Дешёвые двухъядерники: AMD Athlon X2 против Intel Pentium. Процессорный разъем для установки данной модели ЦПУ

Nokia 10.04.2019
Nokia

Введение

Начинаем знакомство с двухъядерными процессорами для настольных компьютеров. В этом обзоре вы найдёте всё о процессоре с двумя ядрами от AMD: общую информацию, тестирование производительности, разгон и сведения о энергопотреблении и тепловыделении.

Время двухъядерных процессоров пришло. В самое ближайшее время процессоры, оснащённые двумя вычислительными ядрами, начнут активное проникновение в настольные компьютеры. К концу следующего года большинство новых PC должно быть основано именно на CPU с двумя ядрами.
Столь сильное рвение производителей по внедрению двухъядерных архитектур объясняется тем, что иные методы для наращивания производительности себя уже исчерпали. Рост тактовых частот даётся очень тяжело, а увеличение скорости шины и размера кэш-памяти не приводит к ощутимому результату.
В то же время совершенствование 90 нм технологического процесса дошло да той точки, когда производство гигантских кристаллов с площадью порядка 200 кв. мм стало рентабельным. Именно этот факт дал возможность производителям CPU начать кампанию по внедрению двухъядерных архитектур.

Итак, сегодня, 9 мая 2005 года, вслед за компанией Intel, предварительно представляет свои двухъядерные процессоры для настольных систем и компания AMD. Впрочем, как и в случае с двухъядерными процессорами Smithfield (Intel Pentium D и Intel Extreme Edition), речь о начале поставок пока не идёт, они начнутся несколько позднее. В данный момент AMD даёт нам возможность лишь предварительно познакомиться со своими перспективными предложениями.
Линейка двухъядерных процессоров от AMD получила название Athlon 64 X2. Это наименование отражает как тот факт, что новые двухъядерные CPU имеют архитектуру AMD64, так и то, что в них присутствует два вычислительных ядра. Вместе с названием, процессоры с двумя ядрами для настольных систем получили и собственный логотип:


Семейство Athlon 64 X2 на момент его появления на прилавках магазинов будет включать четыре процессора с рейтингами 4200+, 4400+, 4600+ и 4800+. Эти процессоры можно будет приобрести по цене от $500 до $1000 в зависимости от их производительности. То есть, свою линейку Athlon 64 X2 AMD ставит несколько выше обычных Athlon 64.
Однако прежде чем начинать судить о потребительских качествах новых CPU, давайте подробнее познакомимся с особенностями этих процессоров.

Архитектура Athlon 64 X2

Следует отметить, что реализация двухъядерности в процессорах AMD несколько отличается от реализации Intel. Хотя, как и Pentium D и Pentium Extreme Edition, Athlon 64 X2 по сути представляет собой два процессора Athlon 64, объединённых на одном кристалле, двухъядерный процессор от AMD предлагает несколько иной способ взаимодействия ядер между собой.
Дело в том, что подход Intel заключается в простом помещении на один кристалл двух ядер Prescott. При такой организации двухъядерности процессор не имеет никаких специальных механизмов для осуществления взаимодействия между ядрами. То есть, как и в обычных двухпроцессорных системах на базе Xeon, ядра в Smithfield общаются (например, для решения проблем с когерентностью кэшей) посредством системной шины. Соответственно, системная шина разделяется между ядрами процессора и при работе с памятью, что приводит к увеличению задержек при обращении к памяти обоих ядер одновременно.
Инженеры AMD предусмотрели возможность создания многоядерных процессоров ещё на этапе разработки архитектуры AMD64. Благодаря этому, в двухъядерных Athlon 64 X2 некоторые узкие места удалось обойти. Во-первых, дублированы в новых процессорах AMD далеко не все ресурсы. Хотя каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины Hyper-Transport на оба ядра общий. Взаимодействие каждого из ядер с разделяемыми ресурсами осуществляется посредством специального Crossbar-переключателя и очереди системных запросов (System Request Queue). На этом же уровне организовано и взаимодействие ядер между собой, благодаря чему вопросы когерентности кэшей решаются без дополнительной нагрузки на системную шину и шину памяти.


Таким образом, единственное узкое место, имеющееся в архитектуре Athlon 64 X2 – это пропускная способность подсистемы памяти 6.4 Гбайт в секунду, которая делится между процессорными ядрами. Впрочем, в будущем году AMD планирует перейти на использование более скоростных типов памяти, в частности двухканальной DDR2-667 SDRAM. Этот шаг должен положительно сказаться на увеличении производительности именно двухъядерных CPU.
Отсутствие поддержки современных типов памяти с высокой пропускной способностью новыми двухъядерными процессорами объясняется тем, что AMD в первую очередь стремилась сохранить совместимость Athlon 64 X2 с существующими платформами. В результате, эти процессоры могут использоваться в тех же самых материнских платах, что и обычные Athlon 64. Поэтому, Athlon 64 X2 имеют Socket 939 корпусировку, двухканальный контроллер памяти с поддержкой DDR400 SDRAM и работают с шиной HyperTransport с частотой до 1 ГГц. Благодаря этому единственное, что требуется для поддержки двухъядерных CPU от AMD современными Socket 939 материнскими платами, – это обновление BIOS. В этой связи отдельно следует отметить, что, к счастью, инженерам AMD удалось вписать в ранее установленные рамки и энергопотребление Athlon 64 X2.

Таким образом, в части совместимости с существующей инфраструктурой двухъядерные процессоры от AMD оказались лучше конкурирующих продуктов Intel. Smithfield совместим лишь с новыми чипсетами i955X и NVIDIA nFroce4 (Intel Edition), а также предъявляет повышенные требования к конвертеру питания материнской платы.
В основе процессоров Athlon 64 X2 использованы ядра с кодовыми именами Toledo и Manchester степпинга E, то есть по своему функционалу (за исключением возможности обработки двух вычислительных потоков одновременно) новые CPU подобны Athlon 64 на базе ядер San Diego и Venice. Так, Athlon 64 X2 поддерживают набор инструкций SSE3, а также имеют усовершенствованный контроллер памяти. Среди особенностей контроллера памяти Athlon 64 X2 следует упомянуть возможность использования разномастных модулей DIMM в различных каналах (вплоть до установки в оба канала памяти модулей разного объёма) и возможность работы с четырьмя двухсторонними модулями DIMM в режиме DDR400.
Процессоры Athlon 64 X2 (Toledo), содержащие два ядра с кэш-памятью второго уровня по 1 Мбайту на каждое ядро, состоят из примерно 233.2 млн. транзисторов и имеет площадь около 199 кв. мм. Таким образом, как того и следовало ожидать, кристалл и сложность двухъядерного процессора оказывается примерно вдвое больше кристалла соответствующего одноядерного CPU.

Линейка Athlon 64 X2

Линейка процессоров Athlon 64 X2 включает в себя четыре модели CPU c рейтингами 4800+, 4600+, 4400+ и 4200+. В их основе могут использоваться ядра с кодовыми именами Toledo и Manchester. Различия между ними заключаются в размере кэш-памяти второго уровня. Процессоры с кодовым именем Toledo, которые обладают рейтингами 4800+ и 4400+, имеют два L2 кэша (на каждое из ядер) объёмом 1 Мбайт. CPU же с кодовым именем Manchester располагают вдвое меньшим объёмом кэш-памяти: два раза по 512 Кбайт.
Частоты двухъядерных процессоров AMD достаточно высоки и равны 2.2 или 2.4 ГГц. То есть, тактовая частота старшей модели двухъядерного процессора AMD соответствует частоте старшего процессора в линейке Athlon 64. Это означает, что даже в приложениях, не поддерживающих многопоточность, Athlon 64 X2 сможет демонстрировать очень хороший уровень производительности.
Что же касается электрических и тепловых характеристик, то, несмотря на достаточно высокие частоты Athlon 64 X2, они мало отличаются от соответствующих характеристик одноядерных CPU. Максимальное тепловыделение новых процессоров с двумя ядрами составляет 110 Вт против 89 Вт у обычных Athlon 64, а ток питания возрос до 80А против 57.4А. Впрочем, если сравнивать электрические характеристики Athlon 64 X2 с спецификациями Athlon 64 FX-55, то рост максимального тепловыделения составит всего лишь 6Вт, а предельный ток и вовсе не изменится. Таким образом, можно говорить о том, что процессоры Athlon 64 X2 предъявляют к конвертеру питания материнских плат примерно такие же требования, как и Athlon 64 FX-55.

Целиком характеристики линейки процессоров Athlon 64 X2 выглядят следующим образом:


Следует отметить, что AMD позиционирует Athlon 64 X2 как совершенно независимую линейку, отвечающую своим целям. Процессоры этого семейства предназначаются той группе продвинутых пользователей, для которой важна возможность использования нескольких ресурсоёмких приложений одновременно, либо применяющих в повседневной работе приложения для создания цифрового контента, большинство из которых эффективно поддерживает многопоточность. То есть, Athlon 64 X2 представляется неким аналогом Athlon 64 FX, но не для игроков, а для энтузиастов, использующих PC для работы.


При этом выпуск Athlon 64 X2 не отменяет существование остальных линеек: Athlon 64 FX, Athlon 64 и Sempron. Все они продолжат мирно сосуществовать на рынке.
Но, отдельно следует отметить тот факт, что линейки Athlon 64 X2 и Athlon 64 имеют унифицированную систему рейтингов. Это значит, что процессоры Athlon 64 с рейтингами выше 4000+ на рынке не появятся. В то же время семейство одноядерных процессоров Athlon 64 FX будет продолжать развиваться, поскольку данные CPU востребованы геймерами.
Цены Athlon 64 X2 таковы, что, судя по ним, эту линейку можно считать дальнейшим развитием обычных Athlon 64. Фактически, так оно и есть. По мере того, как старшие модели Athlon 64 будут переходить в среднюю ценовую категорию, верхние модели в этой линейке будут заменяться на Athlon 64 X2.
Появление процессоров Athlon 64 X2 в продаже ожидается в июне. Рекомендованные AMD розничные цены выглядят следующим образом:

AMD Athlon 64 X2 4800+ - $1001;
AMD Athlon 64 X2 4600+ - $803;
AMD Athlon 64 X2 4400+ - $581;
AMD Athlon 64 X2 4200+ - $537.

Athlon 64 X2 4800+: первое знакомство

Нам удалось получить на тестирование образец процессора AMD Athlon 64 X2 4800+, являющегося старшей моделью в линейке двухъядерных CPU от AMD. Данный процессор по своему внешнему виду оказался очень похож на своих прародителей. Фактически, отличается он от обычных Athlon 64 FX и Athlon 64 для Socket 939 только лишь маркировкой.


Несмотря на то, что Athlon 64 X2 – это типичный Socket 939 процессор, который должен быть совместим с большинством материнских плат с 939-контактным процессорным гнездом, на данный момент его функционирование с многими платами затруднено в виду отсутствия необходимой поддержки со стороны BIOS. Единственной материнской платой, на которой данный CPU смог заработать в двухъядерном режиме в нашей лаборатории, оказалась ASUS A8N SLI Deluxe, для которой существует специальный технологический BIOS с поддержкой Athlon 64 X2. Впрочем, очевидно, что с появлением двухъядерных процессоров AMD в широкой продаже данный недостаток будет ликвидирован.
Следует отметить, что без необходимой поддержки со стороны BIOS, Athlon 64 X2 в любой материнской плате превосходно работает в одноядерном режиме. То есть, без обновлённой прошивки наш Athlon 64 X2 4800+ работал как Athlon 64 4000+.
Популярная утилита CPU-Z пока выдаёт о Athlon 64 X2 неполную информацию, хотя и распознаёт его:


Несмотря на то, что CPU-Z детектирует два ядра, вся отображаемая информация о кеш-памяти относится лишь к одному из ядер CPU.
Предваряя тесты производительности полученного процессора, в первую очередь мы решили исследовать его тепловые и электрические характеристики. Для начала мы сравнили температуру Athlon 64 X2 4800+ с температурой других Socket 939 процессоров. Для этих опытов мы применяли единый воздушный кулер AVC Z7U7414001; прогрев процессоров осуществлялся утилитой S&M 1.6.0, которая оказалась совместима с двухъядерным Athlon 64 X2.


В состоянии покоя температура Athlon 64 X2 оказывается несколько выше температуры процессоров Athlon 64 на ядре Venice. Однако, несмотря на наличие в нём двух ядер, этот CPU не горячее чем одноядерные процессоры, производимые по 130 нм технологическому процессу. Причём, такая же картина наблюдается и при максимальной нагрузке CPU работой. Температура Athlon 64 X2 при 100-процентной загрузке оказывается меньше температуры Athlon 64 и Athlon 64 FX, в которых используются 130 нм ядра. Таким образом, благодаря пониженному напряжению питания и использованию ядра ревизии E инженерам AMD действительно удалось добиться приемлемого тепловыделения своих двухъядерных процессоров.
Исследуя энергопотребление Athlon 64 X2, мы решили сравнить его не только с соответствующей характеристикой одноядерных Socket 939 CPU, но и с энергопотреблением старших процессоров Intel.


Как это ни покажется удивительным, но энергопотребление Athlon 64 X2 4800+ оказывается ниже энергопотребления Athlon 64 FX-55. Объясняется это тем, что в основе Athlon 64 FX-55 лежит старое 130 нм ядро, так что в этом нет ничего странного. Основной же вывод заключается в другом: те материнские платы, которые были совместимы с Athlon 64 FX-55, способны (с точки зрения мощности конвертера питания) поддерживать и новые двухъядерные процессоры AMD. То есть, AMD совершенно права, говоря о том, что вся необходимая для внедрения Athlon 64 X2 инфраструктура уже практически готова.

Естественно, мы не упустили и возможность проверки разгонного потенциала Athlon 64 X2 4800+. К сожалению, технологический BIOS для ASUS A8N-SLI Deluxe, поддерживающий Athlon 64 X2, не позволяет изменять ни напряжение на CPU, ни его множитель. Поэтому, эксперименты по оверклокингу выполнялись на штатном для процессора напряжении путём увеличения частоты тактового генератора.
В процессе экспериментов нам удалось увеличить частоту тактового генератора до 225 МГц, при этом процессор продолжал сохранять способность к стабильному функционированию. То есть, в результате разгона у нас получилось поднять частоту нового двухъядерного CPU от AMD до 2.7 ГГц.


Итак, при оверклокинге Athlon 64 X2 4800+ позволил увеличить свою частоту на 12.5%, что, как нам кажется, для двухъядерного CPU не так уж и плохо. По крайней мере, можно говорить о том, что частотный потенциал ядра Toledo близок к потенциалу других ядер ревизии E: San Diego, Venice и Palermo. Так что достигнутый при разгоне результат даёт нам надежду на появление ещё более скоростных процессоров в семействе Athlon 64 X2 до внедрения следующего технологического процесса.

Как мы тестировали

В рамках этого тестирования мы сравнили производительность двухъядерного процессора Athlon 64 X2 4800+ с быстродействием старших процессоров с одноядерной архитектурой. То есть, в соперниках у Athlon 64 X2 выступили Athlon 64, Athlon 64 FX, Pentium 4 и Pentium 4 Extreme Edition.
К сожалению, сегодня мы не можем представить сравнение нового двухъядерного процессора от AMD с конкурирующим решением от Intel, CPU с кодовым именем Smithfield. Однако в самое ближайшее время наши результаты тестов будут дополнены результатами Pentium D и Pentium Extreme Edition, так что следите за обновлениями.
Пока же в тестировании приняло участие несколько систем, состояли которые из перечисленного ниже набора комплектующих:

Процессоры:

AMD Athlon 64 X2 4800+ (Socket 939, 2.4 ГГц, 2 x 1024KB L2, ревизия ядра E6 - Toledo);
AMD Athlon 64 FX-55 (Socket 939, 2.6 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 4000+ (Socket 939, 2.4 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 3800+ (Socket 939, 2.4 ГГц, 512KB L2, ревизия ядра E3 - Venice);
Intel Pentium 4 Extreme Edition 3.73 ГГц (LGA775, 3.73 ГГц, 2MB L2);
Intel Pentium 4 660 (LGA775, 3.6 ГГц, 2MB L2);
Intel Pentium 4 570 (LGA775, 3.8 ГГц, 1MB L2);

Материнские платы:

ASUS A8N SLI Deluxe (Socket 939, NVIDIA nForce4 SLI);
NVIDIA C19 CRB Demo Board (LGA775, nForce4 SLI (Intel Edition)).

Память:

1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
1024MB DDR2-667 SDRAM (Corsair CM2X512A-5400UL, 2 x 512MB, 4-4-4-12).

Графическая карта: - PowerColor RADEON X800 XT (PCI-E x16).
Дисковая подсистема: - Maxtor MaXLine III 250GB (SATA150).
Операционная система: - Microsoft Windows XP SP2.

Производительность

Офисная работа

Для исследования производительности в офисных приложениях мы воспользовались тестами SYSmark 2004 и Business Winstone 2004.


Тест Business Winstone 2004 моделирует работу пользователя в распространённых приложениях: Microsoft Access 2002, Microsoft Excel 2002, Microsoft FrontPage 2002, Microsoft Outlook 2002, Microsoft PowerPoint 2002, Microsoft Project 2002, Microsoft Word 2002, Norton AntiVirus Professional Edition 2003 и WinZip 8.1. Полученный же результат достаточно закономерен: все эти приложения многопоточность не используют, а потому Athlon 64 X2 оказывается лишь чуть-чуть быстрее своего одноядерного аналога Athlon 64 4000+. Небольшое преимущество же объясняется скорее усовершенствованным контроллером памяти ядра Toledo, нежели наличием второго ядра.
Впрочем, в повседневной офисной работе частенько несколько приложений работает одновременно. Насколько эффективными в этом случае оказываются двухъядерные процессоры AMD, показано ниже.


В данном случае измеряется скорость работы в Microsoft Outlook и Internet Explorer, в то время как в фоновом режиме выполняется копирование файлов. Однако, как показывает приведённая диаграмма, копирование файлов – это не столь сложная задача и выигрыша двухъядерная архитектура тут не даёт.


Этот тест несколько сложнее. Здесь в фоновом режиме выполняется архивация файлов посредством Winzip, в то время как на переднем плане пользователь работает в Excel и Word. И в данном случае мы получаем вполне осязаемый дивиденд от двухъядерности. Athlon 64 X2 4800+, работающий на частоте 2.4 ГГц, обгоняет не только Athlon 64 4000+, но и одноядерный Athlon 64 FX-55 с частотой 2.6 ГГц.


По мере усложнения задач, работающих в фоновом режиме, прелести двухъядерной архитектуры начинают проявляться всё сильнее. В данном случае моделируется работа пользователя в приложениях Microsoft Excel, Microsoft Project, Microsoft Access, Microsoft PowerPoint, Microsoft FrontPage и WinZip, в то время как в фоновом режиме происходит антивирусная проверка. В данном тесте работающие приложения оказываются способными как следует загрузить оба ядра Athlon 64 X2, результат чего не заставляет себя ждать. Двухъядерный процессор поставленные задачи решает в полтора раза быстрее аналогичного одноядерного.


Здесь моделируется работа пользователя, получающего письмо в Outlook 2002, которое содержит набор документов в zip-архиве. Пока полученные файлы сканируются на вирусы при помощи VirusScan 7.0, пользователь просматривает e-mail и вносит пометки в календарь Outlook. Затем пользователь просматривает корпоративный веб-сайт и некоторые документы при помощи Internet Explorer 6.0.
Данная модель работы пользователя предусматривает использование многопоточности, поэтому Athlon 64 X2 4800+ демонстрирует более высокое быстродействие, нежели одноядерные процессоры от AMD и Intel. Заметим, что процессоры Pentium 4 с технологией «виртуальной» многопоточности Hyper-Threading не могут похвастать столь же высокой производительностью, как Athlon 64 X2, в котором находится два настоящих независимых процессорных ядра.


В данном бенчмарке гипотетический пользователь редактирует текст в Word 2002, а также использует Dragon NaturallySpeaking 6 для преобразования аудио-файла в текстовый документ. Готовый документ преобразуется в pdf-формат с использованием Acrobat 5.0.5. Затем, пользуясь сформированным документом, создается презентация в PowerPoint 2002. И в данном случае Athlon 64 X2 вновь оказывается на высоте.


Здесь модель работы такова: пользователь открывает базу данных в Access 2002 и выполняет ряд запросов. Документы архивируются с использованием WinZip 8.1. Результаты запросов экспортируются в Excel 2002, и на их основании строится диаграмма. Хотя в этом случае положительный эффект от двухъядерности также присутствует, процессоры семейства Pentium 4 справляются с такой работой несколько быстрее.
В целом, относительно оправданности использования двухъядерных процессоров в офисных приложениях можно сказать следующее. Сами по себе приложения такого типа редко оптимизированы для создания многопоточной нагрузки. Поэтому, получить выигрыш при работе в одном конкретном приложении на двухъядерном процессоре тяжело. Однако, если модель работы такова, что какие-то из ресурсоёмких задач выполняются в фоне, то процессоры с двумя ядрами могут дать весьма ощутимый прирост в быстродействии.

Создание цифрового контента

В этом разделе мы вновь воспользуемся комплексными тестами SYSmark 2004 и Multimedia Content Creation Winstone 2004.


Бенчмарк моделирует работу в следующих приложениях: Adobe Photoshop 7.0.1, Adobe Premiere 6.50, Macromedia Director MX 9.0, Macromedia Dreamweaver MX 6.1, Microsoft Windows Media Encoder 9 Version 9.00.00.2980, NewTek LightWave 3D 7.5b, Steinberg WaveLab 4.0f. Поскольку большинство приложений, предназначенных для создания и обработки цифрового контента, поддерживают многопоточность, совершенно неудивителен успех Athlon 64 X2 4800+ в данном тесте. Причём, заметим, что преимущество этого двухъядерного CPU проявляется даже тогда, когда параллельная работа в нескольких приложениях не используется.


Когда же несколько приложений работает одновременно, двухъядерные процессоры способны показать ещё более впечатляющие результаты. Например, в этом тесте в пакете 3ds max 5.1 рендерится в bmp файл изображение, и, в это же время, пользователь готовит web-страницы в Dreamweaver MX. Затем пользователь рендерит в векторном графическом формате 3D анимацию.


В этом случае моделируется работа в Premiere 6.5 пользователя, который создает видео-ролик из нескольких других роликов в raw-формате и отдельных звуковых треков. Ожидая окончания операции, пользователь готовит также изображение в Photoshop 7.01, модифицируя имеющуюся картинку и сохраняя ее на диске. После завершения создания видео-ролика, пользователь редактирует его и добавляет специальные эффекты в After Effects 5.5.
И снова мы видим гигантское преимущество двухъядерной архитектуры от AMD как над обычными Athlon 64 и Athlon 64 FX, так и над Pentium 4 с технологией «виртуальной» многоядерности Hyper-Threading.


А вот и ещё одно проявление триумфа двухъядерной архитектуры AMD. Его причины такие же, как и в предыдущем случае. Они кроются в использованной модели работы. Здесь гипотетический пользователь разархивирует контент веб-сайта из архива в zip-формате, одновременно используя Flash MX для открытия экспортированного 3D векторного графического ролика. Затем пользователь модифицирует его путем включения других картинок и оптимизирует для более быстрой анимации. Итоговый ролик со специальными эффектами сжимается с использованием Windows Media Encoder 9 для транслирования через Интернет. Затем создаваемый веб-сайт компонуется в Dreamweaver MX, а параллельно система сканируется на вирусы с использованием VirusScan 7.0.
Таким образом, необходимо признать, что для приложений, работающих с цифровым контентом, двухъядерная архитектура очень выгодна. Практически любые задачи такого типа умеют эффективно загружать оба ядра CPU одновременно, что приводит к сильному увеличению скорости работы системы.

PCMark04, 3DMark 2001 SE, 3DMark05

Отдельно мы решили посмотреть на скорость Athlon 64 X2 в популярных синтетических бенчмарках от FutureMark.






Как мы уже неоднократно отмечали ранее, тест PCMark04 оптимизирован для многопоточных систем. Именно поэтому процессоры Pentium 4 с технологией Hyper-Threading показывали в нём лучшие результаты, нежели CPU семейства Athlon 64. Однако, теперь ситуация сменилась. Два настоящих ядра в Athlon 64 X2 4800+ позволили этому процессору оказаться наверху диаграммы.






Графические тесты семейства 3DMark многопоточность не поддерживают ни в каком виде. Поэтому, результаты Athlon 64 X2 здесь мало отличаются от показателей обычных Athlon 64 с частотой 2.4 ГГц. Небольшое преимущество же над Athlon 64 4000+ объясняется наличием в ядре Toledo усовершенствованного контроллера памяти, а над Athlon 64 3800+ - большим объёмом кеш-памяти.
Впрочем, в составе 3DMark05 есть пара тестов, которые могут задействовать многопоточность. Это – тесты CPU. В этих бенчмарках на центральный процессор возлагается нагрузка по программной эмуляции вершинных шейдеров, а, кроме того, вторым потоком, выполняется обсчёт физики игровой среды.






Результаты вполне закономерны. Если приложение в состоянии задействовать два ядра, то двухъядерные процессоры работают намного быстрее одноядерных.

Игровые приложения















К сожалению, современные игровые приложения многопоточность не поддерживают. Несмотря на то, что технология «виртуальной» многоядерности Hyper-Threading появилась очень давно, разработчики игр не спешат делить вычисления, производимые игровым движком, на несколько потоков. И дело, скорее всего, не в том, что для игр это сделать тяжело. По всей видимости, рост вычислительных возможностей процессора для игр не так уж и важен, поскольку основная нагрузка в задачах этого типа ложится на видеокарту.
Впрочем, появление на рынке двухъядерных CPU даёт некоторую надежду на то, что производители игр станут сильнее нагружать центральный процессор расчётами. Результатом этого может явиться появление нового поколения игр с продвинутым искусственным интеллектом и реалистичной физикой.

Пока же в применении двухъядерных CPU в игровых системах никакого смысла нет. Поэтому, кстати, AMD не собирается прекращать развитие своей линейки процессоров ориентированной специально на геймеров, Athlon 64 FX. Эти процессоры характеризуются более высокими таковыми частотами и наличием единственного вычислительного ядра.

Сжатие информации


К сожалению, WinRAR не поддерживает многопоточность, поэтому результат Athlon 64 X2 4800+ практически не отличается от результата обычного Athlon 64 4000+.


Однако существуют архиваторы, которые могут эффективно задействовать двухъядерность. Например, 7zip. При тестировании в нём результаты Athlon 64 X2 4800+ вполне оправдывают стоимость этого процессора.

Кодирование аудио и видео


Популярный mp3 кодек Lame до недавнего времени многопоточность не поддерживал. Однако вновь появившаяся версия 3.97 alpha 2 этот недостаток исправила. В результате, процессоры Pentium 4 стали кодировать аудио быстрее, чем Athlon 64, а Athlon 64 X2 4800+, хотя и обгоняет своих одноядерных собратьев, всё же несколько отстаёт от старших моделей семейства Pentium 4 и Pentium 4 Extreme Edition.


Хотя кодек Mainconcept может задействовать два вычислительных ядра, скорость Athlon 64 X2 оказывается не на много выше быстродействия, демонстрируемого одноядерными собратьями. Причём, отчасти это преимущество объясняется не только двухъядерной архитектурой, но и поддержкой команд SSE3, а также усовершенствованным контроллером памяти. В результате, Pentium 4 с одним ядром в Mainconcept работают заметно быстрее, чем Athlon 64 X2 4800+.


При кодировании MPEG-4 популярным кодеком DiVX, картина складывается совершенно иная. Athlon 64 X2, благодаря наличию второго ядра, получает хорошую прибавку к скорости, которая позволяет ему обойти даже старшие модели Pentium 4.


Кодек XviD также поддерживает многопоточность, однако добавление второго ядра в этом случае даёт гораздо меньший прирост в скорости, чем в эпизоде с DiVX.


Очевидно, что из кодеков Windows Media Encoder оптимизирован для многоядерных архитектур лучше всего. Например, Athlon 64 X2 4800+ справляется с кодированием с использованием этого кодека в 1.7 раз быстрее, чем одноядерный Athlon 64 4000+, работающий на аналогичной тактовой частоте. В результате, говорить о каком бы то ни было соперничестве одноядерных и двухъядерных процессоров в WME просто бессмысленно.
Как и приложения для обработки цифрового контента, подавляющее большинство кодеков уже давно оптимизировано для Hyper-Threading. В результате, и двухъядерные процессоры, позволяющие выполнять два вычислительных потока одновременно, выполняют кодирование быстрее, чем одноядерные. То есть, использование систем с CPU с двумя ядрами для кодирования аудио и видео контента вполне оправдано.

Редактирование изображений и видео









Популярные продукты Adobe для обработки видео и редактирования изображений хорошо оптимизированы под многопроцессорные системы и Hyper-Threading. Поэтому, в Photoshop, After Effects и Premiere двухъядерный процессор от AMD демонстрирует чрезвычайно высокую производительность, значительно превышающую быстродействие не только Athlon 64 FX-55, но и более быстрых в задачах этого класса процессоров Pentium 4.

Распознавание текста


Достаточно популярная программа для оптического распознавания текстов ABBYY Finereader, хотя и имеет оптимизацию для процессоров с технологией Hyper-Threading, на Athlon 64 X2 работает только лишь одним потоком. Налицо ошибка программистов, которые детектируют возможность распараллеливания вычислений по наименованию процессора.
К сожалению, подобные примеры неправильного программирования встречаются и в наши дни. Будем надеяться, что на сегодня число приложений, подобных ABBYY Finereader, минимально, а в ближайшем будущем их количество сократится до нуля.

Математические вычисления






Как это не покажется странным, но популярные математические пакеты MATLAB и Mathematica в варианте для операционной системы Windows XP многопоточность не поддерживают. Поэтому, в этих задачах Athlon 64 X2 4800+ выступает примерно на одном уровне с Athlon 64 4000+, опережая его лишь за счёт лучше оптимизированного контроллера памяти.


Зато многие задачи математического моделирования позволяют организовать распараллеливание вычислений, которое даёт неплохой прирост производительности в случае использования двухъядерных CPU. Это и подтверждается тестом ScienceMark.

3D-рендеринг






Финальный рендеринг относится к задачам, которые могут легко и эффективно быть распараллелены. Поэтому, совершенно неудивительно, что применение при работе в 3ds max процессора Athlon 64 X2, оснащённого двумя вычислительными ядрами, позволяет получить очень неплохой прирост в быстродействии.






Аналогичная картина наблюдается и в Lightwave. Таким образом, использование двухъядерных процессоров при финальном рендеринге не менее выгодно, чем и в приложениях для обработки изображений и видео.

Общие впечатления

Перед тем, как сформулировать общие выводы по итогам нашего тестирования, пару слов следует сказать и о том, что осталось за кадром. А именно о комфорте использования систем, оснащённых двухъядерными процессорами. Дело в том, что в системе с одним одноядерным процессором, например, Athlon 64, в каждый момент времени может исполняться лишь один вычислительный поток. Это значит, что если в системе работает несколько приложений одновременно, то планировщик OC вынужден с большой частотой переключать процессорные ресурсы между задачами.

За счёт того, что современные процессоры очень быстры, переключение между задачами обычно остаётся незаметным на взгляд пользователя. Однако существуют и приложения, прервать которые для передачи процессорного времени другим задачам в очереди достаточно сложно. В этом случае операционная система начинает подтормаживать, что нередко вызывает раздражение у человека, сидящего за компьютером. Также, нередко можно наблюдать и ситуацию, когда приложение, забрав ресурсы процессора, «зависает», и такое приложение бывает очень тяжело снять с выполнения, поскольку оно не отдаёт процессорные ресурсы даже планировщику операционной системы.

Подобные проблемы возникают в системах, оснащённых двухъядерными процессорами, на порядок реже. Дело в том, процессоры с двумя ядрами способны выполнять одновременно два вычислительных потока, соответственно, для функционирования планировщика появляется в два раза больше свободных ресурсов, которые можно разделять между работающими приложениями. Фактически, для того, чтобы работа в системе с двухъядерным процессором стала некомфортной, необходимо одновременное пересечение двух процессов, пытающихся захватить в безраздельное пользование все ресурсы CPU.

В заключение мы решили провести небольшой эксперимент, показывающий, как влияет на производительность системы с одноядерным и двухъядерным процессором параллельное исполнение большого количества ресурсоёмких приложений. Для этого мы измеряли число fps в Half-Life 2, запуская в фоне несколько копий архиватора WinRAR.


Как видим, при использовании в системе процессора Athlon 64 X2 4800+, производительность в Half-Life 2 остаётся на приемлемом уровне гораздо дольше, нежели в системе с одноядерным, но более высокочастотным процессором Athlon 64 FX-55. Фактически, в системе с одноядерным процессором запуск одного фонового приложения уже приводит к двукратному падению скорости. При дальнейшем увеличении числа задач, работающих в фоне, производительность падает до неприличного уровня.
В системе же с двухъядерным процессором сохранять высокую производительность приложения, работающего на переднем плане, удаётся гораздо дольше. Запуск одной копии WinRAR проходит практически незамеченным, добавление большего числа фоновых приложений, хотя и оказывает влияние на задачу переднего плана, приводит к гораздо меньшему снижению производительности. Следует заметить, что падение скорости в данном случае вызвано не столько нехваткой процессорных ресурсов, сколько разделением ограниченной по пропускной способности шины памяти между работающими приложениями. То есть, если фоновые задачи не будут активно работать с памятью, приложение переднего плана вряд ли сильно будет реагировать на увеличение фоновой нагрузки.

Выводы

Сегодня состоялось наше первое знакомство с двухъядерными процессорами от AMD. Как показали проведённые испытания, идея объединения двух ядер в одном процессоре продемонстрировала свою состоятельность на практике.
Использование двухъядерных процессоров в настольных системах, способно значительно увеличить скорость работы целого ряда приложений, эффективно использующих многопоточность. Ввиду того, что технология виртуальной многопоточности, Hyper-Threading присутствует в процессорах семейства Pentium 4 уже очень продолжительно время, разработчики программного обеспечения к настоящему времени предлагают достаточно большое число программ, способных получить выигрыш от двухъядерной архитектуры CPU. Так, среди приложений, скорость работы которых на двухъядерных процессорах будет увеличена, следует отметить утилиты для кодирования видео и аудио, системы 3D моделирования и рендеринга, программы для редактирования фото и видео, а также профессиональные графические приложения класса САПР.
При этом существует и большое количество программного обеспечения, которое многопоточность не использует или использует её крайне ограниченно. Среди ярких представителей таких программ – офисные приложения, веб-браузеры, почтовые клиенты, медиа-проигрыватели, а также игры. Однако даже при работе в таких приложениях двухъядерная архитектура CPU способна оказать положительное влияние. Например, в тех случаях, когда несколько приложений выполняется одновременно.
Резюмируя вышесказанное, на графике ниже мы просто приводим численное выражение преимущества двухъядерного процессора Athlon 64 X2 4800+ над одноядерным Athlon 64 4000+, работающим на той же частоте 2.4 ГГц.


Как видно по графику, Athlon 64 X2 4800+ оказывается во многих приложениях значительно быстрее старшего CPU в семействе Athlon 64. И, если бы не баснословно высокая стоимость Athlon 64 X2 4800+, превышающая $1000, то этот CPU смело можно было бы назвать весьма выгодным приобретением. Тем более что ни в одном приложении он не отстаёт от своих одноядерных собратьев.
Учитывая же цену Athlon 64 X2, следует признать, что на сегодня эти процессоры наравне с Athlon 64 FX могут являться разве только ещё одним предложением для обеспеченных энтузиастов. Те из них, для кого в первую очередь важна не игровая производительность, а скорость работы в других приложениях, обратят внимание на линейку Athlon 64 X2. Экстремальные же геймеры, очевидно, останутся приверженцами Athlon 64 FX.

Рассмотрение двухъядерных процессоров на нашем сайте на этом не заканчивается. В ближайшие дни ждите второй части эпопеи, в которой речь пойдёт о двухъядерных CPU от Intel.

Собираем системник из говна и палок по минимальному бюджету.
Планируемая нагрузка - комфортный сёрфинг в сети, видео 720p, 2D игры (или 3D из прошлого десятилетия). Эпизод первый - центральный процессор.
Выбор сокета процессора был обусловлен наличием , которую мне удалось приобрести в офф-лайне по сходной цене. И хотя предполагаемая нагрузка на ПК по современным меркам более чем скромная, но подсознательно хотелось получить хоть какую-нибудь производительность. Тем более если учитывать мизерный . Поэтому я и остановил свой выбор на данном лоте - два ядра по 2,6 ГГц как нельзя лучше подходили для решения поставленных задач. Особенно с оглядкой на ценник.
Доставка заняла полтора месяца; по видимому сказались новогодние праздники. Но трек отслеживался и никаких беспокойств не было.
По упаковке претензий нет, всё надёжно и крепко. Содержимое посылки не пострадало.


Если откинуть всё лишнее, то непосредственно сам процессор поставляется в пластиковом блистере, что по видимому и сохраняет в целости его ноги)
Так же в комплекте присутствует пакетик смегмы каменного тролля тепмопасты. Что ж, приятный бонус. За неимением лучшего процессор хотя бы готов к работе «из коробки».


Мелко-царапки на корпусе

На первый взгляд всё ОК.


Хотя, если поиграть солнечным зайчиком, то мелко- царапинки всё-же найти можно. Ничего удивительного. Процессор-то бу-шный.


Ноги тоже в порядке, кардабалет ровный.



Протираем спиртом и устанавливаем на место


Не забываем про термоинтерфейс и запускаем систему. Материнская плата корректно распознаёт установленный процессор. Никаких обновлений BIOS не требуется. Ещё бы, ведь комплектующие родом из одной эпохи. Да они вообще как старые друзья встретились. (Полосы на мониторе - это косяк монитора. К обозреваемому процессору никакого отношения не имеют)


CPU-Z показал по этому поводу приблизительно следующее


А CPU-Z тесты:
в одно лицо - 227 попугаев
на двоих - 431


Стресс-тест разогревает процессор аж 60-65°C. Да уж, вообще не холодный. Однако здесь стоит учесть, что «сердцем» системы охлаждения является самый простой алюминиевый радиатор. Для лёгких вычислительных задач этого хватает. Но я нормально отдаю себе отчёт, что это работа на пределе возможностей СО и этот узел требует скорейшего апгрейда.


Бенчмарк PerformanceTest с точки зрения производительности центрального процессора оценил мой выбор в 941 попугай. И почему-то сравнил с производительностью шести топовых процессоров. Видимо намекая на то, что апгрейда требует не только система охлаждения).


Ну а бенчмарк встроенный в операционную систему Windows центральному процессору дал оценку в 5,9 балла из 9,9 возможных.

Если оценить общефункциональную производительность ПК, то с моими скромными задачами эта сборка справляется без тормозов и лагов. (Однако стоит упомянуть, что в качестве системного диска установлен SSD, хоть и sata 2… но на быстродействии и производительности это точно сказывается позитивно).

Сложно сделать однозначный вывод по ситуации, ведь железо морально старое, однако ещё трудоспособное. И для кого-то подобный процессор будет спасением, а для кого-то - брелоком.

Теперь прощаюсь Быть добру!

Планирую купить +30 Добавить в избранное Обзор понравился +60 +101

Инструкция

Необходимо помнить при этом, что процесс разгонки процессора довольно опасен и при отсутствии должной аккуратности и внимательности может привести к нестабильной работе, сбоям и даже к выходу системы из строя. Если вы новичок в теме оверклокинга (от англ. overclocking - разгон) вам необходимо разобраться с инструкцией к вашему процессору и другому оборудованию, желательно также найти перемычки/джамперы/пункты меню BIOS, отвечающие за частоту FSB, шины памяти, коэффициента умножения, делителя для PCI и AGP.

«Начинка» процессора AMD Athlon 64 X2 представляет собой кристалл, объединяющий в себе два ядра, каждое из которых обладает собственным кэшем L2. Для процессоров AMD Athlon актуальным является , основанный на увеличении коэффициента умножения.

Для тестирования процессора после разгонки вам понадобится программа S&M или подобная ей. Ее легко можно найти в интернете. Скачайте программу и установите ее.

Процесс разгонки начинается в BIOS. Для входа в BIOS нажмите клавишу DEL при начальной стадии загрузки системы. Откройте вкладку Power Bios Setup, в ней выберите пункт Memory Frequency и установите значение DDR400 (200Mhz). Снижение частоты памяти позволит вам снизить уровень лимитирования разгона процессора. Далее сохраните изменения с помощью опции Save changes and exit и перезагрузите компьютер.

После перезагрузки вновь зайдите в BIOS. Откройте вкладку Advanced Chipset Features и выберите пункт DRAM Configuration. В открывшемся окне в каждом пункте, вместо Auto, установите значения, которые находятся справа от знака slash (/). Этим вы ещё дальше отодвинете предел стабильной работы для вашей памяти.

Снова выйдите в меню Advanced Chipset Features и найдите пункт HyperTransport Frequency. Этот параметр также может называться HT Frequency или LDT Frequency. Выберите его и уменьшите частоту до 400 или 600 МГц (х2 или х3). Далее перейдите в меню Power Bios Setup, выберите пункт Memory Frequency и установите значение DDR200 (100Mhz). Снова сохраните настройки (Save changes and exit). После перезапуска - снова в BIOS.

Начинается самая интересная часть - непосредственно разгон процессора. Откройте меню Power Bios Setup, выберите CPU Frequency. Далее вам необходимо выбрать пункт, который, в зависимости от версии BIOS, может иметь названия CPU Host Frequency, CPU/Clock Speed или External Clock. Повысьте значение с 200 до 250 MHz - этим вы непосредственно разгоняете процессор. Снова сохраните настройки и загрузите операционную систему. Запустите программу S&M и в главном меню нажмите кнопку «Начать». Если в результате проверки система покажет высокую стабильность, увеличьте значение CPU Host Frequency еще на несколько пунктов и снова проведите . Повторяйте действия до тех пор, пока не найдете оптимальный баланс между разгоном системы и ее стабильностью. Вы достигли цели - ваш процессор разогнан.

Обратите внимание

Не забывайте контролировать температуру процессора, очень нежелательно превышать 60°.

Источники:

  • как разогнать процессор amd athlon 64 x2
  • Ситуация со старшими Socket 939 Athlon 64 FX/Athlon 64 X2

Процесс разгона процессора – процедура не такая уж и сложная, как может показаться на первый взгляд. В процессе выполнения этой задачи следует соблюдать некоторые меры предосторожности и быть очень внимательным, чтобы не переборщить и не «убить» системную плату.

Вам понадобится

  • Инструкция к материнской плате компьютера, утилиты для проведения анализа и теста системы (например Everest), термопаста для процессора (может понадобиться в некоторых случаях), программа для разгона процессора (в случае программного разгона процессора).

Инструкция

Перед тем, как приступить непосредственно к процедуре разгона , необходимо изучить некоторую техническую документации, а именно инструкцию, прилагаемую к материнской плате. Необходимо это для того, чтобы найти в BIOS, соответствующие разделы.

Затем следует определиться, каким их способов будет выполняться процедура. Существует два способа – программный (при помощи специальных программ, предназначенных для этого) и аппаратный (способ разгона посредствам стандартных средств BIOS). Программный способ разгона процессора в данной статье рассматриваться не будет, ввиду того, что с программами, как правило, идут подробные инструкции.

Перед началом разгона необходимо проверить состояние . В случае, если она , ее необходимо заменить. Затем нужно почистить и обеспечить поступление как можно большего количества воздуха в системный блок (для этого одна из боковых крышек). Затем необходимо зайти в BIOS (делается это при помощи нажатия клавиши F2 или Del при загрузке системы). Теперь в Биосе необходимо найти функцию, определяющую частоту работы памяти, и установить ее минимальное значение (делается это для того, чтобы процесс разгона процессора не лимитировался памятью). Находиться эта функция может в разделах, которые к разгону процессора или к разгона и тайминга памяти, в большинстве случаев она носит одно из приведенных названий: Advanced Chipset Features, либо Memclock index value, или Advanced, или POWER BIOS Features, либо System Memory Frequency, или же Memory Frequency.

Далее заходим в меню Frequency/Voltage Control (POWER BIOS Features, либо JumperFree Configuration, или?Guru Utility – другие варианты названия). Здесь необходимо найти пункт, определяющий значение частоты FSB (варианты названия пункта: CPU Host Frequency, либо CPU/Clock Speed,или External Clock). После того, как нужный пункт , его нужно плавно повышать. Вот здесь необходимо проявить внимательность и терпение. При повышении показаний пункта не нужно увеличивать их на много, а по чуть-чуть. После каждого увеличения необходимо сохранить настройки (соответствующий запрос из Биоса) и перезагрузить компьютер. После этого нужно при помощи определенных утилит проверить, разогнался ли , а также стабильность работы системы.

Видео по теме

Разгон («оверклокинг») процессора подразумевает программное или аппаратное изменение качества его работы. Производители интегральной электроники (AMD, Intel и др.) во избежание произвольного увеличения тактовой частоты ставят ограничители и снимают свои продукты с гарантийного обслуживания. Пользователи в свою очередь хотят почти за бесплатно заставить работать железо на грани возможного. Поэтому имеет смысл на примере процессора AMD Athlon ознакомиться с некоторыми нюансами типичного «оверклокинга».

Вам понадобится

  • Компьютер, процессор AMD Athlon, дополнительный кулер, программы Everest Ultimate Edition и CPU-Z

Инструкция

В первую очередь, подготовьте систему. Позаботьтесь об охлаждении процессора Athlon. Установите один для своевременного теплообмена с внешней средой. Иногда лишние 10-15° С уменьшают рабочие ресурсы этого процессора в два и более раза. Поэтому качественная вентиляция крайне необходима. В редких случаях энтузиасты даже срезают верхнюю часть системного корпуса и устанавливают еще один кулер для прохладного воздуха к основному вентилятору.

Загрузите программы Everest Ultimate Edition и CPU-Z последних версий. Они необходимы для тестов и мониторинга системы. После того как собрали все необходимые данные о и материнской плате, а также о рабочих характеристиках системы, перезагрузите компьютер.

При начальной загрузке нажмите «Delete» либо «F2» (в зависимости от того, какая у вас материнская плата). Настройте BIOS следующим образом: CPU Host Clock Control – (ручной режим); CPU Frequency – (частоту системной шины прибавляйте постепенно, по 10-15 MHz); HT Frequency – (частота обмена данными по шине HyperTransport); Set memory clock – (режим оперативной памяти – ручной); Memory clock – (оперативная ); System Voltage Control – (при выставлении ручного режима замигает надпись-предупреждение); CPU Voltage Control – (при слишком высоком значение процессор изнашивается ). Сохраните вышеупомянутые пропорции и перезагрузите компьютер.

После запуска дайте полностью загрузиться вашей операционной системе. Откройте программы CPU-Z и Everest Ultimate Edition и убедитесь в увеличении измененных в BIOS параметров и рабочей температуры процессора (с 32° до 40°). Стоит заметить, что для разных моделей материнских плат настройки будут незначительно отличаться. Поэтому будьте внимательны.

Видео по теме

Полезный совет

Аппаратные модификации сложнее и опаснее не только для процессора, но и для любого находящегося в системном блоке устройства. Поэтому, рискнуть и проверить максимальные возможности своего микропроцессора или осторожничать и обеспечить постоянную работу на высоких скоростях, решать вам.

Источники:

  • сравнительные характеристики процессоров AMD Athlon
  • как разогнать атлон

Разгон комплектующих (оверклокинг) позволяет получить от компьютера, куда большую производительность, чем есть изначально. Данную процедуру не рекомендуется проводить неопытным пользователям, чтобы не повредить детали компьютера.

Вам понадобится

  • - компьютер;
  • - программа S&M.

Инструкция

Далее перейдите в меню Power Bios Setup, выберите пункт меню Memory Frequency, установите значение DDR400 (200Mhz), чтобы разогнать процессор. Щелкните клавишу Esc, чтобы выйти из данного подменю. Затем перейдите к пункту AMD K8 Cool & Quiet, установите в нем значение Disable, если такая опция имеется. Далее сохраните изменения и перезагрузите компьютер. Для этого нажмите Escape, после появления сообщения о сохранении настроек введите Y, нажмите клавишу Enter.

Перезагрузите систему, снова зайдите в Bios, перейдите к вкладке вкладку Advanced Chipset Features, выберите опцию DRAM Configuration, эта вкладка предназначена для того, чтобі отредактировать параметры таймингов памяти. В каждой строчке замените значение Auto следующими числами: для опции HT Frequency – 3х, для пункта Power Bios Setup – DDR200 (100Mhz). Этот пункт содержит делитель частоты памяти. Снова сохраните изменения, выйдите из Bios, чтобы продолжить разгон процессора Amd, зайдите в Bios после перезагрузки компьютера.

Перейдите в пункт меню Power Bios Setup, далее выберите опцию CPU Frequency, повысьте значение параметра HTT до 250, можно и больше. Далее сохраните изменения, загрузите операционную систему. Запустите программу S&M, чтобы проверить стабильность процессора.

Перейдите в пункт «Настройки», установите следующие параметры теста: время «Долго» либо «Норма», далее Load – 100%, снимите все флажки во вкладке «Процессор», оставьте только тест CPU. Запустите тест. Если не возникает проблем, постепенно повышайте частоту, выполняя действие, описанное в начале данного шага. Таким образом, вы можете разогнать процессор Amd до оптимального значения.

Видео по теме

Совет 5: Как разогнать процессор intel pentium dual-core

Производительность большинства современных компьютеров можно увеличить без установки нового оборудования. Такой процесс называется «разгон». Выполнять его необходимо крайне аккуратно.

Вам понадобится

  • Программа Clock Gen.

Инструкция

Начинать лучше с разгона центрального процессора . Производительность этого устройства напрямую влияет на скорость работы всего компьютера. Все необходимые манипуляции можно выполнить через меню BIOS материнской платы. Перезагрузите компьютер и откройте это меню, нажав клавишу Delete.

Перейдите в меню Advanced Chipset Setup и найдите пункты, отвечающие за параметры работы центрального процессора . В данном случае вас интересует три параметра: напряжение, частота шины и множитель. Самый простой способ увеличить общую тактовую частоту работы ЦП – изменить показатель множителя. К сожалению, данный метод не всегда дает желаемый прирост производительности остальных устройств. Начните с увеличения частоты шины.

Поднимите этот показатель на 50-60 МГц. Будьте крайне внимательными при настройке двухъядерного процессора . Если система позволяет изменять параметры работы каждого ядра отдельно, то выбирайте идентичные значения. Это положительно скажется на работе ЦП. После увеличения частоты шины измените показатель напряжения. Лучше первоначально повысить уровень напряжения на 0.1-0.2 Вольт.

Вернитесь в главное меню BIOS и выделите пункт Save & Exit. Нажмите клавишу Enter и дождитесь перезагрузки компьютера. Установите утилиту Clock Gen для проверки состояния работы центрального процессора и оценки его производительности. Повторяйте алгоритм повышения частоты шины ЦП и проверки его работы до тех пор, пока утилита не выявит ошибок.

Установите оптимальные параметры. Проверяйте температуру процессора , чтобы предотвратить перегрев данного устройства. Для этого используйте утилиты Everest или Speed Fan. При помощи второй программы настройте работу кулеров, чтобы обеспечить максимальное охлаждение персонального компьютера.

Почти каждый пользователь смартфона на базе Android сталкивался с такой проблемой, как «зависание» телефона, если открыть сразу несколько приложений или задать смартфону несколько задач одновременно. А если любимый телефон не может справиться с понравившейся новой игрушкой? - огорчению нет предела. С этой задачей поможет справиться разгон процессора Android до более высокой частоты.

Оригинальный смартфон на Android имеет встроенный процессор от компании Linux. Он адаптирован специально под OC Android и изменение частоты не предусмотрено производителем. Поэтому разгонять процессор нужно с помощью специальных программ. Самыми простыми по работе и интерфейсу являются программы SetCPU и Antutu CPU Master. Эти программы можно легко скачать в Google Play. Чтобы использовать их необходимо иметь Root–права.

Разгон процессора с помощью SetCPU

Когда приложение SetCPU загрузится, на экране смартфона появится окно, в котором необходимо выбрать режим сканирования устройства. Режима всего два: «рекомендуемый» - для обычных пользователей и «ручная настройка» - для более продвинутых пользователей. При выборе рекомендуемого режима сканирования, программа сразу выдает базовую частоту и режим активности процессора. Повышаем значение частоты в два раза. Выбираем режим работы процессора ondemand и ставим галочку напротив «set on boot». Ставя галочку напротив «set on boot», мы подтверждаем наши действия и система сможет сразу принять настройки после перезагрузки. Повышать максимальную частоту лучше всего в несколько этапов. По прошествии нескольких дней необходимо повторить процедуру, тогда максимальная частота повысится в 4 раза, причинив наименьший вред устройству.

Разгон процессора с помощью Antutu CPU Master Pro

Эта программа имеет бесплатную версию, что выгодно отличает ее от платной SetCPU. Интерфейс программы практически аналогичен SetCPU. При ее запуске на экране появляется окно программы с указанием максимальной и минимальной частоты процессора. Внизу представлена шкала с ползунком для регулировки этих частот.

Для того чтобы смартфон хорошо справлялся с 3D играми с высококачественной графикой и быстрым геймплеем необходимо увеличить максимальную частоту процессора. Для повышения скорости работы интерфейса и приложений нужно увеличить минимальную частоту процессора.

Разгон процессора на Android довольно опасен. Наиболее безопасным для смартфона является увеличение частоты до 30-40%, так как при этом не сильно увеличивается напряжение на процессоре. В любом случае при увеличении частоты процессора смартфон будет быстрее расходовать заряд аккумулятора.

Видео по теме

Длительное время Advanced Micro Devices, подобно Cyrix, производила центральные процессоры 286, 386 и 486, которые были основаны на разработках Intel. К5 был первым независимо созданным х86 процессором, на который AMD возлагала большие надежды.

Однако, покупка компанией AMD основанного в Калифорнии конкурента весной 1996 года, кажется, создала возможность лучше подготовиться к своей следующей атаке на Intel. К6 начал жизнь как Nx686, будучи переименованным после приобретения NextGen. Серия ММХ-совместимых процессоров К6 была запущена в середине 1997 года, за несколько недель до Cyrix 6х86МХ, и сразу была одобрена пользователями.

Изготовленный по 5-слойной 0.35-мкм технологии, К6 был почти на 20 % меньше, чем Pentium Pro и при этом содержал на 3.3 миллионов транзисторов больше (8.8 против 5.5 миллионов). Большинство этих дополнительных транзисторов находилось в кэше первого уровня на 64 Кбайт (на кэш команд 32 Кбайт и на кэш данных 32 Кбайт). Это равносильно четырем Pentium Pro или двум Pentium ММХ и Pentium 2.

Центральный процессор К6 поддерживал технологию ММХ Intel, включая 57 новых х86 команд, разработанных для развития мультимедийного программного обеспечения. Как и Pentium Pro, К6 был многим обязан классическим технологиям RISC. Используя суперскалярную микроархитектуру AMD RISC86, чип декодировал каждую х86-инструкцию в ряд более простых действий, которые могли быть обработаны, используя типичные принципы RISC - такие, как выполнение вне естественного порядка, переименование регистров, предсказание переходов, спекулятивное исполнение, опережающая выборка данных.

Центральный процессор К6 начинал с версий 166.200 и 233 МГц. Уровень его производительности был очень схож с Pentium Pro соответствующих частот с его максимальным 512 Кбайт кэшем второго уровня. Общее с чипом Cyrix MX (но в несколько меньшей степени) - работа с плавающей запятой - была областью относительной слабости по сравнению с Pentium Pro или Pentium 2. Однако проникновению процессора на рынок в конце 1997 - начале 1998 года препятствовали проблемы, которые возникли у AMD при перемещении ее нового производственного 0.25-мкм процесса из лабораторий на заводы-изготовители. Это привело к падению производства центральных процессоров на 200 и 233 МГц, задержке введения чипа 266 МГц и отмене чипа 300 МГц.

Процессор AMD К6-2

Процессоры AMD К6-2 с 9.3 миллионами транзисторов производились по 0.25-микронной технологии AMD. Процессор был упакован в 100 МГц Sирег7-совместимую, 321-контактную керамическую плату (ceramic pin grid array (CPGA) package).

K6-2 включает инновационную эффективную микроархитектуру RISC86, большой (64 Кбайт) кэш первого уровня (двухпортовый кэш данных на 32 Кбайт, кэш команд на 32 Кбайт с дополнительным предрасшифровывающим кэшем на 20 Кбайт), а также улучшенный модуль работы с плавающей запятой. Эффективная производительность при его запуске в середине 1998 года была оценена в 300 МГц, к началу 1999 года самым быстрым из доступных процессоров была версия 450 МГц.

Трехмерные возможности К6-2 представляли другое важное достижение. Они были воплощены в AMD технологии 3DNow!, как новый набор из 21 команды, который дополнял стандартные команды ММХ, уже включенные в архитектуру К6, что ускоряло обработку трехмерных приложений.

Процессор AMD K6-3

В феврале 1999 года AMD объявила о начале выпуска партии 400 МГц AMD К6-lll процессора под кодовым названием «Sharptooth» и опробовала 450 МГц версию. Ключевой особенностью этого нового процессора была инновационная разработка - «Трехуровневый кэш».

Традиционно процессоры персональных компьютеров использовали два уровня кэша:

  • кэш первого уровня (L1), который обычно расположен на кристалле;
  • кэш второго уровня (L2), который мог располагаться либо вне центрального процессора, на материнской плате или слоте, либо непосредственно на чипе центрального процессора.

Общее эмпирическое правило при проектировании подсистемы кэша - чем больше и быстрее кэш, тем выше производительность (ядро центрального процессора может быстрее получить доступ к инструкциям и данным).

Признавая выгоды большого и быстрого кэша в удовлетворении потребностей приложений, все более требовательных к производительности персональные компьютеры, «Трехуровневый кэш» компании AMD вводил архитектурные новшества кэша, разработанные для увеличения производительности персонального компьютера на основе платформы Super7:

  • внутренний L2-кэш (256 Кбайт), работающий на полной скорости процессора AMD-K6-3 и дополняющий кэш L1 (64 Кбайт), который был стандартен для всего семейства процессоров AMD-K6;
  • многопортовый внутренний кэш, позволяющий одновременное 64-битовое чтение и запись как кэшу L1, так и L2;
  • первичную процессорную шину (100 МГц), обеспечивающую соединение с резидентной кэш памятью на системной плате, расширяемой от 512 до 2048 Кбайт.

Таблица основных характеристик процессоров AMD

Тип процессора Архитектура Год выпуска Кодовое наименование Количество транзисторов, млн Ядро, мм L1 -кэш, Кбайт L2-кэш, Кбайт
AMD K5 K5 1996 SSA/5 4.3 271-161 8+16 Внешн.
1996 Godot 4.3 181 8+16 Внешн.
AMD К6 К6 1997 Nx686 (Model 6) 8.8 162 32+32 Внешн.
1998 Little Foot 8.8 88 32+32 Внешн.
K6-2 1998-2001 Chompers 9.3 81 64 Внешн.
К6 3 1999 Sharptooth 21.3 118 64 256
Athlon К7 1999 Argon 22.0 184 128 512
2000 Pluto 22.0 102 128 512
2000-2001 Thunderbird 37.0 120 64+64 256
Duron 2000-2001 Spitfire 25.0 100 64(|) + 64(D) 64-128
2001-2002 Morgan 25.18 106 128 64
2003 Applebred 37.2 85 128 64
Athlon ХР/МР 2001-2002 Palomino 37.5 130 128 256
2002 Thoroughbred 37.2 85 128 256
2003-2004 Barton 54.3 101 64+64 512
Sempron К7 2004 Thorton 54.3 101 128 256
2004 Thoroubred 37.2 85 128 256
2005 Winchester 68.5 84 128 128
Sempron К7 2005 Palermo 68-75 84 64+64 128-256
2006 Manila 103 81 128 128-256
Athlon 64 К8 2003-2004 Clawhammer 105.9 193 128 512-1024
2004 Newcastle 68.5 144 128 512
2004 Winchester 68.5 84 128 512
2005 Venice 76 84 128 512
2005 San Diego 114 115 128 512-1024
2006 Orleans 129 125 128 512
2006 Manchester 154 147 128 512
Opteron 2003 Sledgehammer 64+64 1024
2005 Venus, Troy, Athens 64+64 1024
Athlon 64 x 2 2-ядерные 2005 Manchester 154 147 128 x 2 512 x 2
2005 Toledo 233 199 128 x 2 512 x 2
2006 Windsor 243 220 128 x 2 512 x 2
2006 Brisbane 153.6 183 128 x 2 1024 x 2
Тип процессора Архитектура Размер минимальной структуры, мкм Тактовая частота шины, МГц Тактовая частота процессора, МГц Потребляемая мощность, Вт Интерфейс
AMD K5 K5 0.5-0.35 50-66 75-100 11-15 Socket 5/7
0.35 60-66 90-115 12-16 Socket 5/7
AMD К6 К6 0.35 CMOS 66 166-300 13-28 Socket 7
0.25 66 200-300 13-28 Socket 7
K6-2 0.25 66-100 266-550 15-30 Super7(321 p)
К6 3 0.25 100 400-450 18-30 Super7
Athlon К7 0.25 200 500-700 36-54 Slot A(575 p)
0.18 200 550-950 31-62 Slot A
0.18 200 700-1.4 ГГц 38-72 Socket A/Slot A
Duron 0.18 200 600-950 27-41 Socket A (Socket 462)
0.18 200 900-1.3 ГГц 44-60 S 462
0.13 266 1.4-1.8 57 S 462
Athlon ХР/МР 0.18 266 1.4-1.7 62-72 Socket 462
0.13 266 1.4-2.25 49-74 S 462
0.13 266-400 1.86-2.33 66-77 Socket A
Sempron К7 0.13 333 1.5-2.0 62 S 754/S 939
0.13 333 1.5-2.0 62 S462
0.09 400 1.6 62 S 754
Sempron К7 0.09 400 1.6-1.8 59-64.0 Socket А/ Socket 754
0.09 400 1.6-2.0 35-62 AM2
Athlon 64 К8 0.13 400 1.8-2.4 89 S 754
0.09 400 1.6-2.4 89 S754
0.09 400 1.8-2.2 67 S 939
0.09 400 2.0-2.4 16-89 S 754
0.09 400 2.2 89 S 939
0.09 400 1.8-2.4 35-62 AM2
0.09 400 2.0-2.2 67 S 939
Opteron 0.13 800/НТ 1.4-2.4 55-95 S 940
0.09 1000/НТ 1.6-3.0 55-95 S 940
Athlon 64 x 2 2-ядерные 0.09 667-800 2.0-2.4 69-110 S939
0.09 2.0-2.4 89-110 S 939
0.09 2.0-2.6 65-89 AM2
0.09 2.0-2.8 65-89 AM2

Проект многопортового внутреннего кэша процессора AMD-K6-3 позволил как кэшу L1 (64 Кбайт), так и кэшу L2 (256 Кбайт) выполнять одновременное 64-битовое чтение и запись операций за один такт процессора. В дополнение к этому многопортовому проекту кэша ядро процессора AMD-K6-I11 было в состоянии получить доступ к кэшам L1 и L2 одновременно, что увеличивало общую пропускную способность центрального процессора.

Процессор AMD Athlon

Выпуск процессора Athlon летом 1999 года был наиболее удачным ходом AMD. Это позволило им гордиться тем, что они произвели первый процессор седьмого поколения (у него было достаточно много радикальных архитектурных отличий от Pentium ll/lll и К6-3, чтобы заслужить название процессора следующего поколения), и это означало также, что они вырвали технологическое лидерство у Intel.

Древнегреческое слово Athlon означает «трофей», или «игры». Athlon - процессор, с помощью которого AMD надеялась увеличить реальное конкурентоспособное присутствие в корпоративном секторе, помимо его традиционного преимущества на потребительском рынке и рынке трехмерных игр. Ядро размещается на кристалле в 102 квадратных миллиметров и содержит приблизительно 22 миллиона транзисторов.

Основные элементы ядра Athlon

Многократные декодеры

Три полных декодера переводят х86-команды в макрооперации (MacroOPs) с фиксированной длиной для более высокой пропускной способности команд и увеличения мощности обработки. Вместо того чтобы выполнять х86 команды с длиной 1-15 байтов, процессор Athlon выполняет макрооперации фиксированной длины.

Блок контроля команд

Как только макрооперация расшифрована, за цикл посылаются до трех макроопераций блоку управления инструкциями (ICU). Это буфер перенаправления макроопераций с 72 входами (ROB), который управляет выполнением каждой макрооперации в целом, осуществляет переименование регистра для операндов, управляет любыми условиями исключения и действиями команды. ICU посылает макрооперацию планировщику исполнения.

Конвейеры исполнения

Athlon содержит 18-разрядный планировщик макроопераций и 36-разрядный планировщик операций мультимедиа и ПТ. Эти планировщики распределяют MacroOPs по девяти независимым конвейерам - три для вычислений с ФТ, три для вычисления адресов и три для выполнения команд ММХ, 3DNow! и операций ПТ для х87.

Супер скалярный блок плавающей точки FPT

Предыдущие центральные процессоры AMD были недостаточно производительными при работе с ПТ по сравнению с Intel. К этому недостатку более чем ответственно отнеслись в Athlon, который характеризуется суперскалярной архитектурой, включающей три конвейера выполнения команд с ПТ вне естественного порядка - FMUL (перемножение с ПТ), FADD (сложение с ПТ) и FSTORE (запись с ПТ). «Суперскалярность» означает способность центрального процессора выполнять более одной команды за такт процессора. Athlon же может выполнять одну операцию над 32-битовым числом с ПТ за такт процессора, что дает производительность в 2.4 Гфлопс при частоте в 600 МГц.

Прогнозирование переходов

Процессор Athlon предлагает сложную динамическую логику прогнозирования ветвления, чтобы минимизировать или устранить задержки из-за команд перехода, широко распространенные в программном обеспечении х86.

Системная шина

Системная шина Athlon - первая системная шина на 200 МГц для х86-платформ. Основанная на протоколе Digital Alpha EV6, первичная шина (FSB) - потенциально расширяемая до 400 МГц и более и, в отличие от разделяемой шины SMP (Symmetric Multi-Processing) проекта Pentium 3, использует архитектуру «точка-точка», чтобы обеспечить широкую полосу пропускания для одно- и многопроцессорных х86 платформ.

Архитектура кэша

Архитектура кэша Athlon существенно превосходит обычные центральные процессоры шестого поколения - полноценный кэш первого уровня 128 Кбайт, в 4 раза больший, чем у Pentium 3, и быстродействующий 64-битовый контроллер вторичного кэша 2-го уровня, поддерживающий от 512 Кбайт до 8 Мбайт.

Расширенный 3D Now

В ответ на Streaming SIMD Extensions (Intel Pentium 3) реализация 3DNow! в Athlon была модернизирована добавлением 24 новых команд к исходной 21 инструкции 3DNow!

Athlon был первоначально доступен в диапазонах скорости 500.550 и 600 МГц и 650 МГц немного позднее (все изготовлены по 0.25-мкм технологии). К концу 1999 года AMD еще более повысила частоту: его ядро К75 (750 МГц) является первым процессором, построенным с использованием алюминиевой 6-слойной технологии 0.18-мкм компании AMD.

Утверждение о том, что это был самый быстрый х86 совместимый центральный процессора тысячелетия, спорно, поскольку Intel быстро ответила объявлением 800 МГц Pentium 3. Однако AMD вскоре вернула лидерство в 2000 году выпуском версий на 800 и 850 МГц и преуспела в опережении Intel в преодолении барьера 1 ГГц буквально через несколько недель.

Процессор Thunderbird

В середине 2000 года была выпущена улучшенная версия Athlon с кодовым названием «Thunderbird».

Технология 0.18-мкм, кэш память 2-го уровня (L2) размером в 256 Кбайт расположена на плате процессора и работает на полной частоте процессора (первые процессоры Athlon имели кэш L2, работавшую на меньших частотах, например при частоте в 1 ГГЦ, память L2 работала на 330 МГц).

Интерфейсы - 462-контактный Socket А и Slot А. Частоты от 0.75 до 1 ГГц. Размещение 256 Кбайт памяти на кристалле привело к увеличению его размера до 120 квадратных миллиметров (102 квадратных миллиметров для ядра). Однако он меньше исходного (0.25-micron) К7 Athlon, который занимает 184 квадратных миллиметров. Добавление 256 Кбайт к L2-кэшу на кристалле весьма увеличивает число транзисторов. Центральный процессор Thunderbird включает 37 миллионов транзисторов, то есть 15 миллионов добавились для размещения кэша L2.

Осенью 2000 года был выпущен чипсет AMD760, обеспечивающий поддержку для памяти DDR SDRAM РС1600 (200 МГц FSB) и РС2100 (266 МГц FSB). Другие особенности - AGP 4-х, 4 порта USB , адресация памяти 8 Гбайт на 4 DIMM и поддержка АТА-100. С этого момента процессоры Athlon выпускались только для разъемов Socket А. Последние из процессоров Athlon/Thunderbird были выпущены летом 2001 года, достигнув частоты 1.4 ГГц.

Процессор Duron

В середине 2000 года был выпущен процессор Duron, предназначенный для дома и офиса. Название происходит от латинского «durare» - «вечный», «длительный». Кэш-память L1 (128 Кбайт) и L2 (64 Кбайт) размещается на плате. Первичная системная шина работает на частоте 200 МГц. Поддерживается улучшенная технология 3DNow! Технология 0.18-мкм, частоты 600.650 и 700 МГц. Интерфейс - 462-контактный разъем Socket А.

Процессор Palomino (Athlon ХР - EXtra Performance)

Процессор выполнен по 0.18-мкм технологии с использованием медных проводников на плате (вместо алюминия), содержит 37.5 миллионов транзисторов на кристалле в 128 квадратных миллиметров. Достигнуто понижение на 20 % энергопотребления сравнительно с Thunderbird. Введен ряд новшеств, в совокупности именуемых AMD как «QuantiSpeed Architecture»:

  • введение дополнительного буфера - буфера быстрого преобразования адреса (БПА, TLB - Processor`s Transition Lookaside Buffer). Это дополнительная кэш память, расположенная между L1 и L2. В частности, TLB содержит данные, которые используются для перевода виртуальных адресов в физические и наоборот;
  • поддержка SSE технологии Intel. В Palomino добавлены еще 52 новые команды SIMD по отношению к ранее имевшимся. Удвоено количество исходных 21 SIMD-команд, реализующих «3DNow!», и получена технология «Enhanced 3DNow!» («3DNow! Professional»);
  • использование технологии упаковки OPGA (organic PGA) для замещения CPGA (ceramic PGA), которая использовалась ранее. Использование пластмасс вместо керамики технологичнее, платы оказываются легче и обладают лучшими тепловыми свойствами. Кроме того, можно плотнее размещать навесные элементы, что уменьшает наводки и помехи. OPGA размещаются на уже известном разъеме Socket А.

Процессор Morgan

Morgan первоначально представлял собой ядро Palomino c удаленными 3/4 кэша L2 (64 Кбайт вместо 256 Кбайт). Размер кристалла - 106 квадратных миллиметров, число транзисторов - 25.18 миллионов. Напряжение питания было изменено с 1.6 до 1.75 В.

Процессор Thoroughbred

Летом 2002 года AMD начала поставлять первый процессор с 0.13-мкм технологией и медными соединениями. Площадь кристалла - 80 квадратных миллиметров (у его предшественников - 128 квадратных миллиметров). Питание - 1.65 В, размеры кэша на кристалле - 128 Кбайт для L1 и 256 Кбайт для L2, разъем - Socket А. Эквивалентная производительность Athlon ХР - 2400+ или 2600+.

Однако ядро Thoroughbred рассматривать как простую переделку Palomino с учетом новых норм технологического процесса все же не совсем верно. Thoroughbred по своей внутренней структуре значительно отличается от Palomino, в чем можно убедиться по микроснимкам процессорных ядер.

  • а - Palomino.
  • б - Thoroughbred.

Процессор Sempron

Летом 2004 года AMD объявила о выходе центрального процессора семейства Sempron. Первоначально задуманный как преемник успешного центрального процессора Duron и прямой конкурент процессору Celeron D (Intel, 90 нм), диапазон применения Sempron фактически перекрыл диапазон Athlon AMD ХР и поставил фирмы, выпускающие настольные и мобильные персональные компьютеры, перед выбором - либо Sempron, либо Athlon 64.

Все первые центральные процессоры базировались на 130 нанометровой технологии AMD. Наиболее мощные образцы (3100+) выпускаются в формате интерфейса Socket 754 (Athlon 64 - в формате Socket 939). Другие участники семейства - от 2 ГГц (2800+) до 1.5 ГГц (2200+) - используют Socket А.

В дальнейшем Sempron предполагается перевести на 90 нанометровую технологию и интерфейс Socket 939.

Архитектура процессора К8

Эта архитектура используется во всех современных серверных, настольных и мобильных процессорах AMD (Opteron, Athlon 64 и Athlon 64 Х2). Первым из процессоров К8 являлся Hammer (середина 2000 года).

Одним из главных новшеств К8 является 64-разрядная архитектура х86-64 ISA. Примером 64-разрядных процессоров (IA-64) является Intel Itanium. Однако между 64-разрядными архитектурами процессоров Itanium и К8 мало общего. Itanium - процессор, несовместимый с системой команд х86, тогда как К8, напротив, таковым является.

Стратегия AMD на 64 бита (х86-64) заключается в следующем - за основу взято производительное х86-ядро и расширен набор инструкций для возможности адресации 64-битового пространства памяти. Особенности архитектуры х86-64 (AMD64):

  • обратная совместимость с инструкциями х86;
  • 8 новых 64-битовых РОН плюс 64-битовые версии прежних 8 РОН х86 (доступны лишь в 64-битовом «длинном» режиме);
  • поддержка SSE и SSE2 помимо восьми новых регистров SSE2;
  • увеличен объем адресуемой памяти для приложений, работающих с большими объемами данных (доступно лишь в «длинном» режиме);
  • высокая производительность 32-битовых приложений плюс поддержка появляющихся 64-битовых приложений, хороший вариант переходного процессора.

Таблица режимов процессоров К8

Режим Подрежим Назначение Адресуемая память, Гбайт Операционная система Примечания
«Преемственности» (Legacy Mode) Нет Работа со всеми 16- или 32-бито-выми х86-прило-жениями 4 32-раз-рядная Используются только 32 разряда в 64-разрядных регистрах. Дополнительные 64-разрядные регистры не задействованы. Перекомпиляция ПО не требуется
«Длинный» (Long Mode) Полный (64 разряда) Работа с 64-разрядными приложениями (инструкции х86-64) Более 4 64-разрядная Используются 64-разрядные основные и дополнительные регистры. Требуется перекомпиляция старых программ
Совместимости (Compatibility Mode) Запуск 32-разрядных программ в 64-разрядной операционной системы 2 в 32-битовой операционной системе. 4 в 64-битовой операционной системе Используются только 32 разряда е 64-разрядных регистрах. Дополнительные 64-разрядные регистры не задействованы. Перекомпиляция ПО не требуется

Основные недостатки:

  • процессор продолжает поддерживать архитектуру х86, которая достаточно устарела;
  • новые РОН можно использовать лишь в 64-битовом режиме, что не позволяет повысить производительность 32-битовых приложений посредством улучшения архитектуры системы команд.

Для реализации возможности работы как с 32-битовыми, так и с 64-битовыми приложениями процессоры К8 поддерживают два режима работы - Long Mode и Legacy Mode. В режиме Long Mode также предусмотрено два подрежима - 64-битовый и Compability mode (режим совместимости).

Некоторые прочие особенности К8

  • контроллер памяти интегрирован в сам процессор. Традиционно он располагается в «северном мосте» чипсета на системной плате. Собственно, контроллер памяти - это основной функциональный блок «северного моста» (в чипсетах Intel его так и называют - МСН, Memory Controller Hub); встроенный порт («линк») шины HyperTransport - универсальной шины межчипового соединения. В процессорах К8 Opteron может быть до 3-4 линков НТ, что позволяет комбинировать их в кластерные структуры

  • архитектура К8 разработана с перспективой создания многоядерных процессоров и многопроцессорных систем: если центральные процессоры Intel Хеоn может продемонстрировать лишь 11 процентов увеличения производительности при переходе к двум процессорам, то в случае с Opteron оно составляет 24 процента;
  • усовершенствован блок предсказания переходов - для увеличения точности он содержит историю 16 000 переходов, а также 2000 адресов назначения.

Исполнение инструкций на конвейере К8 начинается с блока выборки инструкций. За один такт блок выбирает из кэша 16 байт данных и выделяет из них от одной до трех инструкций х86 - сколько в выбранных данных поместилось. Поскольку средняя длина команды х86 составляет 5-6 байт, то, как правило, блоку удается выбрать три команды за такт.

На втором такте конвейера выбранные команды распределяются по трем блокам декодирования инструкций. Самые сложные команды отправляются в декодер сложных команд (VectorPath), другие - в декодеры простых команд (DirectPath).

Исходные х86-инструкции на завершающих этапах работы декодера К7/К8 переводятся в макрооперации, или МакОПы (mOPs). Большинству х86-инструкций соответствует одна МакОП, некоторые преобразуются в 2 или 3, а наиболее сложные, например деление или тригонометрические, - в последовательность из нескольких десятков МакОП. Макрооперации имеют фиксированную длину и регулярную структуру.

Условно можно считать что в определенный момент МакОп может «расщепляться» на две микрооперации (МкОП). Как правило, в К7 и в К8 МакОП содержит две МкОП - одну для АЛУ (ALU) (или блока ПЗ - FPU), другую - для УВА (устройства вычисления адреса, AGU - Address Generation Unit).

За счет конвейеризации возможны ситуации, когда одновременно в разных блоках процессора будут выполняться до двух десятков команд - и в К7, и в К8 имеется десять исполнительных устройств - три ALU, три FPU, три AGU и отдельный блок умножения.

Подобно тому, как объединение двух отдельных МкОП в одну МакОП дает явные преимущества, точно так же дела обстоят и с самими МакОП - практически везде они выступают не в виде самостоятельных единиц, а в виде группы. Группу образуют три МакОП, которые одновременно запускаются на параллельные каналы.

Вся дальнейшая работа идет не с одиночными, а с «тройками» МакОП («линиями», line). Такая «линия», с точки зрения центрального управляющего блока процессора - ICU (Instruction Control Unit) воспринимается как единое целое: все основные действия выполняются именно над «линиями», в первую очередь выделение внутренних ресурсов.

Сгенерированные «линии» от декодеров по одной за такт поступают в блок управления командами - Instructions Control Unit (ICU), где подготовленные к исполнению линии накапливаются в специальной очереди (24 линии).

Из очереди в 24 линии по три МакОП в каждой ICU выбирает в наиболее удобной для исполнения последовательности (одна-три МакОП) и пересылает их либо на АЛУ, либо на блок ПЗ в зависимости от типа микрооперации. В случае АЛУ микрооперации сразу же попадают в очередь планировщика (шесть элементов по три МакОП), который подготавливает необходимые для исполнения микрооперации ресурсы, дожидается их готовности и только потом отправляет. Причем при исполнении одной МакОП на самом деле может происходить исполнение сразу двух действий (МкОП).

Процессор Athlon 64х2

AMD снова оказалась впереди Intel, продемонстрировав действующий экспериментальный образец двухъядерного процессора летом 2004 года и поэтому Intel вызвала всеобщее удивление, все же выйдя первой на рынок с двухъядерным процессором весной 2005 года Однако, мало того, что AMD 64 Х2 был только короткое время позади Pentium Extreme Edition и Pentium D по датам выхода на рынок, он значительно опережал их по показателям эффективности.

Athlon 64 Х2 включает все возможности, заложенные в единственном ядре Athlon 64 (такие, как HyperTransport и Enhanced Virus Protection - EVP). Когда центральный процессор работает под операционной системой Windows ХР (SP2), EVP интерпретирует области системной памяти как «только данные», так что любой находящийся здесь фрагмент кода может быть либо прочитан, либо записан, но не может быть выполнен как код программы. Тем самым EVP действует как профилактическая мера против обычных злонамеренных вирусов, локализуя и обезвреживая их.

Основная архитектура ядра Х2 по существу та же, как и у Athlon 64. Различие в том, что новые чипы, размещаемые на единственном кристалле в 199 квадратных миллиметров, причем каждый содержит более чем 233 миллиона транзисторов, изготовлены по 90 нанометровой технологии AMD.

Таким образом, спецификации первоначально объявленного диапазона Athlon 64 Х2 были эквивалентны таковым из существующих центральных процессоров на 3500+, 3700+, 3800+ и 4000+ с изменением кэша L2 и тактовой частоты. Модели с 512 Кбайт кэша на ядре базируются на двойном ядре «Winchecter», в то время как версии версии кэша L2 на 1 Мбайт используют дизайн «Toledo». К лету 2005 года диапазон был расширен с появлением нового чипа (3800 +).

Athlon 64 x2 модели 5200+ позиционировался производителем как двухъядерное решение среднего уровня на базе АМ2. Именно на его примере и будет изложен порядок разгона данного семейства устройств. Запас прочности у него достаточно неплохой, и при наличии соответствующих комплектующих можно было получить вместо него чипы с индексами 6000+ или 6400+.

Смысл разгона ЦПУ

Процессор AMD Athlon 64 x2 модели 5200+ можно легко превратить в 6400+. Для этого достаточно только повысить его тактовую частоту (в этом и заключается смысл разгона). Как результат - конечная производительность системы вырастет. Но при этом увеличится и энергопотребление компьютера. Поэтому не все так просто. Большинство компонентов компьютерной системы должно иметь запас по надежности. Соответственно, материнская плата, модули памяти, блок питания и корпус должны быть более высокого качества, это значит, что и стоимость у них будет выше. Также система охлаждений ЦПУ и термопаста должны быть специально подобраны именно для процедуры разгона. А вот со штатной системой охлаждения не рекомендуется экспериментировать. Она рассчитана на стандартный тепловой пакет процессора и с увеличенной нагрузкой не справится.

Позиционирование

Характеристики процессора AMD Athlon 64 x2 явно указывают на то, что он относился к среднему сегменту двухъядерных чипов. Были и менее производительные решения - 3800+ и 4000+. Это начальный уровень. Ну а выше в иерархии находились ЦПУ с индексами 6000+ и 6400+. Первые две модели процессоров теоретически можно было разогнать и получить из них 5200+. Ну а сам 5200+ можно было модифицировать до 3200 МГц, и за счет этого получить вариацию уже 6000+ или даже 6400+. Причем технические параметры у них были практически идентичными. Единственное что могло изменяться, так это количество кэша второго уровня и технологический процесс. Как результат уровень их производительности после разгона практически не отличался. Вот и получалось, что при меньшей стоимости конечный владелец получал более производительную систему.

Технические характеристики чипа

Характеристики процессора AMD Athlon 64 x2 могут существенно отличаться. Ведь было выпущено три его модификации. Первая из них носила кодовое название Windsor F2. Работала она на тактовой частоте в 2,6 ГГц, имела 128 кбайт кэша первого уровня и, соответственно, 2 Мб второго уровня. Изготавливался этот полупроводниковый кристалл по нормам 90 нм технологического процесса, а тепловой его пакет был равен 89 Вт. При этом максимальная температура его могла достигать 70 градусов. Ну и напряжение, подаваемое на ЦПУ, могло быть равно 1,3 В или 1,35 В.

Чуть позже появился в продаже чип с кодовым названием Windsor F3. В этой модификации процессора изменилось напряжение (в этом случае оно понизилось до 1,2 В и 1,25 В соответственно), увеличилась максимальная рабочая температура до 72 градусов и уменьшился тепловой пакет до 65 Вт. В довершение к этому изменился и сам технологический процесс - с 90 нм до 65 нм.

Последний, третий вариант процессора носил кодовое название Brisbane G2. В этом случае частота была поднята на 100 МГц и составляла уже 2,7 ГГц. Напряжение могло быть равным 1,325 В, 1,35 В или 1,375 В. Максимальная рабочая температура снижалась до 68 градусов, а тепловой пакет, как и в предыдущем случае, был равен 65 Вт. Ну и сам чип изготавливался по более прогрессивному 65 нм технологическому процессу.

Сокет

Процессор AMD Athlon 64 x2 модели 5200+ устанавливался в сокет АМ2. Второе его название - сокет 940. Электрически и в отношении программного обеспечения он совместим с решениями на базе АМ2+. Соответственно, приобрести для него материнскую плату пока еще возможно. Но вот сам ЦПУ уже купить достаточно сложно. Это неудивительно: процессор появился в продаже в 2007 году. С тех пор успело уже поменяться три поколения устройств.

Подбор материнской платы

Достаточно большой набор материнских плат на базе сокета АМ2 и АМ2+ поддерживал процессор AMD Athlon 64 x2 5200. Характеристики у них были самые разнообразные. Но вот чтобы по максимуму стал возможен разгон этого полупроводникового чипа, рекомендуется обращать внимание на решения на базе чипсета 790FX или 790Х. Стоили подобные материнские платы дороже среднего. Это логично, так как возможности для разгона у них были значительно лучше. Также плата должна быть изготовлена в форм-факторе АТХ. Можно, конечно, попытаться разогнать данный чип и на решениях мини-АТХ, но плотная компоновка радиодеталей на них может привести к нежелательным последствиям: перегреву материнской платы и центрального процессора и выходу их из строя. В качестве конкретных примеров можно привести PC-AM2RD790FX от Sapphire или 790XT-G45 от MSI. Также достойной альтернативой приведенным ранее решениям может стать M2N32-SLI Deluxe от Asus на базе чипсета nForce590SLI, разработанного NVIDIA.

Система охлаждения

Разгон процессора AMD Athlon 64 x2 невозможен без качественной системы охлаждения. Тот кулер, который идет в коробочной версии данного чипа, не подходит для этих целей. Он рассчитан на фиксированную тепловую нагрузку. При увеличении производительности ЦПУ его тепловой пакет возрастает, и штатная система охлаждения уже не будет справляться. Поэтому нужно покупать более продвинутую, с улучшенными техническими характеристиками. Можно порекомендовать для этих целей использовать кулер CNPS9700LED от Zalman. При наличии его данный процессор можно смело разгонять до 3100-3200 МГц. При этом особых проблем с перегревом ЦПУ точно не будет.

Термопаста

Еще один важный компонент, который нужно учитывать перед тем, AMD Athlon 64 x2 5200 +, это термопаста. Ведь чип будет функционировать не в режиме штатной нагрузки, а в состоянии увеличенной производительности. Соответственно, к качеству термопасты выдвигаются более жесткие требования. Она должна обеспечивать улучшенный теплоотвод. Для этих целей рекомендуется заменить штатную термопасту на КПТ-8, которая отлично подойдет для условий разгона.

Корпус

Процессор AMD Athlon 64 x2 5200 будет работать с увеличенной температурой в процессе разгона. В некоторых случаях она может подниматься до 55-60 градусов. Чтобы компенсировать эту увеличенную температуру, одной качественной замены термопасты и системы охлаждения будет недостаточно. Также нужен корпус, в котором воздушные потоки могли бы хорошо циркулировать, а за счет этого обеспечивалось бы дополнительное охлаждение. То есть внутри системного блока должно быть как можно больше свободного пространства, и это бы позволило за счет конвекции обеспечить охлаждение компонентов компьютера. Еще лучше будет, если в нем будут установлены дополнительные вентиляторы.

Процесс разгона

Теперь разберемся с тем, как разогнать процессор AMD ATHLON 64 x2. Выясним это на примере модели 5200+. Алгоритм разгона ЦПУ в это случае будет таким.

  1. При включении ПК нажимаем клавишу Delete. После этого откроется синий экран БИОСа.
  2. Затем находим раздел, связанный с работой оперативной памяти, и снижаем частоту ее работы до минимума. Например, задано значение для ДДР1 333 MHz, а мы опускаем частоту до 200 MHz.
  3. Далее сохраняем внесенные изменения и загружаем операционную систему. Потом с помощью игрушки или тестовой программы (например, CPU-Z и Prime95) проверяем работоспособность ПК.
  4. Опять перезагружаем ПК и заходим в БИОС. Здесь теперь находим пункт, связанный с работой шины PCI, и фиксируем ее частоту. В этом же месте необходимо зафиксировать данный показатель для графической шины. В первом случае значение должно быть установлено в 33 MHz.
  5. Сохраняем параметры и перезагружаем ПК. Заново проверяем его работоспособность.
  6. На следующем этапе выполняется перезагрузка системы. Заново входим в БИОС. Здесь находим параметр, связанный с шиной HyperTransport, и устанавливаем частоту работы системной шины в 400 МГц. Сохраняем значения и перезагружаем ПК. После окончания загрузки ОС тестируем стабильность работы системы.
  7. Потом перезагружаем ПК и входим заново в БИОС. Здесь необходимо теперь перейти в раздел параметров процессора и увеличить частоту системной шины на 10 МГц. Сохраняем изменения и перезагружаем компьютер. Проверяем стабильность системы. Затем, постепенно повышая частоту процессора, доходим до того момента, когда он перестает стабильно работать. Далее возвращаемся к предыдущему значению и опять тестируем систему.
  8. Затем можно попытаться дополнительно разогнать чип с помощью его множителя, который должен быть в этом же разделе. При этом после каждого внесения изменений в БИОС сохраняем параметры и проверяем работоспособность системы.

Если в процессе разгона ПК начинает зависать и вернуться к предыдущим значениям невозможно, то необходимо сбросить настройки БИОСа на заводские. Для этого достаточно найти в нижней части материнской платы, рядом с батарейкой, джампер с надписью Clear CMOS и переставить его на 3 секунды с 1 и 2 контакта на 2 и 3 контакты.

Проверка стабильности системы

Не только максимальная температура процессора AMD Athlon 64 x2 может привести к нестабильной работе компьютерной системы. Причина может быть вызвана рядом дополнительных факторов. Поэтому в процессе разгона рекомендуется проводить комплексную проверку надежности работы ПК. Лучше всего для решения этой задачи подходит программа Everest. Именно с ее помощью и можно проверить надежность и стабильность работы компьютера в процессе разгона. Для этого лишь достаточно после каждых внесенных изменений и после окончания загрузки ОС запускать эту утилиту и проверять состояние аппаратных и программных ресурсов системы. Если какое-то значение выходит за допустимые границы, то нужно перезагружать компьютер и возвращаться к предыдущим параметрам, а затем заново все тестировать.

Контроль системы охлаждения

Температура процессора AMD Athlon 64 x2 зависит от работы системы охлаждения. Поэтому по окончании процедуры разгона необходимо проверить стабильность и надежность работы кулера. Для этих целей лучше всего использовать программу SpeedFAN. Она и бесплатная, и уровень ее функциональности достаточный. Скачать ее из Интернета и установить на ПК не составит особого труда. Далее ее запускаем и периодически, в течение 15-25 минут, контролируем количество оборотов кулера процессора. Если это число стабильно и не уменьшается, то все в порядке с системой охлаждения ЦПУ.

Температура чипа

Рабочая температура процессора AMD Athlon 64 x2 в штатном режиме должна изменяться в диапазоне от 35 до 50 градусов. В процессе разгона этот диапазон будет уменьшаться в сторону последнего значения. На определенном этапе температура ЦПУ может даже превысить 50 градусов, и в этом ничего страшного нет. Максимально допустимое значение - 60 ˚С, приблизившись к которому, рекомендуется прекратить какие-либо эксперименты с разгоном. Более высокое значение температуры может негативно сказаться на полупроводниковом кристалле процессора и вывести его из строя. Для проведения замеров в процессе операции рекомендуется использовать утилиту CPU-Z. Причем регистрацию температуры необходимо осуществлять после каждого внесенного изменения в БИОС. Также нужно выдержать интервал в 15-25 минут, в течении которого периодически проверять, как сильно нагрелся чип.



Рекомендуем почитать

Наверх