Снижение помех импульсного блока питания. Исследование подавителя импульсных помех. Фильтры серии EDP

На iOS - iPhone, iPod touch 19.03.2019
На iOS - iPhone, iPod touch

Подавитель импульсных помех для Р399А.

На протяжении последних нескольких месяцев с включением уличного освещения мне практически стало незвоможно работать в эфире из-за наличия сильных помех от ламп типа ДРЛ. Аппарат у меня не импортный, а трансиверизированный Р399А который применяется в качестве базового блока для УКВ (“Гиацинт” используется в качестве опорного генератора в синтезаторах ВЧ подставок для приставок). Пойдя в отпуск, решил как-то побороться с возникшей проблемой и в течение недели был сконструирован предлагаемый вниманию “Подавитель импульсных помех (ПИП)”.

Принципиальная схема устройства представлена на рис.1. ПИП состоит из двух узлов: пикового детектора и узла подавления импульсов. Включается устройство между вторым смесителем и УПЧ (тракт 215 кГц).

Схема пикового детектора с некоторыми доработками была позаимствована из журнала “Ham Radio, 2, 1973, W2EGH”, в частности были добавлены цепочки D1, R6, S1 и D2, R7, S2, а узел подавителя выполнен по схеме управляемого аттенюатора R16, C18, Q4, введение которого, кроме прочего, несколько улучшило динамический диапазон АРУ приёмника. Применение обычных для этих устройств LC линий задержки выявленного преимущества не дало. Вероятно по причине их узкополосности из-за низкой ПЧ и как следствие “растяжки” импульса помехи. Применение на входе пикового детектора широкополосного усилителя на транзисторе КТ610А обусловлено необходимостью получения неискажённого сигнала на выходе с амплитудой до 20в и соответственно минимального воздействия на длительность и форму исходного импульса помехи. Применение дополнительной АРУ в усилителе только ухудшало его работу, а вот введение цепочки D2, R7 автоматически блокирует работу ПИП при наличии мощного полезного сигнала (проверено до +60 дБ по реальному сигналу с эфира при полном усилении R1). S1 – “Глубокое подавление” позволяет устранять даже мелкие помехи только при очень низких уровнях полезного сигнала (проверено при приёме ЕМЕ станций в моде JT65B), при силе сигнала с S2 и более происходит накладка продетектированной огибающей на сигнал. Качество декодирования в режиме FSK441 реально пока не проверялось.

Схема ПИП пока находится в стадии доработок, но, тем не менее, она уже сейчас может оказать хорошую услугу для реальной работы в эфире тем, кто в этом нуждается. Также приветствуется любая доработка и публикация, улучшающая параметры устройства.

Импульсные блоки питания (ИБП), построенные на основе преобразователей постоянного (выпрямленного сетевого) напряжения в переменное, генерируют нежелательные помехи. На коллекторах (стоках) силовых ключей контролеров ИБП присутствует напряжение, близкое по форме к прямоугольному, размахом, достигающим 600...700В. Кроме того, в ИБП существуют замкнутые цепи, по которым циркулируют импульсные токи с достаточно крутыми фронтами и спадами (0,1... 1 мкс) и амплитудой до 3...5А и более.

Вообще говоря, ШИМ-преобразователи, которые работают с постоянной частотой переключений, генерируют помехи в известной полосе частот, что облегчает задачу их подавления и является одной из причин их широкого применения в схемах импульсных БП бытовой техники .

Однако, импульсные блоки питания , независимо от типа применяемого ШИМ-преобразователя, должны быть оснащены схемами подавления двух основных видов помех. Этими помехами являются входная несимметричная (дифференциальная) и входная симметричная (синфазная) помехи.

Механизмы возникновения, распространения и методы борьбы в импульсных блоках питания с данными помехами рассмотрим на примере соответствующих эквивалентных схем преобразователей.

Рис.1 Возникновение несимметричной помехи

Входная несимметричная помеха является шумовым током, протекание которого обусловлено разностью напряжений Vin между двумя входными проводниками (рис. 1). Ключевой транзистор преобразователя представлен на рисунке в виде переключателя Fs, который последовательно включается и выключается с частотой пдэекточения преобразователя. Нагрузка изображена в виде переменного резистора R L , сопротивление которого изменяется в зависимости от тока нагрузки. Пассивные элементы L и С соответствуют входному фильтру, встроенному в преобразователь. Кроме того, практически все преобразователи оснащены входным конденсатором Cь, а некоторые также имеют, по крайней мере, небольшую последовательную индуктивность (дроссель), учитываемую в импедансе источника Zs (в Zs также учтена собственная индуктивность сглаживающего электролитического конденсатора сетевого выпрямителя).

Эффективное подавление несимметричной помехи достигается посредством шунтирующего действия конденсатора Сь, который должен иметь высокое качество и характеризоваться малыми эквивалентными последовательными индуктивностью (ЭПИ) и сопротивлением (ЭПС) в соответствующем диапазоне частот (обычно в области частот переключения и выше). В реальных схемах Сь обычно представляет собой конденсатор постоянной емкости 0,1... 1,0 мкф, шунтирующий электролитический конденсатор сетевого выпрямителя. В выпрямителе одновременно стремятся применять высококачественные, как правило, танталовые, электролитические конденсаторы с малыми ЭПИ и ЭПС.

Симметричная помеха подавляется с помощью симметрирующего трансформатора, который представляет собой катушку индуктивности с двумя обмотками, имеющими одинаковое число витков. Она обладает высоким импедансом для симметричного тока, но практически нулевым для несимметричного.

Несимметричный ток (включающий потребляемый ток) втекает в верхнюю обмотку трансформатора и вытекает из нижней. Поскольку токи через эти обмотки равны по величине и противоположны по направлению, а число витков в обмотках одинаково, результирующий магнитный поток в сердечнике, обусловленный несимметричным током, оказывается равным нулю, хотя величина потребляемого тока может быть очень велика. Благодаря этому в симметрирующем трансформаторе обычно используют сердечник с высокой магнитной проницаемостью без воздушного зазора. Причем он имеет достаточно высокую индуктивность для симметричного тока при использовании обмоток всего в несколько витков. Значительно меньший по величине ток симметричной помехи протекает в основном через нижнюю обмотку, а также и через верхнюю в одном и том же направлении. Следовательно, симметрирующий трансформатор обладает высоким импедансом для токов симметричной помехи.

В качестве дополнительных мер подавления помех в импульсных БП применяются следующие :

Перечисленных мер, как правило, оказывается достаточно, и поэтому в бытовой аппаратуре импульсные БП обычно применяются без экранирующих кожухов.

Рис.3 Типовая схема сетевого фильтра и выпрямителя

Некоторые из рассмотренных способов борьбы с помехами в ИБП иллюстрируются на примере типовой схемы сетевого выпрямителя (рис. 3), применяемого в конструкциях ВМ и ТВ. Конденсаторы С5...С8, установленные параллельно диодам Д1...Д4 мостового выпрямителя сетевого напряжения служат для подавления несимметричных помех. Эту же роль выполняют конденсаторы С1,2, которые симметрируют потенциалы сетевого провода относительно шасси радиоэлектронной технике.

Фильтр подавления электромагнитных помех (10+)

Фильтр высокочастотных электромагнитных помех

Причина возникновения высокочастотных импульсных помех банальна. Скорость света не бесконечна, и электромагнитное поле распространяется со скоростью света. Когда у нас есть устройство, как-то преобразующее сетевое напряжение путем частых переключений, мы ожидаем, что в проводах питания, идущих к сети, будут возникать пульсации токов, направленных навстречу друг другу. По одному проводу ток втекает в прибор, по другому - вытекает. Но все совсем не так. За счет конечности скорости распространения поля импульс втекающего тока сдвинут по фазе относительно вытекающего. Таким образом, на некоторой частоте высокочастотные токи в сетевых проводах текут сонаправленно, синфазно.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!

Под импульсными наводками понимаются различные виды помех, создаваемых скачками постоянного или переменного напряжения или тока, происходящими в любых цепях и приборах. К импульсным наводкам относятся:

непосредственная наводка видеоимпульсов;

ударноевозбуждениевысокочастотных устройстввидеоимпульсами или прохождение через них спектра частотвидеоимпульсов, получающихсявспециальныхгенераторах, подсобных цепях различных устройстви телевизорах;

ударноевозбуждениевысокочастотных устройств, возникающее при работе коллекторных моторов, реле, выключателей, телефонных аппаратови другой контактнойаппаратуры;

ударноевозбуждениевысокочастотных устройстввидеоимпульсами, получающимися в результате детектирования импульсов высокой

частоты в перегруженных усилительных каскадах и в других нелинейных сопротивлениях.

Источники и пути прохождения таких наводок были рассмотрены в § 1-7, 1-8, 1-9, 1-10, 1-11, 1-12.

Первым этапом работы по подавлению импульсных наводок является выяснение конкретных их источников и путей связи с приемником наводок.

Для этого необходимо:

а) Поочередно выключать всевозможные цепи и части устройств до полного исчезновения помехи или ее уменьшения.

б) Уменьшать крутизну скачков, подключая сглаживающие фильтры к различным точкам, в которых наблюдаются скачки, добиваясь этим уменьшения наводки и измененияформынаводимогоимпульса.

в) Увеличивать длительность импульсов в различных цепях, наблюдая, как они искажаются на выходе приемника наводки с тем, чтобы выяснить, не происходит ли их дифференцирование или интегрирование (если они поступают непосредственно на видеоусилитель) или разделение на два (если они проходят через усилитель высокой или промежуточной частоты и де-

тектор), рис. 1-18 и1-29.

г) Выключать в приемнике наводки последовательно, начиная от входа (антенны), различные каскады и другие цепи, добиваясь исчезновения наводки.

д) Шунтировать конденсатором большой емкости с короткими выводами различные цепи, по которым может передаваться наводка, и добиваться ее

уменьшения.

В результате первого этапа работы должна быть составлена четкая схема, хотя бы одного канала связи, по которому проходит помеха. При этом должны быть известны источник наводки, его выход, цепи связи, вход приемника, цепииметодыпрохожденияимпульсавприемникенаводки.

Вторым этапом работы является внесение в прибор изменений, необходимых для подавления наводки. При этом нужно иметь в виду, что в зависимости от характера импульсных наводок они подавляются следующими способами.

Для подавления наводки от видеоимпульсов и других скачков постоянного напряжения, поступающих непосредственно на видеоусилители, усилители низкой частоты и другие устройства без резонансных усилителей высокой частоты по одной из схем рис. 1-28, необходимо ввести дополнительные детали, ослабляющиесвязьмеждуисточником и приемником наводки

2. Наводка от стробирующих видеоимпульсов, подаваемых на усилители высокой частоты для управления усилением, получается вследствие резких скачков анодного тока управляемых ламп, приводящих к ударному возбуждению контуров усилителя. Для подавления такой наводки необходимо снижать крутизну краев стробирующих импульсов. Если такое сглаживание управляющего импульса недопустимо, то единственным способом подавления наводки будет применение в управляемых каскадах усилителя высокой частоты двухтактных схем сподачей стробимпульсанасреднюю точку сеточнойобмоткитрансформатора.

3. Все другие виды ударного возбуждения усилителей высокой частоты (радиоприемников) видеоимпульсами и любыми скачками постоянного напряжения возникают большей частью путем проникновения помех на входные цепи усилителя (антенну) вместе с полезными сигналами. Подавление таких наводок производится у источника в первую очередь включением фильтров в цепи питания источника наводки и экранированием в

нем сети питания, как разобрано в предыдущем параграфе.

В редких случаях близкого расположения источника подобной наводки с ее приемником (на расстояниях 1 м и менее), кроме фильтров, может понадобиться полное экранирование источника помещением его в металлический кожух (например, экранирование реле, находящегося у антенного ввода радиоприемника) или частичное экранирование внутренних элементов источника (например, экранирование графитового покрытия электроннолучевой трубки в телевизорах, рекомендуемое в литературе

туре.

4. При подавлении наводки высокочастотных импульсов, поступающих на усилитель высокой частоты, не настроенный на несущую частоту импульсов, необходимо, чтобы в элементах приемника наводки не происходило детектирования мешающих импульсов, т. е. чтобы приемник наводки не перегружался и работал в линейном режиме. Для этого нужно снижать напряжение помехи в цепи, находящейся перед первым нелинейным элементом приемника (лампой или полупроводниковым детектором). Избирательность преселектора, состоящего из одного или двух контуров, оказывается недостаточной при подаче на него высокочастотных импульсов большоймощности.

Если радиоприемник заново проектируется для совместной работы с мощными импульсными генераторами высокой частоты, то он должен быть снабжен специальным многоконтурным преселектром, обеспечивающим большое ослабление сигналов любых частот, кроме входящих в полосу пропускания приемника. Если же требуется приспособить готовый радиоприемник дляуказанной цели, то можно получить хороший результат, если добавить в вод антенны одноили двухячеечный фильтр, рассчитанный на ослабление несущей частоты мешающих импульсов.

Трудности в разработке такого фильтра заключаются в том, что он должен одновременно удовлетворять двум требованиям: не ухудшать показатели приемника и давать достаточно большое ослабление помехи. Если мешающие импульсы имеют весьма высокую несущую частоту, то достаточно незначительной емкостной связи внутри приемника между любыми проводами, входящими в приемник извне, и деталями высокочастотной части приемника, чтобы мешающий импульс поступил помимо преселектора или ан-

тенного фильтра. Поэтомув приемниках, работающих в таких условиях, необходимо иметь фильтрующие ячейки в местах ввода любых проводов, включая телефонный шнур в приемнике радиосвязи.

5. Уровень ударного возбуждения высокочастными импульсами весьма невысок (§ 1-10 и 1-11). Поэтому такая помеха поступает на приемник наводки только через антенный ввод на тех же частотах, что и полезные сигналы. Единственным способом подавления этой наводки является ограничение спектра частот, излучаемого импульсным генератором высокой частоты.

4-9. ПРИМЕНЕНИЕ ДВОЙНЫХ ЛАМП

Среди собранных в одном баллоне двойных ламп имеется большое число триодов (буква Н на втором месте условного обозначения) и несколько типов триод-пентодов (букваФ на втором месте условного обозначения). Конструкции отдельных типов двойных ламп выполнены различно. В некоторых типах ламп между частями лампы имеется экран с отдельным выводом, в других конструкциях экран соединен с одним из катодови

в третьих - экран отсутствует вовсе.

В технических условиях на двойные лампы большей частью оговаривается емкость между анодами или между анодом одной половины и сеткой другой половины. Величина этих емкостей колеблется в пределах 0,02- 0,5 пф в зависимости от типа лампы. Они являются звеном, связывающим цепи, в которые включены различные половины одной лампы. В технических условиях на некоторые типы двойных ламп величины связывающих емкостей не оговорены вовсе. При этом они могут быть довольно велики и могут изменяться от экземпляра к экземпляру в широких пределах.

Кроме емкостной связи, между отдельными частями двойной лампы может существовать связь за счет электронного потока, проникающего через щели и отверстия в конструкции лампы из одной половины на электроды другой половины. Этот вид связи техническими условиями не предусмотрен, хотя иногда и может оказаться недопустимым.

В результате разбора влияния обоих видов связи можно дать следующие рекомендации по применению двойных ламп. Лучше всего такие лампы работают в схемах с сильной связью обеих частей друг с другом: мультивибраторы, кипп-реле, триггеры, блокинг-генераторы с пусковой лампой, двухфазные и двухтактные усилители, преобразователи частоты, состоящие из смесителя и гетеродина, и т. д. Хорошо работают двойные лампы в двух соседних усилительных каскадах на не очень высоких частотах. При ис-

Применение двойных ламп в двух разных каналах радиоприбора в принципе нежелательно и к нему следует прибегать только в случаях крайней необходимости. При этом следует сравнить уровни переменных напряжений и мощностей в обоих совмещаемых элементах. Чем меньше отличаются друг от друга эти уровни, тем более вероятно, что применение двойной лампыпройдет безболезненно.

ными проводами также представляет собой СВЧ резонансный контур, настроенный емкостью сетка- катод.

Оба контура связаны через емкость сетка - экранирующая сетка Сg1,2 , играющую здесь роль проходной емкости.

Таким образом, схема цепей катода, эк- Рис. 4-23. Генерация усилительного ранирующей и управляющей сеток экви-каскада на СВЧ.

валентна схеме генератора на триоде со связью через внутриламповую проходную емкость. При благоприятном (с

возникаетгенерация.

Возникнув в промежуточных каскадах, эта генерация может явно не проявиться, а повлиять на такие обычно редко контролируемые параметры, как анодный ток отдельных ламп, линейность амплитудной характеристики т. д. Иногда эта же генерация, изменяя режим работы усилителя, может послужить причиной обратных связей по основной частоте. С уничтожением такой генерации одновременно пропадет искажение частотных характеристик усилителя.

Подобная

генерация

особенно

возникает в выходных каскадах усилителей

видеоусилителей,

собираемых

на мощных

пентодах или

родах при параллельном соединении двух и

с анодной

катодной

нагрузкой.

Здесь (рис. 4-24)

соединительные провода между управляющими

и экранирующими сетками обеих ламп пред-

Рис. 4-24. Генерация усили-ставляют собой

симметричной

тельного каскада на СВЧ при нии,

включенной

по двухтактной схеме,

параллельномсоединенииламп.

применяемой обычно в генераторах ультрако-

роткихволн.

Такую же схему двухтактного генератора СВЧ легко увидеть в схеме катодного повторителя с параллельным выключением ламп, если учесть индуктивности и емкости соединительных проводов между анодами и между сетками.

Несколько легче обнаруживается генерация на СВЧ в мощных усилительных каскадах низкой частоты по свечению неоновой лампы. Для проведения такого эксперимента лампочку небольших размеров прикрепляют к

В импульсных источниках питания помехи возникают при переключении ключевых элементов. Эти помехи наводятся на кабель питания, подключенный к сети переменного тока. Поэтому необходимо принимать меры для их подавления.

Типовое решение сетевого фильтра электромагнитных помех для импульсного источника питания

Для подавления помех, проникающих через кабель питания в первичную цепь из импульсного источника питания, применяется приведенная на рисунке 9 схема.

Рисунок 9 - Подавления помех, проникающих через кабель

Дифференциальные и синфазные помехи

Помехи бывают двух типов: дифференциальные и синфазные. Ток дифференциальной помехи, наведенный на оба провода линии питания, протекает по ним в противоположных направлениях, как показано на рисунке 10. Ток синфазной помехи протекает по всем линиям в одном направлении, смотреть рисунок 11.

Рисунок 10 - Дифференциальная помеха


Рисунок 11 - Синфазная помеха

Функциональное назначение элементов сетевого фильтра

На рисунках, представленных ниже, приведены примеры использования различных элементов фильтра и графики, иллюстрирующие эффект от их применения. Приведенные графики показывают изменение интенсивности дифференциальных и синфазных помех импульсного источника питания относительно уровня индустриальных помех. На рисунке 12 представлены графики сигналов в отсутствие фильтра на входе импульсного источника питания. Как видно из графика, уровень дифференциальных и синфазных помех достаточно высок. Рисунок 13 иллюстрирует пример использования фильтрующего X-конденсатора. На графике видно заметное снижение уровня дифференциальных помех.

На рисунке 14 представлены результаты совместного использования X-конденсаторов и Y-конденсаторов. График наглядно показывает эффективное подавление как синфазных, таки дифференциальных помех. Применение X-конденсаторов и Y-конденсаторов в комбинации с синфазным дросселем (дросселем для подавления синфазных помех) показано на рисунке 15. График отражает дальнейшее снижение уровня и дифференциальных, и синфазных помех. Это происходит потому, что реальный синфазный дроссель имеет некоторую дифференциальную индуктивность.


Рисунок 12 - Без фильтра


Рисунок 13 - С использованием Х-конденсатора


Рисунок 14 - С использованием Х-конденсатора и Y-конденсатора


Рисунок 15 - С использованием Х-конденсатора, Y-конденсатора и синфазного дросселя

Пример подавления помех в мобильном телефоне

Источники излучаемых помех

Помехи, создаваемые блоком обработки сигналов, проходят в ВЧ блок, что приводит к значительному ухудшению чувствительности. Блок обработки сигналов мобильного телефона, который обычно построен на ИС обработки сигналов в основной полосе частот, управляет различными сигналами, такими как речевой сигнал и сигнал для ЖК-дисплея. ИС обработки сигналов является источником значительных помех, поскольку работает на высокой частоте и к ней подсоединены множество линий передачи данных. При прохождении помех по линиям передачи данных или шинам питания/GND из блока обработки сигналов в ВЧ блок происходит ухудшение его чувствительности, в результате увеличивается частота появления ошибочных битов (Bit Error Rate - BER).

Компоненты для подавления помех в мобильных телефонах

Для улучшения параметра BER (Bit Error Rate), то есть уменьшения процента принятых ошибочных битов, необходимо подавить помехи, проникающие из блока обработки сигналов в ВЧ блок. Для этого следует установить EMI-фильтры на всех шинах, соединяющих данные блоки. Кроме того, важно также экранировать блок обработки сигналов, поскольку излучаемый им уровень помех в последних моделях мобильных телефонов значительно возрос.

Установка фильтров на шине управления дисплеем

Шина управления ЖК-дисплеем содержит множество линий передачи сигналов, переключающихся одновременно, что вызывает значительное увеличение импульсного тока, протекающего в цепях земли (GND) и питания. Поэтому необходимо ограничивать ток, протекающий по сигнальным линиям. Обычно для этого используются матрицы ферритовых чип-бусин серии BLA31 и чип-фильтры EMIFIL® серии NFA31G с резистором. Если по конструктивным причинам применение указанных компонентов невозможно, то для подавления помех, проходящих через гибкий кабель ЖК-дисплея, следует использовать EMC-абсорберы серии EA.

Улучшение экранирования

Обычно на внутреннюю поверхность пластикового корпуса мобильного телефона наносят токопроводящее покрытие. При расширении функциональности мобильного телефона уровень помех от блока обработки сигналов также увеличивается. Поэтому необходимо экранировать блок обработки сигналов с такой же тщательностью, как и ВЧ блок. При разработке корпуса мобильного телефона, для снижения импеданса на высокой частоте нужно стараться обеспечить как можно большую площадь контакта между частями корпуса. Для улучшения экранирования, в блоке обработки сигналов, где это, возможно, следует применять металлические экранирующие элементы или EMC-абсорберы.



Рекомендуем почитать

Наверх