От чего зависит индуктивное сопротивление. Сопротивления в цепи переменного тока. Индуктивное сопротивление. Емкостное сопротивление. Суммарное сопротивление

Вайбер на компьютер 01.08.2019
Вайбер на компьютер

), мы предполагали равным нулю активное сопротивление этой цепи.

Однако в действительности как провод самой катушки, так и соединительные провода обладают хотя и небольшим, но активным сопротивлением, поэтому цепь неизбежно потребляет энергию источника тока.

Поэтому при определении общего сопротивления внешней цепи нужно складывать ее реактивное и активное сопротивления. Но складывать эти два различных по своему характеру сопротивления нельзя.

В этом случае полное сопротивление цепи переменному току находят путем геометрического сложения.

Строят прямоугольный треугольник (см. рисунок 1) одной стороной которого служит величина индуктивного сопротивления, а другой - величина активного сопротивления. Искомое полное сопротивление цепи определится третьей стороной треугольника.

Рисунок 1. Определение полного сопротивления цепи, содержащей индуктивное и активное сопротивление

Полное сопротивление цепи обозначается латинской буквой Z и измеряется в омах. Из построения видно, что полное сопротивление всегда больше индуктивного и активного сопротивлений, отдельно взятых.

Алгебраическое выражение полного сопротивления цепи имеет вид:

где Z - общее сопротивление, R - активное сопротивление, XL - индуктивное сопротивление цепи.

Таким образом, полное сопротивление цепи переменному току, состоящей из активного и индуктивною сопротивлений, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений этой цепи.

Для такой цепи выразится формулой I = U / Z ,где Z - общее сопротивление цепи.

Разберем теперь, какое будет напряжение, если цепь, кроме и и сдвиг фаз между током и на индуктивности, обладает также сравнительно большим активным сопротивлением. На практике такой цепью может служить, например, цепь, содержащая катушку индуктивности без железного сердечника, намотанную из тонкой проволоки (дроссель высокой частоты).

В этом случае сдвиг фаз между током и напряжением составит уже не четверть периода (как это было в цепи только с индуктивным сопротивлением), а значительно меньше; причем чем больше будет активное сопротивление, тем меньший получится сдвиг фаз.

Рисунок 2. Ток и напряжение в цепи, содержащей R и L

Теперь и сама не находится в противофазе с напряжением источника тока, так как сдвинута относительно напряжения уже не на половину периода, а меньше. Кроме того, напряжение, создаваемое источником тока на зажимах катушки, не равно ЭДС самоиндукции, а больше нее на величину падения напряжения в активном сопротивлении провода катушки. Иначе говоря, напряжение на катушке состоит как бы из двух слагающих:

    u L - реактивной слагающей напряжения, уравновешивающей действие ЭДС самоиндукции,

    u R - активной слагающей напряжения, идущей на преодоление активного сопротивления цепи.

Если бы мы включили в цепь последовательно с катушкой большое активное сопротивление, то сдвиг фаз настолько бы уменьшился, что синусоида тока почти догнала бы синусоиду напряжения и разность фаз между ними была бы едва заметна. В этом случае амплитуда слагающей и, была бы больше амплитуды слагающей.

Точно так же можно уменьшить сдвиг фаз и даже совсем свести его к нулю, если уменьшить каким-либо способом частоте генератора. Уменьшение частоты приведет к уменьшению ЭДС самоиндукции, а следовательно, и к уменьшению вызываемого ею сдвига фаз между током и напряжением в цепи.

Мощность цепи переменного тока, содержащей катушку индуктивности

Цепь переменного тока, содержащая катушку, не потребляет энергии источника тока и что в цепи происходит процесс обмена энергией между генератором и цепью.

Разберем теперь, как будет обстоять дело с мощностью, потребляемой такой цепью.

Мощность, потребляемая в цепи переменного тока, равна произведению тока на напряжение, но так как ток и напряжение есть переменные величины, то и мощность будет также переменной. При этом значение мощности для каждого момента времени мы сможем определить, если умножим величину тока на величину напряжения, соответствующую данному моменту времени.

Чтобы получить график мощности, мы должны перемножить величины отрезков прямых линий, определяющие ток и напряжение в различные моменты времени. Такое построение и приведено на рис. 3, а. Пунктирная волнообразная кривая р показывает нам, как изменяется мощность в цепи переменного тока, содержащей только индуктивное сопротивление.

При построении этой кривой использовалось следующее правило алгебраического умножения : при умножении положительной величины на отрицательную получается отрицательная величина, а при перемножении двух отрицательных или двух положительных - положительная величина.

На рис. 4 изображен график мощности для цепи, содержащей в себе одновременно индуктивное и активное сопротивления. В этом случае также происходит обратный переход энергии из цепи к источнику тока, однако в значительно меньшей степени, чем в цепи с одним индуктивным сопротивлением.

Рассмотрев приведенные выше графики мощности, мы приходим к выводу, что только сдвиг фаз между током и напряжением в цепи создает "отрицательную" мощность. При этом, чем больше будет сдвиг фаз между током и напряжением в цепи тем потребляемая цепью мощность будет меньше, и, наоборот, чем меньше сдвиг фаз, тем потребляемая цепью мощность будет больше.

Индуктивное сопротивление

Приложим переменное напряжение к катушке, пренебрегая активным сопротивлением (катушка выполнена из провода большого сечения).

По катушке будет протекать ток меньший, чем при постоянном токе из-за влияния ЭДС самоиндукции.

В момент времени t в цепи протекает ток

i = I m sin ωt, а спустя очень малый промежуток времени ∆t ток будет равен

i + ∆i = I m (sin ω (t + ∆t),

значит за это время ток изменится на величину

∆i = I m (sin ω (t + ∆t) - sin ωt)

Синус суммы sin ω (t + ∆t) = sin ωt cos ω ∆t + cos ωt sin ω ∆t

Косинус очень малого угла ω ∆t примерно равен 1, а синус этого угла равен соответствующей дуге sin ω ∆t = ω ∆t. Поэтому получаем

∆i = I m (sin ω t + ω ∆t cos ωt - sin ωt) = I m ω ∆t cos ωt.

Скорость изменения синусоидального тока ∆i/∆t = I m ω cos ωt, тогда

u = е L = L I m ω cos ωt = I m ω L sin (ωt + 90 0).

Напряжение измеряется в В, ток в А, тогда ω L измеряется в Омах и называется индуктивным сопротивлением

Индуктивное сопротивление возрастает с увеличением частоты тока.

В катушке будет наводиться ЭДС самоиндукции от изменения собственного магнитного потока. Эта ЭДС уравновешивает приложенное напряжение. По второму закону Кирхгофа в любой момент времени u + e = 0

Отсюда для мгновенных значений u = - e. В любой момент времени напряжение, приложенное к катушке, уравновешивается наведенной в ней ЭДС.

Отсюда

Найдем производную тока

.

Тогда

С использованием формул приведения получаем

На катушке напряжение опережает ток на 90 0 или ток отстает от напряжения на 90 0 . Нетрудно видеть, чтобы размерности левой и правой частей совпадали необходимо, чтобы имела размерность В/А, а это Ом и обозначается X L

X L = ω L - индуктивное сопротивление. Индуктивное сопротивление зависит от частоты тока и от индуктивности. С увеличением частоты индуктивное сопротивление возрастает.

Отставание тока, изменяющегося по синусоиде, от напряжения, изменяющегося по косинусоиде, ясно видно из графиков (рис.1.3).

Рисунок 1.3 - Синусоиды тока и напряжения

Изображать переменный ток, переменное напряжение синусоидами громоздко. Поэтому синусоиду заменим вектором. Для этого изобразим синусоиду в функции угла поворота ротора генератора α = ωt . (рис. 1.4). Все турбогенераторы электростанций России вращаются с одинаковой частотой 50 об/с., что соответствует 50 периодам изменения синусоиды напряжения.

Рисунок 1.4 - Замена синусоиды вектором

Когда ωt = 0, вектор, равный амплитуде синусоиды, расположим горизонтально, направленный вправо. Мгновенные значения напряжений в любой момент времени будем определять, проектируя вектор на вертикальную ось (ордината вектора). Тогда мгновенное значение через 45 0 синусоидальной величины будет равно ab. Но при повороте вектора на 45 0 мгновенное значение (ордината)также равно ab. При повороте вектора на 90 0 мгновенное значение равно амплитуде, то же самое отражается на синусоиде. Значит, любую синусоидальную величину можно заменить вращающимся вектором с частотой ω против часовой стрелки.

Промежуток времени, необходимый для совершения переменной ЭДС полного цикла (круга) своих изменений называется периодом колебаний или сокращенно периодом .

Размерность угловой частоты ω =360 0 /Т, где Т =1/f - период колебания или полный цикл изменения мгновенных значений тока, напряжения и любой синусоидальной величины.

Угловую частоту выражают в радианах, 1 радиан = 57 0 17’, тогда окружность 360 0 = 2π рад ≈ 6,28 рад..

ω = 2 π f; ω = 2 ∙3,14∙ 50 = 314 рад/с = 314 1/с.- это синхронная частота вращения ротора генератора и магнитного поля, создаваемого ротором. С такой частотой изменяется мгновенное значение синусоиды тока или напряжения в сети

Соотношение между синусоидальными различными электрическими величинами и их взаимное расположение на плоскости, выраженное графически в виде векторов, называется векторной диаграммой .

Рассмотрим цепочку, в которой к источнику напряжения U подключены активное сопротивление и катушка индуктивности.

Рисунок 1.5 - Подключение к источнику активного и индуктивного сопротивлений

Вектор тока направим горизонтально. В этом же направлении расположится вектор падения напряжения на активном сопротивлении U R . На индуктивности ток отстает от напряжения U L на 90 0 . Напряжение источника U ИСТ получим в результате сложения векторов U R и U L

U = U R + U L .

Рисунок 1.6 - Векторы напряжений на активном и индуктивном сопротивлениях

Полученная диаграмма показывает, что в рассматриваемой цепи с катушкой индуктивности ток отстает от напряжения источника на угол φ.

На векторной диаграмме если

U R = I R , то U L = I Х L ,

Индуктивность катушки, находящейся в воздухе, является величиной постоянной и определяется конструкцией (числом витков, размерами катушки). А индуктивное сопротивление зависит от частоты тока и находится по выражению

.

Угол φ (см. рис.1.6) зависит от соотношения индуктивного и активного сопротивлений.

.

Кроме индуктивного сопротивления в электрических цепях следует учитывать другое реактивное - емкостное сопротивление, величина которого зависит от частоты и величины емкости

.

С увеличением частоты емкостное сопротивление конденсатора переменному току снижается. В отличии от индуктивности ток на емкости опережает напряжение. Обкладки конденсатора перезаряжаются каждый полупериод переменного напряжения.

Но, если к конденсатору подведено постоянное напряжение, (от аккумулятора), то после заряда ток через конденсатор не протекает.

Соотношение сопротивлений и мощностей на переменном токе

На переменном токе следует учитывать не только активное сопротивление проводников, но и реактивное (емкостное или чаще индуктивное). Из векторной диаграммы напряжений на активном и индуктивном сопротивлениях (см. рис.1.6) ясно, что векторы U R и U L расположены под 90 0 друг относительно друга, а три вектора U R , U L и U ИСТ образуют прямоугольный треугольник.

Угол φ показывает, насколько ток в сопротивлении Z отстает от напряжения. Величина cos φ называется коэффициентом мощности . Длины отрезков этого треугольника разделим на ток I, получим сопротивления R, X L и Z, представляющие стороны также прямоугольного треугольника, из него получаем



,

где Z - полное сопротивление участка сети переменному току.

Рисунок 1.7 - Треугольник сопротивлений

Если известно активное сопротивление и угол φ, то Z = R/cos φ. Любой элемент сети, по которому протекает переменный ток, имеет приведенное соотношение сопротивлений. В комплексной форме соотношение сопротивлений записывается

Z = R + jX.

Активное сопротивление на переменном токе практически совпадает с сопротивлением на постоянном токе, поэтому его можно измерить омметром. А полное сопротивление переменному току вычисляют по закону Ома через измеренное напряжение и ток, а затем вычислить

Z = U ПЕР /I ПЕР.

Переменный ток в цепи с индуктивностью отстает от приложенного напряжения (см рис.1.6)). Построим векторную диаграмму напряжения U и тока I . Для удобства повернем векторную диаграмму напряжений так, чтобы вектор напряжения расположился вертикально. После этого разложим вектор тока на активную составляющую I A и реактивную составляющую I Р, получим треугольник токов (рис.1.8).

Рисунок 1.8 - Разложение тока на составляющие

Между активной составляющей и полным током на участке угол φ. Умножим каждую сторону треугольника токов на напряжение U, тогда стороны составят

где S - полная мощность; Р - активная мощность; Q - реактивная мощность.

Рисунок 1.9 - Соотношение мощностей

Из треугольника мощностей получаем вывод, что коэффициент мощности cos φ = P / S показывает, какую долю от полной мощности составляет активная мощность. На любом участке сети соблюдается соотношение

Мы знаем, что на встречу нарастающему току генератора идет ток самоиндукции катушки. Вот это противодействие тока самоиндукции катушки нарастающему току генератора и называется индуктивным сопротивлением.

На преодоление этого противодействия затрачивается часть энергии переменного тока генератора. Вся эта часть энергии полностью превращается в энергию магнитного поля катушки. Когда ток генератора будет убывать, магнитное поле катушки также будет убывать, пресекая катушку и индуктируя в цепи ток самоиндукции. Теперь ток самоиндукции будет идти в одном направлении с убывающим током генератора.

Таким образом вся энергия затраченная током генератора на преодоление противодействия тока самоиндукции катушки полностью вернулась в цепь в виде энергии электрического тока. Поэтому индуктивное сопротивление является реактивным, т. е. не вызывающим безвозвратных потерь энергии.

Единицей измерения индуктивного сопротивления является Ом

Индуктивное сопротивление обозначается X L .

Буква X- означает реактивное сопротивление, а L означает что это реактивное сопротивление является индуктивным.

f- частота Гц, L- индуктивность катушки Гн, X L- индуктивное сопротивление Ом

Соотношение между фазами U и I на X L

Так как активное сопротивление катушки по условию равно нулю (чисто индуктивное сопротивление), то все напряжение приложенное генератором к катушке идет на преодоление э. д. с. самоиндукции катушки. Это значит что график напряжения приложенного генератором к катушке равен по амплитуде графику э. д. с. самоиндукции катушки и находится с ним в противофазе.

Напряжение приложенное генератором к чисто индуктивному сопротивлению и ток идущий от генератора по чисто индуктивному сопротивлению сдвинуты по фазе на 90 0 ,т. е. напряжение опережает ток на 90 0.

Реальная катушка кроме индуктивного сопротивления имеет еще и активное сопротивление. Эти сопротивления следует считать соединенными последовательно.

На активном сопротивлении катушки напряжение приложенное генератором и ток идущий от генератора совпадают по фазе.

На чисто индуктивном сопротивлении напряжение приложенное генератором и ток идущий от генератора сдвинуты по фазе на 90 0 . Напряжение опережает ток на 90 0 . Результирующее напряжение приложенное генератором к катушке определяется по правилу параллелограмма.

кликните по картинке чтобы увеличить

Результирующее напряжение приложенное генератором к катушке всегда опережает ток на на угол меньший 90 0 .

Величина угла φ зависит от величин активного и индуктивного сопротивлений катушки.

О результирующем сопротивлении катушки

Результирующее сопротивление катушки нельзя находить суммированием величин её активного и реактивного сопротивлений .

Результирующее сопротивление катушки Z равно

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении - положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U , подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U , ток не может начаться мгновенно по причине противодействия ЭДС, равного -U , поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε ), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt) .
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t) , либо равная ей функция sin(t-π/2) .
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL , которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U , мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt) .
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2) .
Тогда для синусоидального напряжения u = U amp sin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = U amp ωCsin(ωt+π/2) .

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Реактивное сопротивление ёмкости
X C = 1 /(2πƒC)

Активное сопротивление, индуктивность и емкость в цепи переменного тока.

Изме­нения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вооб­ще говоря, различны. Поэтому если начальную фазу силы тока ус­ловно принять за нуль, то начальная фаза напряжения будет иметь некоторое значение φ. При таком условии мгновенные значения силы тока и нап­ряжения и будут выражаться следующими формулами:

i = I m sinωt

u = U m sin(ωt + φ)

a) Активное сопротивление в цепи переменного тока. Сопротивление цепи, которое обу­словливает безвозвратные потери элект­рической энергии на тепловое действие тока, называют активным . Это сопротив­ление для тока низкой частоты можно счи­тать равным сопротивлению R этого же проводника постоянному току.

В цепи переменного тока, имеющей только активное сопротивле­ние, например, в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. φ = 0. Это означает, что ток и напряжение в такой цепи изменяются в оди­наковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.

Будем счи­тать, что напряжение на зажимах цепи меняется по гармоническому закону: и = U т cos ωt.

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значе­ния силы тока можно применить закон Ома:

по фазе с колебаниями напряже­ния.

b) Катушка индуктивности в цепи переменного тока. Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление X L , которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. само­индукции тем больше, чем больше индуктивность цепи и чем быст­рее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω: X L = ωL.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь. Для это­го предварительно найдем связь между напряжением на катушке и ЭДС самоиндукции в ней. Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри про­водника в любой момент времени должна быть равна нулю. Иначе сила тока, согласно закону Ома, была бы бесконечно большой.

Равенство нулю напряженности поля оказывается возможным потому, что напряженность вих­ревого электрического поля E i , порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля Е к, создаваемого в про­воднике зарядами, расположенными на зажимах источни­ка и в проводах цепи.

Из равенства E i = -Е к следует, что удельная работа вихревого поля (т. е. ЭДС самоиндукции e i) равна по моду­лю и противоположна по знаку удельной работе кулонов­ского поля . Учитывая, что удельная работа кулоновского поля равна напряжению на концах катушки, можно запи­сать: e i = -и.

При изменении силы тока по гармоническому закону i = I m sin соsωt, ЭДС самоиндукции равна: е i = -Li" = -LωI m cos ωt. Так как e i = -и, то напряжение на концах катушки ока­зывается равным

и = LωI m cos ωt = LωI m sin (ωt + π/2) = U m sin (ωt + π/2)

гдеU m = LωI m - амплитуда напряжения.

Следовательно, колебания напряжения на катушке опе­режают по фазе колебания силы тока на π/2, или, что то же самое, колебания силы тока отстают по фазе от колеба­ний напряжения на π/2.

Если ввести обозначение X L = ωL, то получим . Величину X L , равную произведению циклической час­тоты на индуктивность, называют индуктивным сопротив­лением. Согласно формуле , значение силы тока связано с значением напряжения и ин­дуктивным сопротивлением соотношением, подобным за­кону Ома для цепи постоянного тока.

Индуктивное сопротивление зависит от частоты ω. По­стоянный ток вообще «не замечает» индуктивности катушки. При ω = 0 индуктивное сопротивление равно нулю. Чем быстрее меняется напряжение, тем больше ЭДС са­моиндукции и тем меньше амплитуда силы тока. Следует отметить, что напряжение на индуктивном со­противлении опережает по фазе ток .

c) Конденсатор в цепи переменного тока. Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерыв­но изменяется, поэтому в цепи течет переменный ток. Сила тока бу­дет тем больше, чем больше емкость конденсатора и чем чаще про­исходит его перезарядка, т. е. чем больше частота переменного тока.

Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивле­нием Х с . Оно обратно пропорционально емкости С и круговой частоте ω: Х с =1/ωС.

Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением прово­дов и обкладок конденсатора можно пренебречь.

Напряжение на конденсаторе u = q/C равно напряжению на концах цепи u = U m cosωt.

Следовательно, q/C = U m cosωt. Заряд конденсатора меняется по гармоническому закону:

q = CU m cosωt.

Сила тока, представляющая со­бой производную заряда по вре­мени, равна:

i = q" = -U m Cω sin ωt =U m ωC cos(ωt + π/2).

Следовательно, колебания си­лы тока опережают по фазе ко­лебания напряжения на конден­саторе на π/2.

Величину Х с , обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины анало­гична роли активного сопротивления R в законе Ома. Значение силы тока связано с значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока. Это и поз­воляет рассматривать величину Х с как сопротивление кон­денсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток пе­резарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току беско­нечно велико, его сопротивление переменному току имеет конечное значение Х с. С увеличением емкости оно умень­шается. Уменьшается оно и с увеличением частоты ω.

В заключение отметим, что на протяжении четверти пе­риода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в кон­денсаторе в форме энергии электрического поля. В следую­щую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Из сравнения формул X L = ωL и Х с =1/ωС видно, что катушки ин­дуктивности. представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы - наоборот. Индуктивное Х L и емкостное Х C сопротивления называют реактивными.

d) Закон ома для электрической цепи переменного тока.

Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конден­сатор емкостью С

Мы видели, что при включении по отдельности в цепь активного сопротивления R, конденсатора емкостью С или катуш­ки с индуктивностью L амплитуда силы тока определяется соот­ветственно формулами:

; ; I m = U m ωC .

Амплитуды же на­пряжений на активном сопротивлении, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так: U m = I m R; U m = I m ωL;

В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряже­ние на контуре и напряжения на отдельных элементах цепи, ока­жется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах. Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.

Действительно, ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлениями. Однако только на активном сопро­тивлении колебания напряжения и тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колеба­ний тока на π/2, а на катушке индуктивности колеба­ния напряжения опережают колебания тока на π/2. Если учесть сдвиг фаз между складываемыми напряжениями, то окажется, что

Для получения этого равенства нужно уметь скла­дывать колебания напряжений, сдвинутые по фазе друг относительно друга. Проще всего выполнить сложение нескольких гар­монических колебаний с помощью векторных диаграмм. Идея метода основана на двух довольно простых положениях.

Во-первых, проекция вектора с модулем х m вращающегося с постоянной угловой скоростью совершает гармонические колебания: х = х m cosωt

Во-вторых, при сложении двух векторов проекция суммарного векто­ра равна сумме проекций складываемых векторов.

Векторная диаграмма электрических колебаний в цепи, изображенной на рисунке, позволит нам получить соотношение между амплитудой силы тока в этой цепи и амплитудой напряжения. Так как сила тока одинакова во всех участках цепи, то построение век­торной диаграммы удобно начать с вектора силы тока I m . Этот вектор изобра­зим в виде горизонтальной стрелки. Напряжение на активном со­противлении совпадает по фазе с силой тока. Поэтому вектор U mR , должен совпадать по направлению с вектором I m . Его модуль равен U mR = I m R

Колебания напряжения на индуктивном сопротивлении опережают колебания силы тока на π/2, и соответствующий вектор U m L должен быть повернут относительно вектора I m на π/2. Его модуль равен U m L = I m ωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор U m L следует повернуть налево. (Можно было бы, конечно, поступить и наоборот.)

Его модуль равен U mC =I m /ωC . Для нахождения вектора суммарного напряжения U m нужно сложить три вектора: 1) U mR 2) U m L 3) U mC

Вначале удобнее сложить два вектора: U m L и U mC

Модуль этой суммы равен , если ωL > 1/ωС. Именно такой случай изображен на рисунке. После этого, сложив вектор (U m L + U mC) с вектором U mR получим вектор U m , изображающий колебания напряжения в сети. По теореме Пифагора:


Из последнего равенства можно легко найти амплитуду силы тока в цепи:

Таким образом, благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи, изобра­женной на рисунке, выражается так:

От амплитуд силы тока и напряжения можно перейти к дейст­вующим значениям этих величин:

Это и есть закон Ома для переменного тока в цепи, изображен­ной на рисунке 43. Мгновенное значение силы тока меняется со временем гармонически:

i = I m cos (ωt+ φ), где φ - разность фаз между силой тока и напряжением в сети. Она зависит от частоты ω и параметров цепи R, L, С.

e) Резонанс в электрической цепи. При изучении вынужденных механических колебаний мы по­знакомились с важным явлением - резонансом. Резонанс наблю­дается в том случае, когда собственная частота колебаний систе­мы совпадает с частотой внешней силы. При малом трении происходит резкое увеличение амплитуды установившихся вы­нужденных колебаний. Совпадение законов механи­ческих и электромагнитных ко­лебаний сразу же позволяет сделать заключение о возмож­ности резонанса в электриче­ской цепи, если эта цепь представляет, собой колеба­тельный контур, обладающий определенной собственной ча­стотой колебаний.

Амплитуда тока при вы­нужденных колебаниях в кон­туре, совершающихся под дей­ствием внешнего гармонически изменяющегося напряжения, определяется формулой:

При фиксированном напря­жении и заданных значениях R, L и С, сила тока достигает мак­симума при частоте ω, удовлетворяющей соотношению

Эта амплитуда особенно велика при малом R. Из этого уравнения можно определить значение циклической частоты переменного тока, при которой сила тока максимальна:

Эта частота совпадает с частотой свободных колебаний в конту­ре с малым активным сопротивлением.

Резкое возрастание амплитуды вынужденных колебаний тока в колебательном контуре с малым активным сопротивлением про­исходит при совпадении частоты внешнего переменного напря­жения с собственной частотой колебательного контура. В этом состоит явление резонанса в электрическом колебательном кон­туре.

Одновременно с ростом силы тока при резонансе резко воз­растают напряжения на конденсаторе и катушке индуктивности. Эти напряжения становятся одинаковыми и во много раз пре­восходят внешнее напряжение.

Действительно,

U м, С,рез =
U м, L ,рез =

Внешнее напряжение связано с резонансным током так:

U м = . Если тоU m , C ,рез = U m , L ,рез >> U m

При резонансе сдвиг фаз между током и напряжением стано­вится равным нулю.

Действительно, колебания напряжения на катушке индуктив­ности и конденсаторе всегда происходят в противофазе. Резо­нансные амплитуды этих напряжений одинаковы. В результате напряжения на катушке и конденсаторе полностью компенсиру­ют друг друга, и падение напряжения происходит только на активном сопротивлении.

Равенство нулю сдвига фаз между напряжением и током при резонансе обеспе­чивает оптимальные условия для поступления энергии от источ­ника переменного напряжения в цепь. Здесь полная аналогия с механическими колебаниями: при резонансе внешняя сила (ана­лог напряжения в цепи) совпадает по фазе со скоростью (аналог силы тока).



Рекомендуем почитать

Наверх