Способ формирования сигналов квадратурной амплитудной модуляции. Способы формирования группового сигнала

Возможности 09.05.2019
Возможности

Известны следующие способы формирования группового сигнала:

Автовыбор (селективное сложение);

Линейное сложение;

Оптимальное (взвешенное) сложение;

Комбинированный способ.

Помехоустойчивость этих способов формирования группового сигнала чаще всего оценивается энергетическим критерием, т. е. увеличением отношения сигнал/помеха при разнесенном приеме по сравнению с отношением сигнал/помеха при одиночном при­еме. В случае передачи дискретных сигналов помехоустойчи­вость целесообразно оценивать и вероятностным критерием, позволяющим судить о вероятности ошибок при разнесенном и одиночном приемах.

Рассмотрим основные принципы реализации систем связи с разнесенным приемом при различных способах формирования группового сигнала и оценим их помехоустойчивость.

АВТОВЫБОР

Автовыбор состоит в том, что в любой мо­мент времени выбирается приемный тракт с наибольшим выход­ным сигналом. При этом для i -гo канала с наибольшим в дан­ный момент сигналом весовой коэффициент С j = 1,а для всех ос­тальных каналов С j i = 0. т. е. результирующий сигнал согласно выражениям (6.2), (6.3). (64) может быть записан в виде

где .

Вот почему автовыбор называют также селективным (избирательным) сложением.

Структурная схема приемного устройства с оптимальным автовыбором при сдвоенном приеме приведена на рис, 6.1. Коле­бания от обоих приемников поступают на устройство сравнения уровней. В результате сравнения уровней колебаний вырабаты­вается управляющий сигнал, который к выходному устройству подключает приемник с большим уровнем сигнала. Приемник с меньшим уровнем сигнала в это время отключается. Для уменьшения искажений сигналов время переключения приемников дол­жно быть малым. Система с автовыбором пригодна для приема телефонных и телеграфных сигналов в том случае, если время переключения приемников не превышает 15-20 мкс.

Место включения устройств при приеме AM сигналов существенного значения не име­ет. Они могут включаться либо до детекторов, либо после них.

При приеме ЧМ сигналов устройство сравнения должно распола­гаться до ограничителей, так как после ограничителей уровни сигналов одинаковы и теряется информация о том, сигнал како­го канала больше. В случае приема частотно-манипулированных сигналов управляющие устройства необходимо располагать после частотных детекторов. Если управляющие устройства располо­жить до частотных детекторов, то при быстром переключении каналов одна часть элементарного импульса будет проходить че­рез фильтр частотного детектора первого приемника, а другая часть - через фильтр частотного детектора второго приемника. В таком случае во избежание искажений сигнала фильтры час­тотных детекторов должны рассчитываться на пропускание им­пульсов более коротких, чем длительность элементарного импуль­са. Это привело бы к существенному снижению помехоустойчи­вости.

Для количественной оценки помехоустойчивости системы свя­зи с оптимальным автовыбором по энергетическому критерию необходимо определить и сравнить средние значения отношения сигнал/помеха при одиночном приеме и оптимальном автовыбо­ре. Среднее значение мощности полезного сигнала можно найти по формуле

, (6.6)

где Т - интервал усреднения, значительно больший периода из­менения передаваемого сигнала A(t).

В радиодиапазоне скорость изменения A(t) значительно выше скорости изменения коэффициента передачи канала a i (t). Выбирая T А <T А, T a - периоды изменения А(t) и a 1 (t) соответственно, и считая величину a i (t) на интер­вале Т постоянной, выражение (6.6) перепишем в виде

(6.7)

(6.8)

Среднеквадратичное значение передаваемого сигнала.

Среднеквадратичное значение аддитивных помех для всех ветвей разнесенного приема можно считать одинаковым, т. е.

(6.9)

Отношение сигнал/помеха в i -й ветви равно

, (6.10)

Величина h i 2 (t) изменяется во времени из-за изменения ко­эффициентаa i (t) , так как h 0 - величина постоянная. Усред­ненное на интервале T1 >> Т a значение отношения сигнал/помеха приодиночном приеме (в i -й ветви) определяется выражением

Для стационарных случайных процессов среднее по времени равно среднему по ансамблю, т. е.

, (6.13)

где W(а 2 i)- плотность вероятности квадрата коэффициента передачи канала.

Прежде всего найдем выражение для распределения коэф­фициента передачи канала, исходя из известного правила преоб­разования случайных величин:

. (6.14)

Учитывая, что огибающая амплитуды сигнала пропорциональ­на коэффициенту передачи канала, и выбирая для простоты пос­ледующих выкладок коэффициент пропорциональности, равный , получим

т.е. . (6.15)

При интервалах наблюдения до 10 мин плотность вероятности огибающей амплитуды сигнала W(U), как отмечалось, определя­ется релеевским законом (1.12). Подставляя (6.15) и (1.12) в (6.14), получим

. (6.16)

Теперь по правилу (6.14) находим плотность вероятности квадрата коэффициента передачи канала

, (6.17)
вычисляем интеграл (6.13)

, (6.18)

И получаем окончательное выражение для среднего значения от­ношения сигнал/помеха при одиночном приеме:

Вероятность того, что случайная величина h i 2 в i-м канале при одиночном приеме станет меньше некоторого значения h 2 , оп­ределяется интегральной функцией распределения вероятностей

. (6.20)

Из выражения (6.20) по правилу (6.14) находим

; (6.21)

. (6.22)

Если изменения a i ., а следовательно, и h i в различных ка­налах считать независимыми, то при n -кратном разнесении веро­ятность одновременного уменьшения отношения сигнал/помеха во всех каналах ниже порога h 2 будет определяться n -кратным про­изведением вероятностей, определяемых выражениями (6.21) и (6.22), т. е.

. (6.23)

Из (6.23) находим плотность вероятности отношения сигнал/ помеха при n-кратном разнесении:

. (6.24)

По аналогии с (6.13) среднее значение отношения сигнал/по­меха при n -кратном разнесении определяется интегралом

, (6.25)

В результате интегрирования по частям с использованием би­нома Ньютона и вычисления интеграла (6.25) получим

откуда следует, что отношение сигнал/помеха при оптимальном автовыборе определяется отношением сигнал/помеха при одиноч­ном приеме h 0 2 и кратностью разнесения п. Отношением

. (6.27)

оценивается выигрыш по мощности разнесенного приема с автовыбором по сравнению с одиночным приемом. Значения В n при различных кратностях разнесения приведены в таблице 6.1.

Для приближенной оценки вероятности ошибок при разнесен­ном приеме дискретных сигналов предположим, что можно ука­зать некоторую граничную величину h 2 гр которая характеризуется тем, что при h 2 > h 2 гр , прием происходит практически без иска­жений, а при h 2 < h 2 гр вероятность появления ошибок близка к единице. При сделанных допущениях интегральная функция рас­пределения (6. 23) при h 2 = h 2 гр определяет вероятность ошибки

. (6.28)

В случаях малых значений отношения представляющих наибольший практический интерес, вероятность ошибок равна

т. е. убывает по показательному закону с увеличением кратнос­ти разнесения п.

Вероятность ошибки при одиночном приеме дискретных сигналов с активной паузой в отсутствие замираний определяется выражением

. (6.30)

При наличии медленных замираний вероятность ошибки в системе связи с n-кратным разнесенным приемом тех же сигна­лов можно определить усреднением Р 0 по всем значениям h 2 в соответствии с плотностью распределения (6.24):

. (6.31)

Интегрируя (6.31) по частям, при n=2 получим

. (6.32)

Как показано в , при n-кратном разнесении

(6.33)

По этой формуле на рис. 6.2 построены зависимости показывающие, что наиболее ощутимый резуль­тат, по сравнению с одиночным приемом, дает сдвоенный прием.

Поэтому с учетом экономических соображений сдвоенный прием находит самое широкое применение.

Формула (6.27) получена в предположении, что корреляция между сигналами отдельных ветвей приема отсутствует. Умень­шение выигрыша становится существенным при коэффициенте корреляции r >0,6.

В случае сдвоенного приема при большом отношении сиг­нал/помеха влияние корреляции между сигналами приблизи­тельно эквивалентно уменьшению мощности сигнала в

раз. Значит, вероятность ошибки согласно (6.29) определяется выражением

, (6.34)

ЛИНЕЙНОЕ СЛОЖЕНИЕ СИГНАЛОВ

При линейном сложении коэффициенты усиления складыва­емых сигналов должны быть одинаковы, т. е. коэффициенты C d , входящие в выражение (6.4), равны единице. Равенство ко­эффициентов усиления приемников обычно обеспечивается общей схемой АРУ. В этом случае величина коэффициентов усиления определяется наибольшим из складываемых сигналов.

Схема приемного устройства сдвоенного приема с линейным сложением сигналов приведена на рис. 6.3. Когерентность сиг­налов, складываемых на промежуточной частоте, обеспечивает­ся системой фазовой автоподстройки частоты (ФАПЧ). Несинфазность складываемых сигналов ведет к ухудшению результирующего отношения сигнал/помеха, особенно при равенстве уровней складываемых сигналов. Зависимость уменьшения сигнал/по­меха суммарного сигнала от степени несинфазности < j для сдвоенного приема приведена на рис. 6.4, из которого видно, что при 38 0 потери в отношении сигнал/помеха составляют около 1 дБ, а при 50° - 2 дБ. Следовательно, фазирование сиг­налов с высокой точностью не обязательно. Чем больше отлича­ются уровни складываемых сигналов, тем меньше сказывается их несинфазность на отношении сигнал/помеха.

Место включения суммирующего устройства S, при линейном сложении зависит от вида модуляции принимаемого сигнала. При приеме AM сигналов сложение можно производить как до детек­торов, так и после них, так как отношение сигнал/помеха на входе и выходе амплитудного детектора одинаково. В случае при­ема ЧМ сигналов сложение целесообразно производить до детек­торов. Это обусловлено тем, чтона выходе частотного детекто­ра отношение сигнал/помеха ухудшается, если на входе детекто­ра оно ниже некоторого порогового значения. Следовательно, при сложении сигналов после частотных детекторов уменьшается и результирующее значение отношения сигнал/помеха. Кроме то­го, в случае линейного сложения до детектора уменьшаются ис­кажения сигнала, вызываемые многолучевостью распространения радиоволн.

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.


Владельцы патента RU 2660126:

Изобретение относится к системам формирования сигнала спутниковой радионавигационной системы ГЛОНАСС, а именно к средствам управления передачей и её коррекцией. Техническим результатом является уменьшение погрешностей формирования сигнала посредством цифрового формирования групповых навигационных радиосигналов диапазонов L1, L2, которые излучаются одной антенной. Способ формирования группового навигационного сигнала ГЛОНАСС включает формирование навигационных сигналов с кодовым и частотным разделением в диапазонах L1, L2 и сигнала с кодовым разделением L3, их усиление и излучение через одну антенну, при котором сигналы в диапазонах L1, L2 с кодовым и частотным разделением суммируются на входе усилителя мощности, при этом образуется суммарный сигнал, имеющий амплитудную модуляцию, далее групповой сигнал синтезируют методом оптимального выравнивания, для этого все сигналы представляются в комплексной форме, далее сигнал преобразуется в выравнивателе, который исключает амплитудную модуляцию и в основе которого лежит преобразование комплексного сигнала в соответствии с определением функции sign:

Изобретение относится к системам формирования сигнала спутниковой радионавигационной системы ГЛОНАСС, а именно к средствам управления передачей сигнала и его коррекции.

Из уровня техники известны способы формирования навигационного сигнала ГЛОНАСС, в частности способ формирования группового сигнала ГЛОНАСС (см. статья А.Ю.Середа, К.В. Детюк «Бортовой информационно-навигационный комплекс КА «ГЛОНАСС-К». Инженерный вестник Дона №3, том.21, 2012, стр.115-119, Издательство Северо-Кавказский научный центр высшей школы федерального государственного автономного образовательного учреждения высшего профессионального образования Южный федеральный университет) при помощи которого осуществляется формирование и излучение навигационных сигналов с частотным разделением в диапазонах L1, L2, а именно сигналов с открытым доступом L1OF, L2OF, и сигналов с санкционированным доступом L1SF, L2SF, также при помощи него осуществляется формирование и излучение навигационного сигнала с кодовым подразделением в диапазоне L3, а именно сигнала с открытым доступом L3OC.

Недостатком указанного в качестве наиболее близкого аналога способа является то, что при помощи него невозможно формировать и излучать сигнал с кодовым разделением в диапазонах L1, L2, что порождает дополнительные взаимные задержки между формируемыми сигналами с частотным и кодовым разделением, приводя к погрешности формирования сигнала.

Техническим результатом заявленного изобретения является обеспечение уменьшения погрешностей формирования сигнала посредством цифрового формирования групповых навигационных радиосигналов диапазонов L1, L2, которые излучаются одной антенной.

Технический результат достигается за счет создания способа формирования группового навигационного сигнала ГЛОНАСС включающего формирование навигационных сигналов с кодовым и частотным разделением в диапазонах L1, L2 и сигнала с кодовым разделением L3, их усиление и излучение через одну антенну, при котором сигналы в диапазонах L1, L2 с кодовым и частотным разделением суммируются на входе усилителя мощности, при этом образуется суммарный сигнал, имеющий амплитудную модуляцию, далее групповой сигнал синтезируют методом оптимального выравнивания, для этого все сигналы представляются в комплексной форме, далее сигнал преобразуется в выравнивателе, который исключает амплитудную модуляцию и в основе которого лежит преобразование комплексного сигнала в соответствии с определением функции sign:

В частном варианте выполнения для комплексных чисел используют следующую аппроксимацию для вычисления :

,

В другом частном варианте выполнения для комплексных чисел используют следующую аппроксимацию для вычисления :

,

Заявленное изобретение проиллюстрировано следующими схемами:

Фиг.1 –структурная схема формирователя группового навигационного сигнала ГЛОНАСС.

Фиг. 2–схема формирования выровненного сигнала.

На чертежах обозначено следующее:

1 - Бортовое синхронизирующее устройство;

2 - Цифровой формирователь навигационного радиосигнала L1 с частотным и кодовым разделениями;

3 - Цифровой формирователь навигационного радиосигнала L2 с частотным и кодовым разделениями;

4 - Цифровой формирователь навигационного радиосигнала L3 с кодовым разделениями;

5 - Усилитель мощности;

6 - Режекторный фильтр;

7 - Триплексер;

8 - Антенна.

Заявленный способ формирования группового навигационного сигнала ГЛОНАСС может быть реализован следующим образом.

Общая ширина полосы, в которой расположены все навигационные сигналы системы ГЛОНАСС, составляет более 400 МГц. Для формирования сигналов ГЛОНАСС предлагается формировать и усиливать групповые сигналы в каждом частотном диапазоне по отдельности.

Заявленный способ реализуется посредством излучения сигнала через одну антенну и базируется на принципиально новом методе формирования группового навигационного сигнала, объединяющего кодовые и частотные радиосигналы, характеризующегося неглубокой амплитудной модуляцией и незначительными энергетическими потерями (фиг.1).

Метод формирования группового радиосигнала, объединяющего сигналы с кодовым и частотным разделениями, рассматривается на примере радиосигнала диапазона L1 как наиболее сложного. Спектры сигналов перекрываются, поэтому сложить их на входе антенны после УМ без потерь мощности невозможно.

Для минимизации потерь сигналы суммируются на входе УМ. При этом образуется суммарный сигнал, имеющий амплитудную модуляцию. При отношении мощностей кодового и частотного сигналов 2:1 отношение максимальной амплитуды к минимальной будет равно 6. Следовательно, усилитель мощности должен иметь линейную амплитудную характеристику в диапазоне 16 дБ. Такой усилитель будет иметь КПД не лучше 20 процентов.

Теоретически показано, что синтезированный методом оптимального выравнивания суммарный групповой сигнал обеспечивает минимум потерь мощности формируемого сигнала. Групповой сигнал с неглубокой амплитудной модуляцией (АМ) может быть реализован ценой потери мощности не более 20%. Необходимо оценить, какие искажения и потери возникнут при аппаратной реализации метода на реальных схемах с учётом ограничений по быстродействию и разрядности цифроаналоговых устройств.

Основные операции происходят в преобразователе, который убирает АМ, и конвертере, который переносит групповой сигнал на несущую частоту. Все сигналы представляются в комплексной форме. Преобразователь, далее называемый выравнивателем, построенный на ПЛИС, должен свести АМ к минимуму, сохранив структуру обоих сигналов. Естественно, при этом возникнут комбинационные составляющие сигнала как следствие нелинейного преобразования. Спектр этих составляющих будет накладываться на спектр основных сигналов. Поэтому при усилении группового сигнала в УМ часть мощности перераспределится на них. Отсюда следует первый критерий оптимизации структуры выравнивателя – минимизация потерь. При преобразовании сигнала в конвертере может возникнуть второй источник потерь – зеркальный канал, который при невысокой частоте F пч, может оказаться в полосе пропускания УМ. Поэтому структура конвертера в сочетании с выравнивателем должна обеспечить подавление зеркального канала не менее 23 дБ, чтобы потери на зеркальный канал были менее 1%.

После прохождения группового сигнала через УМ отношение может измениться, если после выравнивателя останется какая-то амплитудная модуляция. Степень изменения будет зависеть от глубины остаточной модуляции.

Рассмотрим схему формирования выровненного сигнала (фиг.2), в основе которой лежит преобразование комплексного сигнала x в соответствии с определением функции sign:

При реализации такой схемы выравнивания сигналов возможна проблема, связанная с вычислительной сложностью операции sign для комплексных чисел. Для этой цели предлагается использовать следующую аппроксимацию для вычисления :

Величины I и Q являются скалярными значениями действительной и мнимой частей комплексного числа x. Таким образом, модуль этих величин определяется простой операцией отброса знака.

Если точности этой аппроксимации недостаточно, то значение можно вычислить:

В этом случае вычислительную трудность будет представлять операция вычисления квадратного корня. Эту операцию, как и операцию деления, можно выполнять табличным способом.

Предложенный способ формирования группового навигационного сигнала ГЛОНАСС позволяет решить задачу использования метода цифрового формирования групповых навигационных радиосигналов диапазонов L1 и L2, которые можно излучать одной антенной, уменьшить погрешность измерений, повысить пропускную способность межспутниковой радиолинии, совершенствовать радиосигнал межспутниковой радиолинии и аппаратуру приёма сигнала, что обеспечивает повышение скорости передачи по радиолинии в несколько раз.

1. Способ формирования группового навигационного сигнала ГЛОНАСС, включающий формирование навигационных сигналов с кодовым и частотным разделением в диапазонах L1, L2 и сигнала с кодовым разделением L3, их усиление и излучение через одну антенну, при котором сигналы в диапазонах L1, L2 с кодовым и частотным разделением суммируются на входе усилителя мощности, при этом образуется суммарный сигнал, имеющий амплитудную модуляцию, далее групповой сигнал синтезируют методом оптимального выравнивания, для этого все сигналы представляются в комплексной форме, далее сигнал преобразуется в выравнивателе, который исключает амплитудную модуляцию и в основе которого лежит преобразование комплексного сигнала в соответствии с определением функции sign:

,

2. Способ формирования группового навигационного сигнала ГЛОНАСС по п.1, отличающийся тем, что для комплексных чисел используют следующую аппроксимацию для вычисления :

,

где I и Q являются скалярными значениями действительной и мнимой части комплексного числа x.

3. Способ формирования группового навигационного сигнала ГЛОНАСС по п.1, отличающийся тем, что для комплексных чисел используют следующую аппроксимацию для вычисления :

,

где I и Q являются скалярными значениями действительной и мнимой частей комплексного числа x.

Похожие патенты:

Изобретение относится к области радиосвязи и может использоваться при построении адаптивных систем и комплексов КВ радиосвязи. Технический результат заключается в повышении пропускной способности адаптивной системы связи с OFDM сигналами.

Изобретение относится к технике радиосвязи при передаче массивов информации в цифровом формате. Технический результат состоит в обеспечении оптимальной скорости и дальности связи путем варьирования частотой передачи в зависимости от условий связи в канале.

Изобретение относится к спутниковой системе связи, в частности к системе управления космическим аппаратом (КА) и предназначено для исключения искажения команд управления, передаваемых с наземного комплекса управления (НКУ) на борт КА, вызванного узкополосной помехой.

Изобретение относится к области слежения за полетом космических аппаратов (КА) и может быть использовано в командно-измерительной системе (КИС) спутниковой связи. Способ включает передачу с наземного сегмента управления КИС по линии «Земля - КА» сигналов, содержащих команды управления КА.

Изобретение относится к области радиопередающих устройств и может быть использовано в составе бортовой аппаратуры космических аппаратов. Достигаемый технический результат - уменьшение величины продуктов интермодуляционных искажений третьего порядка, малые затраты ресурсов на реализацию.

Изобретение относиться к технологиям передачи данных и, в частности, к технологии управления мощностью. Техническим результатом является обеспечение возможности передачи отчетов о запасе мощности объединенных несущих UE в сценарии с множеством несущих таким образом, что базовая станция может надежно управлять мощностью передачи UE, и поэтому улучшается надежность и пропускная способность системы.

Изобретение относится к способу конфигурации сигнализации зондирующего опорного сигнала. Технический результат направлен на то, чтобы узел абонентского оборудования апериодически передавал зондирующий опорный сигнал (SRS), что повышает коэффициент использования ресурсов SRS и гибкость планирования ресурсов.

Изобретение относится к определению местоположения транспортного средства (ТС). Техническим результатом является надежная идентификация радиолокационных целей за счет исключения влияния погрешности счислимого места ТС и систематической ошибки курсоуказателя на результаты опознавания целей.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности каналов передачи.

Изобретение относится к радиотехнике, а именно к области радионавигации, и может быть использовано при построении приемников Глобальных Навигационных Спутниковых Систем (ГНСС)., Достигаемый технический результат – повышение чувствительности, точности и помехозащищенности мультисистемного приемника ГНСС.

Изобретение относится к области позиционирования. Техническим результатом является повышение точности позиционирования в здании, например, при спасательных операциях или во время работы пожарных. Предложен способ позиционирования, относительно координирующего устройства (50) связи, группы подчиненных устройств (10, 20, 30, 40, 50) связи, при этом способ содержит этапы, на которых: передают при помощи координирующего устройства (50) через средства (12, 22, 32, 42, 52) беспроводной цифровой связи в каждое подчиненное устройство (10, 20, 30, 40, 50) таблицу идентификации; передают при помощи каждого устройства (10, 20, 30, 40, 50) его подпись UWB; анализируют при помощи каждого устройства принятые подписи UWB и определяют расстояния, отделяющие указанное устройство (10,20,30,40,50) от каждого из других устройств (10, 20, 30, 40, 50); передают при помощи каждого подчиненного устройства (10, 20, 30, 40) в координирующее устройство (50) расстояния, отделяющие указанное подчиненное устройство (10, 20, 30, 40) от каждого из других устройств (10, 20, 30, 40, 50); определяют при помощи координирующего устройства (50) относительные положения подчиненных устройств (10, 20, 30, 40). 2 н. и 9 з.п. ф-лы, 8 ил.

Изобретение относится к системам формирования сигнала спутниковой радионавигационной системы ГЛОНАСС, а именно к средствам управления передачей и её коррекцией. Техническим результатом является уменьшение погрешностей формирования сигнала посредством цифрового формирования групповых навигационных радиосигналов диапазонов L1, L2, которые излучаются одной антенной. Способ формирования группового навигационного сигнала ГЛОНАСС включает формирование навигационных сигналов с кодовым и частотным разделением в диапазонах L1, L2 и сигнала с кодовым разделением L3, их усиление и излучение через одну антенну, при котором сигналы в диапазонах L1, L2 с кодовым и частотным разделением суммируются на входе усилителя мощности, при этом образуется суммарный сигнал, имеющий амплитудную модуляцию, далее групповой сигнал синтезируют методом оптимального выравнивания, для этого все сигналы представляются в комплексной форме, далее сигнал преобразуется в выравнивателе, который исключает амплитудную модуляцию и в основе которого лежит преобразование комплексного сигнала в соответствии с определением функции sign: , далее конвертер переносит групповой сигнал на несущую частоту. 2 з.п. ф-лы, 2 ил.

Для передачи и последующей обработки первичное сообщение нанести на подходящий материальный носитель, чаще всего для этого используются процессы электромагнитной природы информации необходимо, имеющие непрерывный (гармонический) или же дискретный характер в виде последовательности импульсов.

Процесс нанесения информации на переносчик заключается или сводится к изменению характеристик используемого процесса в соответствии с первичным сообщением.

Параметры, которые используются для нанесения информации наз0ываются информационными.

Процесс управления информационными параметрами переносчика, называется модуляцией.

Обратная операция, заключающаяся в восстановлении исходного сообщения, называется демодуляцией.

Физическая реализация этих операций осуществляется с помощью функциональных преобразователей сигналов, называемых модуляторами и демодуляторами. Обычно эти устройства, рамках используемой информационной системы, образует взаимосвязанную пару, т.е. модель, работающую совместно с генератором сигналов переносчиков.

В зависимости от вида и числа используемых информационных параметров, процесса-переносчика, могут применяться различные виды модуляции.

В зависимости от числа возможных информационных параметров и характера их поведения во времени, переносчики информации можно поделить на три типа:

1. Стационарные – это переносчики, которые характеризуются наличием в отсутствии модуляции постоянства во времени своего исходного состояния.

Такие переносчики имеют фактически один информационный параметр, а именно уровень.

2. Гармонические процессы (колебания или волны) к которым относятся процессы, происходящие в отсутствии модуляции по гармоническому закону.

Утаких носителей в качестве информационных параметров могут использоваться амплитуда, частота и фаза. В соответствии с этим различают амплитудную модуляцию и частотную модуляцию.

3. Импульсные последовательности.

При использовании переносчиков третьего типа возникает вероятность наиболее широкого ассортимента использования методов модуляции.

Квантование сигналов

Передача информации в информационных управляющих системах может осуществляться, как с помощью непрерывных, так и дискретных сигналов.

Использование дискретных сигналов в некоторых случаях оказывается более предпочтительным, так как дискретные сигналы меньше подвижны искажениям при передаче, эти искажения легче обнаруживаются.

А самое главное дискретные сигналы более удобны для использования и обработки цифровыми устройствами информационных систем.

С другой стороны большинство первичных сигналов, снимаемых с датчиков, являются непрерывными, в связи с этим возникает проблема эффективного преобразования непрерывных сигналов в дискретных и наоборот.

Процесс процедуры преобразования непрерывной физической величины в дискретную, называется квантованием.

Лекция № 5

Принято различать следующие виды квантования.

1) Квантование по уровню, при этом непрерывная функция, описывающая первичный сигнал заменяется ее отдельными значениями, отстоящим друг от друга на некоторый конечный интервал (уровень). Соответственно, мгновенные значения функции заменяются ее ближайшими дискретными значениями, называемыми уровнями квантования, интервал между двумя соседними значениями уровнями, называется шагом квантования. Шаг квантования может быть как постоянным (равномерное квантование), либо переменным (неравномерным квантованием). Точность преобразования непрерывного дискретного сигнала зависит от величины шага квантования. Эта точность оценивается расхождением между истинным значением функции и квантованным. Величина этого расхождения называется ошибкой (шум квантования).

При передаче сигнала по каналу связи на этот сигнал могут воздействовать те или иные помехи, искажающие этот первичный сигнал. Если при этом известно максимальное значение этой помехи
, то можно выбрать шаг квантования
и вторично проквантовать сигнал по прием стороне, то можно очистить принятый сигнал от влияния помех, поскольку
.

Таким образом, повторное квантование позволяет восстановить искаженный помехой сигнал. Однако надо иметь в виду, что при этом ошибка квантования сохраняется. Положительным моментом при этом является то, что ошибка квантования заранее известна. Таким образом, удается избежать накопления помех и качество передачи сигналов возрастает.

2) Квантование по времени (дискретизация). В этом случае непрерывная функция
заменяется ее отдельными значениями времени в фиксированные моменты времени. Отчеты значений первичного сигнала производятся через некоторый промежуток
, этот интервал называется шагом квантования. Чем меньше выбран интервал
, тем больше точка на приемной стороне сможет быть восстановлена передаваемая функция. С другой стороны, при смешанном мелком шаге дискретизация
снижается скорость передачи данных, также повышается требования к полосе пропускания канала связи.

,

,

,

.

При смешанном крупном шаге квантования существенно уменьшается точность воспроизведения функции на приеме.

3) Квантование по уровню и времени. В ряде случаев, оказывается, целесообразно использовать смешанный вид квантования по уровню. В этом случае сигнал предварительно квантуется по уровню, а отчеты получившегося квантования сообщения производят через заданный промежуток времени. При этом запишем:



Рекомендуем почитать

Наверх