Что такое конденсатор для чайников. Принцип работы конденсатора и его технические характеристики. Где применяются конденсаторы

Faq 06.02.2019
Faq

Объясняя, что такое конденсатор, мы должны четко представлять физические основы работы и конструкцию этого незаменимого элемента каждого мало-мальски серьезного электронного устройства.

К недостаткам танталовых конденсаторов можно отнести чувствительность к пульсациям тока и перенапряжениям, а также относительную дороговизну этих изделий.

Силовые конденсаторы, как правило, используются в системах высокого напряжения. Они широко применяются для компенсации потерь в линиях электропередач, а также для улучшения коэффициента мощности в промышленных электроустановках. Изготавливаются из высококачественной металлизированной пропиленовой пленки с применением специальной пропитки нетоксичным изоляционным маслом.

Могут иметь функцию самоликвидации внутренних повреждений, что придает им дополнительную надежность и увеличивает срок службы.

Керамические конденсаторы имеют в качестве материала диэлектрика керамику. Отличаются высокой функциональностью по рабочему напряжению, надежностью, низкими потерями и дешевизной.

Диапазон емкостей их варьируется от нескольких пикофарад до примерно 0,1 мкФ. В настоящее время являются одним из наиболее широко используемых типов конденсаторов, используемых в электронном оборудовании.

Серебряные слюдяные конденсаторы пришли на смену широко распространенным ранее слюдяным элементам. Обладают высокой стабильностью, герметичным корпусом и большой емкостью на единицу объема.

Широкому применению серебряно-слюдяных конденсаторов мешает их относительная дороговизна.

У бумажных и металлобумажных конденсаторов обкладки изготовляются из тонкой алюминиевой фольги, а в качестве диэлектрика используется специальная бумага, пропитанная твердым (расплавленным) или жидким диэлектриком. Применяются в низкочастотных цепях радиоустройств при больших токах. Отличаются относительной дешевизной.

Для чего нужен конденсатор

Имеется целый ряд примеров использования конденсаторов в самых разнообразных целях. В частности, их широко применяют для хранения и и цифровых данных. используются в телекоммуникационной связи для регулировки частоты и настройки телекоммуникационного оборудования.

Типичным примером их применения является использование в источниках питания. Там эти элементы выполняют функцию сглаживания (фильтрацию) выпрямленного напряжения на выходе этих устройств. Они также могут быть использованы в для генерации высокого напряжения, многократно превышающего входное напряжение. Конденсаторы широко применяются в различного рода преобразователях напряжения, устройствах бесперебойного питания для компьютерной техники и т.д.

Объясняя, что такое конденсатор, нельзя не сказать, что этот элемент может служить и отличным хранилищем электронов. Однако реально эта функция имеет определенные ограничения по причине неидеальности изоляционных характеристик используемого диэлектрика. Тем не менее конденсатор обладает свойством достаточно длительное время хранить электрическую энергию при отключении от цепи заряда, поэтому он может быть использован как временный источник питания.

Благодаря своим уникальным физическим свойствам эти элементы нашли настолько широкое применение в электронной и электротехнической промышленности, что сегодня редко какое электротехническое изделие не включает в себя по крайней мере один такой компонент для какой-либо цели.

Подводя итоги, можно констатировать, что конденсатор - это бесценная часть огромного множества электронных и электротехнических устройств, без которых был бы немыслим дальнейший прогресс в науке и технике.

Вот что такое конденсатор!

Конденсатор (с латинского «condensare» — «уплотнять», «сгущать», в простонародье «кондер») — один из самых распространенных элементов в радиоэлектронике, после резистора. Состоит из двух обкладок разделенных диэлектриком малой толщины, по сравнению с толщиной этих обкладок. Но на практике эти обкладки свернуты в многослойный рогалик, ой рулон в форме цилиндра или параллелепипеда разделенных все тем же диэлектриком.

Принцип работы конденсатора

Заряд. При подключении к источнику питания на обкладках скапливаются заряды. При зарядке на одной пластине скапливаются положительно заряженные частицы (ионы) , а на другой отрицательно заряженные частицы (электроны) . Диэлектрик служит препятствием, чтобы частицы не перескакивали на другую обкладку. При зарядке вместе с емкостью растет и напряжение на выводах и достигает максимума, равного напряжению источника питания.

Разряд. Если после зарядки конденсатора отключить питание и подключить нагрузку, конденсатор уже будет играть роль источника тока. Электроны начнут двигаться в через нагрузку, которая при подключении образовывает замкнутую цепь, к ионам (по закону притяжения между разноименными разрядами).

Основными параметрами конденсатора являются:

  1. Номинальная емкость — это его основная характеристика, подразумевает объем электрических зарядов. Измеряется емкость в Фарадах (сокращенно Ф) , на практике часто встречаются мкФ (1мкФ = 0,000001 Ф ), нФ (1нФ = 0,000000001 Ф ), пФ (1пФ = 0,000000000001 Ф) , так как емкость в 1Ф очень велика. Но есть такой компонент который может иметь емкость даже больше 1 Фарады его называют ионистр (о нем и о других я расскажу позже) .
  2. Номинальное напряжение — это максимальное напряжение, при котором конденсатор может надежно и долго работать, измеряется конечно же в вольтах (сокращенно В) . При превышении напряжения конденсатор выйдет из строя. В случаях когда необходимо поменять конденсатор, а с нужной емкостью имеется, но он рассчитан на большее напряжение по сравнению с вышедшем из строя его можно спокойно ставить (например «сгорел» конденсатор 450мкФ 10В, его можно заменить на 450мкФ 25В ). Главное чтобы он по габаритам поместился в вашу плату.
  3. Допуск отклонения — допустимое отклонение величины его реальной ёмкости от указанной на корпусе. Обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В устройствах, где требуется особая точность, применяются конденсаторы с малым допуском (1% и менее) .
  4. Температурный коэффициент емкости — встречается на электролитических конденсаторах. Емкость алюминиевого электролитического конденсатора зависит от температуры. С понижением температуры (особенно ниже 0°C) повышается вязкость электролита и его ESR (удельное электрическое сопротивление) , что ведет к уменьшению емкости конденсатора.

Для чего же нужны конденсаторы и с чем их «едят».

  • В цепи переменного тока конденсатор нужен в роли емкостного сопротивления. Если в цепи с постоянным током конденсатор подключить последовательно лампочке, она светится не будет, а в цепи с переменном током она загорится. И будет святится даже ярче и чем выше емкость конденсатора тем ярче будет свет. За счет этого свойства конденсаторы часто используются в качестве фильтрации пульсирующего тока (его основная задача во многих схемах) , он хорошо подавляет ВЧ и НЧ помехи, скачки переменного тока и пульсации напряжения.
  • За счет своей главной особенности накапливать электрический заряд и затем быстро его отдавать создавая импульс, делает их незаменимыми при изготовлении фотовспышек, магнитных ускорителей, стартеров и т.п.
  • Конденсаторы также используются для запуска трехфазных двигателей на однофазном питании, подключая к третьему выводу он сдвигает фазу на 90 градусов.
  • Благодаря способности накапливать и отдавать заряд, конденсаторы используют в схемах в которых нужно сохранить информацию на длительное время. Но к сожалению, он значительно уступает в способности накапливать энергию аккумуляторным батареям питания, из-за саморазряда и не способности накопить электроэнергию большей величины.

Конденсатор представляет собой пассивный электронный компонент, который имеет два полюса с определенным или переменным значением емкости. Еще он обладает малой проводимостью. Важно разобраться, для чего нужно конденсатор в электродвигателе и , поскольку согласно информации, представленной на форумах, у многих людей неправильное представление по этому поводу, и они просто недооценивают значимость этого устройства.

Для чего нужен конденсатор?

Устройство используется во всех электрических и радиотехнических схемах. Для каких целей в схему включают конденсатор:

  1. Выступает в роли сопротивления, что позволяет использовать его в качестве фильтра, чтобы подавлять ВЧ и НЧ помехи.
  2. Применяют для фотовспышек и лазеров, а все благодаря способности устройства накапливать заряд и быстро разряжаться, создавая импульс.
  3. Помогает компенсировать реактивную энергию, что позволяет использовать его в промышленности.
  4. Благодаря умению накапливать и долгое время сохранять заряд конденсатор можно использовать для сохранения информации и для питания маломощных устройств.

Для чего нужен автомобильный конденсатор?

Это устройство может выполнять несколько функций в автомобиле. Например, их используют, чтобы создать высокие показатели напряженности во всей электрической системе в авто. Чаще всего конденсатор применяют для автомобильной акустики. Говоря о том, зачем нужен конденсатов в автозвуке, заметим, что его основное предназначение заключается в помощи усилителю быстро отдавать имеющуюся мощность на пиках низких частот.

Если в акустической системе конденсатор не используется, тогда звук баса не будет таким четким, а также может возникать просадка в питании всей электрической сети автомобиля. Подобные скачки напряжения в итоге могут привести к тому, что сабвуфер попросту сломается.

При выборе конденсатора для автомобиля руководствуйтесь таким правилом, что на 1 кВт мощности должно приходиться 1 Ф. Выбирайте качественный конденсаторы и лучше всего, если у них будет смеха управления зарядом.

Стоит также выяснить, как правильно установить конденсатор. Лучше всего делать это максимально близко к сабвуферному усилителю, поскольку именно на него приходится самая большая нагрузка. Расстояние не должно быть больше 60 см. Тип подключения – параллельное.

Зачем нужен конденсатор в электродвигателе?

Для правильной работы некоторых двигателей необходимо использовать пусковой и рабочий конденсаторы. Основное предназначение пускового конденсатора заключается в повышении пусковых характеристик двигателя. Это устройство помогает уменьшить время входа двигателя в его рабочий режим, одновременно увеличить крутящийся момент и облегчить процесс запуска двигателя.

Что касается рабочего конденсатора, то он вовлечен в работу на протяжении всего времени работы двигателя. Это устройство обеспечивает допустимый нормами нагрев обмоток, оптимальную нагрузочную способность и экономичность электрического двигателя. Еще он способствует максимальному крутящему моменту и увеличению срока службы двигателя.

Теперь следует выяснить, какой конденсатор нужен для двигателя. Емкость этого устройства обычно выбирается из расчета, что на 100 Вт должно приходиться 6,6 мФ. Порой данное значение является некорректным, поэтому лучше всего подбирать емкость путем экспериментов. Есть несколько способ подбора, но наиболее точные значения можно получить благодаря подключению двигателя через амперметр. Важно проконтролировать потребляемый ток при разных емкостях. Задача заключается в том, чтобы найти, при какой емкости значение тока на амперметре будет минимальным.

Зачем нужен конденсатор для автоакустики, знают все те, кто так или иначе сталкивался с автозвуком. Дело в том, что когда устанавливается аудиосистема своими руками, приходится изучать множество материалов.
И в рекомендациях указывается, что вместе с усилителем обязательно должен ставиться конденсатор или накопитель. Нужны ли конденсаторы для акустики в авто или все это мифы.
Если нужны, то зачем и какова их роль во всей системе. Вот о чем пойдет речь в нашей статье.

Общая информация

Итак, зачем же нужен конденсатор? Как известно, цена на него не маленькая и не все автомобилисты, даже любители хорошего звука, желают лишний раз урезать свой бюджет.
С другой стороны, каждый меломан рано или поздно обзаводится мощной или доводит ее до совершенства. Это очень хорошо, но чем мощнее система, тем больше энергии ей подавай.

Примечание. АКБ не способна отдавать такую энергию, в результате чего происходит просадка (ниже подробно описывается, что это значит). Выражается просадка тем, что фары автомобиля начинают «моргать», падает мощность усилителя, бас идущий от сабвуфера, прежде четкий, становится «размытым».
В отдельных и особо тяжелых случаях резкое падение напряжения усилителя приводит к клиппингу, что грозит повреждением динамиков.

Правда или нет

По сей день и в интернете, на различных форумах, в блогах ведутся горячие споры, относительно надобности или бесполезности такого накопителя, как конденсатор. Сами споры, к огромному сожалению любителей автозвука, к истине никакой не приводят.
Они полностью бесполезны, ввиду того, что оппоненты даже не имеют начального школьного представления, касающиеся физики.

Примечание. Самая большая глупость, которую можно вычитать из форумов, гласит, что надо устанавливать конденсатор из расчета только фарадов на киловатт. Такие рекомендации в корне не верны, так как не поймешь, откуда они взяты.

Итак, чтобы в некоторой степени раскрыть завесу, давайте вернемся к урокам по физике. По мере того, как будут обновляться в нашей памяти ценные знания, все мифы исчезнут, как утренний дымок.

Различия конденсатора и АКБ

Важно знать:

  • Конденсатор для басовика, это тот же потребитель питания, который не способен сам вырабатывать электроэнергию. Но он способен ее накапливать, а затем потреблять на собственные утечки, но не утечки АКБ;
  • Задача конденсатора накапливать энергию, а затем отдавать ее потребителю. Сам накопитель обладает крайне низким внутренним сопротивлением и по этой причине «расстается» с энергией очень быстро (кстати, и накапливает ее тоже не медленно).

Примечание. Отличие конденсатора от аккумулятора в том, что пик отдачи энергии у конденсатора приходится только на первый миг, а затем происходит резкий упадок заряда. Тем самым, падает и скорость отдачи вместе с зарядом.

Различия конденсатора и ионистора

Ионисторы – это то, что возят у себя в багажнике большая часть меломанов.
Отличается от конденсатора следующими параметрами:

  • Огромными потерями;
  • Большим сопротивление;
  • Отдает заряд гораздо медленнее;
  • Стоит в несколько раз дешевле, чем конденсатор той же емкости.

Оптимальное время работы ионистора равно: 1 сек/83 кул.

Проверка ионистора

  • Цепляем ионистор в акустическую систему с просадками питания;
  • Заводим и наблюдаем, что напряжение на клеммах усиливается. Пока все в порядке;
  • Увеличиваем громкость и замечаем, что напряжение садится с 13 до 10 вольт.

Примечание. Все это означает, что при первом ударе саба заряд упадет и ионистор превратится в лишний компонент питания, поскольку полезным и активным он бывает лишь, когда его заряд больше напряжения в сети.

Такая ситуация среди любителей автозвука называется просадкой, но она может быть значительно хуже, если используются в питании тонкие некачественные провода и дешевый обмедненный алюминий. В этом случае к обычной просадке добавляется еще и просадка кабеля.

Примечание. Надо знать, чем опасна просадка кабеля. Дело в том, что при резком возрастании потребления происходит реактивное сопротивление. Чем больше и быстрее пользователь попытается взять с кабеля энергию, тем тот (кабель) сильнее этому будет препятствовать (если он тонкий и длинный).

Проблема дешевого и некачественного кабеля отразится и на ионисторе, который разрядившись, уже не сможет более получить энергию.

Установка конденсатора

При установке конденсатора рекомендуется подключать его параллельно питанию усилителя(см.). Ставить его надо, как можно ближе к усилителю мощности, по крайней мере, не дальше 60 см.
Если на место ионистора поставить конденсатор, то результат будет намного эффективнее.
Делается все так:

  • Генератор автомобиля ремонтируется или ставится новый;
  • От него прокладывается кабель на массу и плюс;
  • Ставится новая АКБ;
  • Все клеммы меняются или тщательно зачищаются;
  • Прокладывается силовой медный кабель хорошего качества с достаточным сечением;
  • Подключаем усилитель, не забываем предохранитель.

Совет. Пока не проверим все клеммы и не удостоверимся, что есть 14 вольт, конденсатор не соединяем.

  • После того, как все будет проверено, можно подключать и конденсатор. Замеры на клеммах покажут те же результаты, но удивляться не стоит. Если цепь «живая» и питания хватает, то конденсатору нечего включаться и он как бы ждет своего часа.

Примечание. Еще одним заблуждением является тот факт, что якобы конденсатор нуждается в системах, где необходима большая громкость или на соревнованиях эс пи эль. В обычных случаях, конденсатор удачно заменит ионистор.

Доказать необходимость конденсатора и в обычных автомобильных акустических системах можно, исходя из нижеприведенного:

  • Замер конденсатора может долго длиться, а от этого «проснется» даже самый кислотный аккумулятор и тем самым, сумеет отдать весь свой потенциал;
  • Среди так называемого эс пи элевого братства более принято использование гелеевых батарей, способных «стрелять» сотнями ампер с поразительной скоростью. Как бы ни был конденсатор восхваляем, но при такой скорости он будет «чувствовать» себя явно не у дел;
  • Опять же, касательно эс пи эль, конденсатор не к месту, так как является потребителем энергии, что для эс пи эль явное зло.

Одним словом, в эс пи эль уж точно никакой конденсатор или иной накопитель не используется.

Лучшие конденсаторы

На сегодняшний день, конденсаторов, как и любой другой продукции автозвука, на рынке очень много. Некоторые производители усилителей, даже заранее предусматривают клеммы, предназначенные для подключения конденсатора.

Примечание. К таким усилителям можно отнести Аудисон Весис HV Venti, который даже признан лучшим акустическим усилителем прошлого года.

Focal

Другой известный производитель усилителей и высококачественной аудиотехники, но уже из Франции, Фокал, в своих моделях использует иное решение: для конденсаторов здесь предусматривается место после блока питания усилителя. Именно здесь, как утверждают эксперты, эффективность использования дополнительных накопителей во много раз выше.

Конденсатор в цепи постоянного и переменного тока ведет себя абсолютно по разному.

Итак, берем постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А вот если напрямую сделать, то горит:


Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор частоты вполне сойдет:


Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:


Спаиваем как-то вот так и подаем сигнал с генератора частоты:


Далее за дело берется Цифровой осциллограф OWON SDS6062 . Что такое осциллограф и с чем его едят, читаем здесь . Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.


Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:


Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F — это частота, Ma — амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал — желтым, для удобства восприятия.


Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида — это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то «лохматый». Это связано с так называемыми « «. Шум — это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо «шумит» резистор. Значит «лохматость» сигнала — это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз . Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени:-), что конечно же, невозможно.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Давайте увеличим частоту на генераторе до 500 Герц


На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца


На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц


Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц


Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:


Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2 .

Если построить обрезок графика, то получится типа что-то этого:


По вертикали я отложил напряжение, по горизонтали — частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:







Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт(в реальности еще меньше из за помех). На частоте 500 Герц — 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц — 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, Х С — это сопротивление конденсатора, Ом

П — постоянная и равняется приблизительно 3,14

F — частота, измеряется в Герцах

С — емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц — это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.



Рекомендуем почитать

Наверх