных каналов (PAMA) или в режиме предоставления канала по требованию (DAMA).

На разных этапах строительства и эксплуатации МЦСС планируется различное использование пропускной способности сети ФСС «Транстелесат».

На этапе взаимоувязки фрагментов МЦСС от каждой УС планируется обеспечивать передачу по четырем информационным направлениям на такие же УС цифровых потоков со скоростями от 64 до 640 Кбит/с в зависимости от требуемого трафика. Скорость в одном из четырех потоков при передаче его на ЦС может быть доведена до 2048 Кбит/с. Для передачи этих потоков будут использованы закрепленные каналы (режим PAMA).

На этапе привязки к МЦСС абонентских станций (период до 2003 года) планируется в режиме PAMA с каждой УС обеспечить одновременную передачу по четырем направлениям на АС информационные потоки со скоростями от 64 до 384 Кбит/с.

В режиме DAMA каждая УС сможет обслуживать до 812 своих региональных АС со скоростями передачи от 64 до 384 Кбит/с.

При использовании на УС телевизионного модема для трансляции цифрового телевидения на ЦСМбит/с) скорость в направлении АС составит 64 Кбит/с.

При выходе из строя участка ВОЛП МЦСС планируется автоматический перевод ближайших к этому аварийному участку УС в режим резервирования важнейших каналов ВОЛП. Для этого за счет закрытия определенных заранее направлений связи освобождается частотный ресурс ретранслятора, который и задействуется для организации резервного спутникового моста между УС на скорости 8448 Кбит/с.

Привязка удаленных абонентов

Абонентские станции спутниковой связи работают в направлении своих региональных УС, которые, в свою очередь, имеют прямой выход на МЦСС. При этом АС совместно со своей региональной УС могут работать:

В режиме PAMA (по закрепленному каналу связи) при достаточно большом трафике;

В режиме DAMA (предоставление канала по требованию) при небольшом трафике.

Каналы по требованию предоставляются централизованно от системы управления сетью (ACS). Так как количество УС в сети 20, и каждая УС в сети может обеспечивать в режиме PAMA четыре направления, то потенциальное количество АС в этом режиме может достигать 80. ЦС после завершения ввода в эксплуатацию всей МЦСС может быть переведена на привязку 18-ти АС к ЦС (направления ЦС-УС/Калининград и ЦС-УС/Южно-Сахалинск остаются без изменений). Таким образом, максимальное число АС в сети при работе в режиме PAMA составляет 98.

При небольших объемах трафика целесообразно использовать режим с предоставлением каналов по требованию (DAMA). Это позволит увеличить количество АС в сети до 300-320.

Так как в режиме DAMA, в основном, планируется предоставлять пользователям каналы BRI (2B+D или B+D), а энергетический потенциал УС, рассчитанный на резервирование МЦСС на скорости 8448 Кбит/c, позволяет на таких каналах обслуживать одновременно до 8 направлений связи, то потенциально, при дооборудовании УС дополнительными 4-мя модемами спутниковой связи, сеть ФСС может быть расширена до АС, работающими в режиме DAMA.

После проведенного обзора назначения и основных характеристик ЕМЦСС представляется целесообразным более детально познакомиться с основными элементами инфраструктуры волоконно-оптической Магистральной цифровой сети связи.

Волоконно-оптический кабель МЦСС

Основу линейно-кабельных сооружений МЦСС составляют магистральные волоконно-оптические кабели (ВОК). Спектр используемых при строительстве МЦСС ВОК достаточно широк и представлен как отечественной, так и зарубежной продукцией. Наибольшее распространение получили ВОК емкостью 16 волокон. Из 16 волокон ВОК 12 относятся к классу обычного одномодового волокна, а 4 имеют ненулевую смещенную дисперсию относительно длины волны l=1550 нм (третье окно прозрачности) и предназначены для перспективного в будущем использования многоканальных систем передачи с уплотнением по длине световой волны (DWDM). Смещение нулевой дисперсии обеспечивает минимизацию комбинационных составляющих и позволяет по одному такому волокну вести передачу со скоростью 20 Гбит/с и выше. Таким образом, в дальнейшем пропускная способность МЦСС может быть легко расширена с помощью новейшего электронного и оптического оборудования путем установки дополнительных блоков или подсистем в ранее установленные мультиплексоры.

Отечественные кабели представлены продукцией, выпускаемой: волоконно-оптическими кабелями для подвески на опорах типа ОКМС и волоконно-оптическими кабелями для прокладки в пластмассовых трубопроводах в грунте типа ОКМТ. Кабели типа ОКМС и ОКМТ имеют модульную конструкцию (представлены на рисунке 1.1.). Основные характеристики этих кабелей приведены в таблице 1.1.

643 " style="width:482.6pt;border-collapse:collapse;border:none">

№№ п/п

Наименование характеристики ВОК

Значение характеристики ВОК

ОКМС

ОКМТ

Число оптических волокон в кабеле, шт.

Число модулей в кабеле, шт.

Число оптических волокон в одном модуле, шт.

2, 4, 6, 8, 10, 12

2, 4, 6, 8, 10, 12

G.652, G.653, G.655

G.652, G.653, G.655

* Коэффициент затухания, дБ/км, не более, нормируемый на длине волны:

λ=1310 нм

λ=1550 нм

* Диапазон типовых значений длины волны отсечки, нм, не более:

* Хроматическая дисперсия, пс/(нм*км), не более, в диапазоне длин волн:

Номинальный наружный диаметр кабеля, мм

Температура эксплуатации, ° С

Температура монтажа, °С, не ниже

Строительная длина, км, не менее

Расчетная масса кабеля, кг

Длительное допустимое растягивающее усилие, кН

3,0; 5,0; 8,0; 10,0

1,5; 2,5

Прочность на разрыв, кН

8,0; 12,0; 20,0; 24,0

Примечания.

1. * - для одномодового стандартного оптического волокна по рекомендации ITU-T G.652.

2. Особенности конструкции и эксплуатации:

Срок службы - не менее 25 лет;

Полностью выполнен из диэлектрических материалов;

Не восприимчив к воздействию электрических полей;

Наличие высокопрочных защитных покровов (арамидные нити), центрального силового элемента (стеклопластиковый пруток);

Возможно изготовление с внешней оболочкой из полиэтилена, не распространяющего горение;



Рекомендуем почитать

Наверх