Пропускная способность канала зависит от. Определение пропускной способности канала связи с помехами. Теория информации и кодирования

Скачать на Телефон 20.03.2019
Скачать на Телефон

В любой системе связи через канал передается информация. Скорость передачи информации зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации. Характеристики системы связи в значительной мере зависят от параметров канала связи, который используется для передачи сообщений. Большинство реальных каналов обладают переменными параметрами, которые, как правило, изменяются во времени случайным образом. Однородный симметричный канал связи полностью определяется алфавитом передаваемого сообщения, скоростью передачи элементов сообщения и вероятностью ошибочного приема элемента сообщения Р ош (вероятностью ошибки).

Пропускной способностью канала называют максимальное значение скорости передачи информации по этому каналу. То есть, пропускная способность характеризует потенциальные возможности передачи информации.

Пропускная способность рассчитывается по формуле:

Для двоичного симметричного канала (m=2) пропускная способность в двоичных единицах на секунду (Бодах):

При пропускная способность двоичного канала С=0, поскольку при такой вероятности ошибки последовательность выходных двоичных символов можно получить, совсем не передавая сигналы по каналу, а выбирая их наугад (например, по результатам бросания монеты), т.е. последовательности на выходе и входе канала независимы. Случай С=0 называют обрывом канала. То, что пропускная способность при в двоичном канале такая же, как при (канал без шумов), объясняется тем, что при достаточно все выходные символы инвертировать (т.е. заменить 0 на 1 и 1 на 0), чтобы правильно восстановить входной сигнал.

Производительность источника информации равна:

кбит/с (7.3)

Рассчитаем пропускную способность канала с оптимальным приёмником по формуле

кбит/с(7.2):

В данном случае пропускная способность канала больше производительности источника. Это позволяет сделать вывод, что рассчитанный канал удовлетворяет условию Шеннона и может использоваться на практике для передачи аналоговых и цифровых сигналов.

Помехоустойчивое кодирование

приемник кодирование аналоговый сигнал

При передаче цифровых данных по каналу с шумом всегда существует вероятность того, что принятые данные будут содержать некоторый уровень частоты появления ошибок. Получатель, как правило, устанавливает некоторый уровень частоты появления ошибок, при превышении которого принятые данные использовать нельзя. Если частота ошибок в принимаемых данных превышает допустимый уровень, то можно использовать кодирование с исправлением ошибок., которое позволяет уменьшить частоту ошибок до приемлемой. В каналах с помехами эффективным средством повышения достоверности передачи сообщений является помехоустойчивое кодирование. Оно основано на применении специальных кодов, которые корректируют ошибки, вызванные действием помех. Код называется корректирующим, если он позволяет обнаруживать или обнаруживать и исправлять ошибки при приеме сообщений. Код, посредством которого только обнаруживаются ошибки, носит название обнаруживающего кода. Исправление ошибки при таком кодировании обычно производится путем повторения искаженных сообщений. Запрос о повторении передается по каналу обратной связи. Код, исправляющий обнаруженные ошибки, называется исправляющим кодом. В этом случае фиксируется не только сам факт наличия ошибок, но и устанавливается, какие кодовые символы приняты ошибочно, что позволяет их исправить без повторной передачи. Известны также коды, в которых исправляется только часть обнаруженных ошибок, а остальные ошибочные комбинации передаются повторно.

Для того чтобы код обладал корректирующими способностями, в кодовой последовательности должны содержаться дополнительные (избыточные) символы, предназначенные для корректирования ошибок. Чем больше избыточность кода, тем выше его корректирующая способность, но и тем ниже скорость передачи информации по каналу.

Корректирующие коды строятся так, чтобы количество комбинаций k превышало число сообщений n источника. Однако в этом случае используется лишь n комбинаций источника из общего числа для передачи информации. Такие комбинации называются разрешенными, а остальные - запрещенными. Приемнику известны все разрешенные и запрещенные комбинации. Если при приеме некоторого разрешенного сообщения, в результате ошибки, оно попадает в разряд запрещенных, то такая ошибка будет обнаружена, а также, при определенных условиях, исправлена. Следует заметить, что при ошибке, приводящей к появлению другого разрешенного сигнала, такая ошибка не обнаружима.

Таким образом, если комбинация на выходе оказывается запрещенной, то это указывает на то, что при передаче возникла ошибка. Отсюда видно, что избыточный код позволяет обнаружить, в каких принятых кодовых комбинациях имеются ошибочные символы. Безусловно, не все ошибки могут быть обнаружены. Существует вероятность того, что, несмотря на возникшие ошибки, принятая последовательность кодовых символов окажется разрешенной комбинацией (но не той, которая передавалась). Однако при разумном выборе кода вероятность необнаруженной ошибки (т.е. ошибки, которая переводит разрешенную комбинацию в другую разрешенную комбинацию) может быть сделана очень малой.

Эффективность помехоустойчивого кода возрастает при увеличении его длины, так как вероятность ошибочного декодирования уменьшается при увеличении длины кодируемого сообщения.

Все известные в настоящее время коды могут быть разделены на две большие группы: блочные и непрерывные. Блочные коды характеризуются тем, что последовательность передаваемых символов разделена на блоки. Операции кодирования и декодирования в каждом блоке производится отдельно. Непрерывные коды характеризуются тем, что первичная последовательность символов, несущих информацию, непрерывно преобразуется по определенному закону в другую последовательность, содержащую избыточное число символов. При этом процессы кодирования и декодирования не требует деления кодовых символов на блоки.

Разновидностями как блочных, так и непрерывных кодов являются разделимые (с возможностью выделения информационных и контрольных символов) и неразделимые коды. Наиболее многочисленным классом разделимых кодов составляют линейные коды. Их особенность состоит в том, что контрольные символы образуются как линейные комбинации информационных символов.

Расстоянием Хэмминга d между двумя последовательностями называется число позиций, в которых две последовательности отличаются друг от друга.

Ошибка обнаруживается всегда, если её кратность, т.е. число искаженных символов в кодовой комбинации: qd, то некоторые ошибки также обнаруживаются. Однако полной гарантии обнаружения ошибок нет, т.к. ошибочная комбинация может совпадать с какой-либо разрешенной комбинацией. Минимальное кодовое расстояние, при котором обнаруживаются любые одиночные ошибки: d=2.

Чаще всего применяются систематические линейные коды, которые строятся следующим образом. Сначала строится простой код длиной n, т.е. множество всех n-последовательностей двоичных символов, называемых информационными. Затем к каждой из этих последовательностей приписывается r=p-n проверочных символов, которые получаются в результате некоторых линейных операций над информационными символами.

Простейший систематический код (n, n-1) строится путём добавления к комбинации из n-1 информационных символов одного проверочного, равного сумме всех информационных символов по модулю 2. Легко видеть, что эта сумма равна нулю, если среди информационных символов содержится чётное число единиц, и равна единице, если число единиц среди информационных символов нечётное. После добавления проверочного символа образуются кодовые комбинации, содержащие только чётное количество единиц. Такой код имеет, поскольку две различные кодовые комбинации, содержащие по четному числу единиц, не могут различаться в одном разряде. Следовательно, он позволяет обнаружить одиночные ошибки. Легко убедиться, что, применяя этот код в схеме декодирования с обнаружением ошибок, можно обнаруживать все ошибки нечетной кратности. Для этого достаточно подсчитать число единиц в принятой комбинации и проверить, является ли оно четным. Если при передаче комбинации произойдут ошибки в нечетном числе разрядов q, то принятая комбинация будет иметь нечетный вес и, следовательно, окажется запрещенной. Такой код называют кодом с одной проверкой на четность.

Простейшим примером кода с проверкой на четность является код Бодо, в котором к пятизначным комбинациям информационных символов добавляется шестой контрольный символ. Вероятность необнаруженной кодом ошибки при независимых ошибках определяется биномиальным законом:

где - число ошибочных комбинаций:

Таким образом, учитывая, что, используя формулы (8.1) и (8.2), найдём вероятность необнаружения ошибки:

Определим избыточность рассчитанного канала связи, используя результаты расчётов, произведённых в параграфе 7, используя результаты формул (7.2) и (7.3):

Избыточность кода Бодо (6,5)

Избыточность кода Хэмминга (7,4)

При сравнении (8.3), (8.4) и (8.5) заметно, что избыточность канала позволяет применить только обнаруживающий код Бодо (6,5) с проверкой на чётность.

Рассчитаем вероятность ошибки корректирующего кода, учитывая оставшееся свободное время (см. п. 3):

Как следует из выражения (8.6), нет смысла применять помехоустойчивое кодирование, потому что высока вероятность ошибки корректирующего кода.

Рассмотрим канал связи, представленный на рис. 5-1. На его передающий конец подается сигнал x(t) , который поступает на вход приемника в искаженном шумом n(t) виде y(t) [Л. 47, 53]. Введем понятие пропускной способности канала связи. Пропускная способность канала связи определяется как максимальная величина относительной информации выходного сигнала относительно входного:

где I(x, y) - относительная информация, задаваемая формулой (7-8), причем все сигналы рассматриваются как эквивалентные дискретные (рис. 7-1), так что


Иногда величина называется скоростью передачи информации по каналу связи. Эта величина равна количеству относительной информации, передаваемой в единицу времени. За единицу времени при дискретном канале связи удобно считать время передачи одного символа. В этом случае в формулах для скорости передачи информации понимают энтропии и количества информации на один символ. Для непрерывных каналов связи используются две единицы измерения или обычная единица (к примеру, секунда), или интервал времени между отсчетами , в этом последнем случае в формулах понимаются дифференциальные энтропии на один отсчет (или степень свободы). Нередко в руководствах специально не указывается, какая конкретно из двух единиц применяется. В связи с этим часто используют другую формулу для средней скорости передачи информации


где N=2f c t 0 . Если отсчеты независимы, то V=I 1 (х, y) . Очевидно, что с помощью величины V пропускная способность канала связи может быть определена по формуле


Для энтропии шума можно написать:

Н(n)=2f c t 0 H 1 (n),


Энтропия шума на один отсчет для нормального шума.

Аналогичные формулы можно записать для нормальных сигналов х и y .

Формулу (7-10) для единицы отсчета можно записать в виде

Смысл этого определения требуется разъяснить. Отметим, что максимум здесь взят по множеству распределений вероятности входных сигналов при неизменном шуме, которое предполагается заданным. В частном случае это множество распределений может состоять из одного нормального, как это часто и считается.

Если пропускная способность одного канала связи больше, чем другого (С 1 >С 2) при остальных одинаковых условиях, то физически это означает, что в первом случае совместная плотность распределения вероятности входного и выходного сигналов больше, чем во втором, так как с помощью формулы (7-11) нетрудно убедиться, что пропускная способность определяется в основном величиной совместной плотности распределения вероятности. Если относительная информация (или энтропия) выходного сигнала относительно входного больше, то канал обладает большей пропускной способностью. Ясно, что если шумы возрастают, то пропускная способность падает.

Если вероятностная связь выходного и входного сигналов пропадает, то

р(х,y)=р(х)р(y)

и в формуле (7-11) логарифм и, следовательно, пропускная способность становятся равными нулю.

Другой случай, когда

р(х,y)=р(х|y)р(у)

стремится к нулю, требует детального рассмотрения, так как log р(х,y) стремится к - ∞. Если р(y)→ 0, то


Рассуждения можно продолжить следующим образом. Так как вероятность появления выходного сигнала стремится к нулю, то можно положить, что вероятность появления сигнала х не зависит от y , т. е.

p(х|y)=р(х)


В этом случае пропускная способность равна нулю, что согласуется с физической интерпретацией, т. е. если на выходе канала связи не появляется никакого сигнала [ни полезного x(t) , ни шумов n(t) ], это означает, что в канале есть "пробка" (разрыв). Во всех остальных случаях пропускная способность отлична от нуля.

Естественно определить пропускную способность канала связи так, чтобы она не зависела от входного сигнала. Для этого введена операция максимизации, которая в соответствии с экстремальными свойствами энтропии чаще всего определяет входной сигнал с нормальным законом распределения. Покажем, что если x(t) и n(t) независимы и y(t)=x(t)+n(t) , то

I(х,y)=Н(y)-Н(n), (7-12)

где Н(y) и Н(n) - дифференциальные энтропии принимаемых сигнала и шума. Условие (7-12) означает линейность канала связи в том смысле, что шум просто добавляется к сигналу как слагаемое. Оно непосредственно следует из

I(х,y)=Н(x)-Н(х|y)=Н(y)-Н(y|х).

Так как x и n статистически независимы, то

Подставив это соотношение в предыдущее, получим (7-12). Очевидно, если шум аддитивен и не зависит от входного сигнала, то максимальная скорость передачи сообщений по каналу связи (максимальная пропускная способность) достигается при maxН(y) , так как

Рассмотрим гауссов канал связи, исходя из следующих предположений: ширина полосы частот канала ограничена частотой f с ; шум в канале - нормальный белый со средней мощностью на единицу полосы S n =S n 2 ; средняя мощность полезного сигнала Р x ; сигнал и шум статистически независимы; выходной сигнал равен сумме полезного сигнала и шума.

Очевидно, что в соответствии с формулой (7-4) пропускная способность такого канала определится как

H(n)=Flog2πeS n f c . (7-14)

Так как сигнал и шум статистически независимы, то они не коррелированы между собой, поэтому средняя мощность суммарного сигнала

Р y =Р x +S n f c =Р x +Р n

В соответствии с формулой (7-13) необходимо найти максимум энтропии сигнала y(t) на один отсчет при заданной средней мощности. В силу экстремальных свойств энтропии (см. гл. 6) сигнал y(t) должен быть распределен нормально. Белый шум в полосе f c эквивалентен сигналу в этой же полосе со спектральной плотностью S , если равны их средние мощности, т. е.


Действительно, для нормального сигнала была доказана формула для энтропии на один отсчет


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

(6)

где V = 1/ средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.

Ранее мы рассмотрели кодирование и передачу информации по каналу связи в идеальном случае, когда процесс передачи информации осуществляется без ошибок. В действительности этот процесс неизбежно сопровождается ошибками (искажениями). Канал передачи, в котором возможны искажения, называется каналом с помехами (или шумами). В частном случае ошибки возникают в процессе самого кодирования, и тогда кодирующее устройство может рассматриваться как канал с помехами.

Наличие помех приводит к потере информации. Чтобы в условиях наличия помех получить на приемнике требуемый объем информации, необходимо принимать специальные меры. Одной из таких мер является введение так называемой «избыточности» в передаваемые сообщения; при этом источник информации выдает заведомо больше символов, чем это было бы нужно при отсутствии помех. Одна из форм введения избыточности – простое повторение сообщения. Таким приемом пользуются, например, при плохой слышимости по телефону, повторяя каждое сообщение дважды. Другой общеизвестный способ повышения надежности передачи состоит в передаче слова «по буквам» – когда вместо каждой буквы передается хорошо знакомое слово (имя), начинающееся с этой буквы.

Пропускная способность канала, когда число элементарных символов более двух и когда искажения отдельных символов зависимы может быть определена с помощью второй теоремы Шеннона. Зная пропускную способность канала, можно определить верхний предел скорости передачи информации по каналу с помехами.

Рассмотрим на примере: Пусть имеется источник информации Х, энтропия которого в единицу времени равна , и канал с пропускной способностью Х. Тогда если

то при любом кодировании передача сообщений без задержек и искажений невозможна.

то всегда можно достаточно длинное сообщение закодировать так, чтобы оно было передано без задержек и искажений с вероятностью, сколь угодно близкой к единице.

Задача 2 : Выяснить, достаточна ли пропускная способность каналов для передачи информации, поставляемой источником, если имеются источник информации с энтропией в единицу времени =110 (дв. ед.) и количество каналов связи n = 2 , каждый из них может передавать в единицу времени К = 78 двоичных знаков (0 или 1); каждый двоичный знак заменяется противоположным с вероятностью μ=0.17 .

η(μ) = 0,434587

η(1 – μ) = 0,223118

η(μ) + η(1 – μ) = 0,434587 + 0,223118 = 0,657688

На один символ теряется информация 0,584239 (дв. ед.).

Пропускная способность канала равна:

С = 78∙(1 – 0,657688) =26,7≈27 двоичных единиц в единицу времени.

Максимальное количество информации, которое может быть передано по двум каналам в единицу времени:

27∙2 = 54 (дв. ед.), чего не достаточно для обеспечения передачи информации от источника, так как источник передает 110 дв. ед. в единицу времени. Для обеспечения передачи информации в достаточном объеме и без искажения необходимо увеличить количество пропускных каналов связи до трех. Тогда максимальное количество информации, которое может быть передано по трем каналам в единицу времени:

3*54=162 двоичных единиц в единицу времени. 162>110, следовательно информация будет передаваться без искажений.

Для передачи информации без задержек можно:

1. Использовать способ кодирования-декодирования;

2. Применять компандирование сигнала;

3. Увеличить мощность передатчика;

4. Применять дорогие линии связи с эффективным экранированием и малошумящей аппаратурой для снижения уровня помех;

5. Применять передатчики и промежуточную аппаратуру с низким уровнем шума;

6. Использовать для кодирования более двух состояний;

7. Применять дискретные системы связи с применением всех посылок для передачи информации.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13



Рекомендуем почитать

Наверх