Прием и передача информации. Навыки человеческого общения в чистом виде состоят из приема и передачи информации. Естественный язык долгое время считался идеальной моделью для мыслительной функции. Интеллектуальная деятельность и язык проецируются друг на

Скачать на Телефон 31.03.2019
Скачать на Телефон

Тема № 7

Принципы построения многоканальных систем передачи

Тема занятие № 2

Временное разделение каналов

Первый учебный вопрос

Временное разделение каналов

Многоканальные системы передачи с временным разделением ка­налов (ВРК) широко применяются для передачи аналоговой и дис­кретной информации.

Временное разделение каналов возможно лишь в случае импульсной модуляции.

При большой скважности между импульсами одного кана­ла остается большой промежуток времени, в котором можно разместить импульсы других каналов. Все каналы занимают одну и ту же полосу частот, но линия связи используется поочередно для периодической пе­редачи канальных сигналов. Частоту повторения канальных сигналов выбирают согласно теореме Котельникова. Для синхронизации работы переключателей передатчика и приемника передают вспомогательные синхронизирующие импульсы, для которых отводят один или несколь­ко каналов. При ВРК используют различные виды импульсной моду­ляции в каналах: ФИМ, ШИМ, ИКМ, ДМ и др. Для радиолиний при­меняют двойную модуляцию: ИКМ-ОФМн, ФИМ-ЧМ и др.

На рис.7.2.1 приведена структурная схема многоканальной системы (МКС) с временнвым разделением каналов (ВРК), где обо­значено:

М- модулятор, ПБ - промежуточный блок, ГИ- генератор импульсов, СТ - счетчик, ДС - декодер, ГН - генератор несущей, ПРД - передатчик, ЛС - линия связи, ИП - источник помех, ПРМ - приемник, Д - детектор, ВСИ - выделитель синхроимпульса, И - схема совпадения.

Рис.7.2.1. Структурная схема многоканальной системы с временным разделением канала

Блоки ТИ, СТ, ДС образуют распределительную ли­нию РЛ, которая обведена штриховой пунктирной линией.

Первый импульс ГИ появляется на первом отводе ДС, второй - на втором и т. д., N-й импульс - на N-м (последнем). Следующий импульс N + 1 появится вновь на первом входе ДС и далее процесс повторяется. На отводах ДС образуются периодические последовательности импуль­сов, сдвинутые во времени друг относительно друга. Первая последовательность импульсов поступает на управляющий вход формиро­вателя синхроимпульсов ФСИ, остальные - на входы канальных модуляторов М (первая ступень модуляции). На их вторые входы по­ступают передаваемые информационные сигналы, которыми модули­руются высокочастотные импульсы с ДС по одному из их параметров (амплитуде, длительности и т. д.).

Принцип функционирования представленной схемы поясняется временными диаграммами (рис.7.2.2 а-г) для случая АИМ в канальных модуляторах Мi.

Рис.7.2.2. Временная диаграмма работы схемы МКС с ВРК

Последние представ­ляют собой дискретизаторы, выполненные на ключевых схемах или мультиплексорах. Рассмотрим сначала модуляторы АИМ на ключах, число которых N = 4. Причем первый канал отведен под синхроим­пульс, а три остальных - под информационные сигналы. Синхросиг­нал СС отличается от информационных импульсов каким-либо пара­метром, например длительностью или амплитудой. Первый импульс с ГИ (рис.7.2.2 д) открывает первый ключ, формируя СС на его вы­ходе, второй импульс - второй ключ и пропускает на свой выход со­ответствующую часть сигнала первого канала, третий импульс - часть сигнала второго канала и так до четвертого импульса. Пятый импульс вновь формирует СС и т. д. Поскольку выходы всех ключей соединены между собой параллельно, то суммарный (групповой) сигнал состоит из неперекрывающихся во времени импульсов. В этом случае говорят, что каналы уплотнены во времени. Далее групповой сигнал (рис.7.2.2 д) после усиления в блоке ПБ поступает в качестве модулирующего на вторую ступень модуляции М, после чего он усиливается в блоке ПРД и по линии связи поступает на приемную сторону.

На практике чаще всего используется не АИМ, а ИКМ, в состав которой входит и АИМ. Остальные же опе­рации ИКМ (квантование по уровню, кодирование) должны осуще­ствляться в блоке ПБ.

На приемной стороне сигнал с линии поступает в ПРМ, где он фильтруется, усиливается, а за­тем детектируется в блоке Д (см. рис. 12.5) для получения группо­вого сигнала (см. рис.7.2.2 е). Если в каналах использована АИМ, то групповой сигнал после усиления в блоке ПБ поступает сразу на одни входы всех схем сов­падения И, на другие входы кото­рых подаются импульсы синхро­сигнала СС (рис.7.2.2 ж) с выхода распределителя РЛ. Работа по­следнего такая же, как и на пере­дающей стороне, за исключением того, что ГИ синхронизирован им­пульсами СИ, выделенными из группового сигнала. Каждая схе­ма совпадения И открывается на время, определяемое длительно­стью импульса распределителя, и пропускает на свой выход сигнал своего канала. В схемах И и осу­ществляется ВРК (рис.7.2.2 з-к). На выходе каждой такой схемы имеется ФНЧ, который выполняет функции второй ступени демоду­ляции, преобразуя сигнал АИМ в передаваемый аналоговый сигнал. Если же канальные сигналы циф­ровые (с ИКМ), то в блоке ПБ приемника должно иметь место деко­дирование, преобразующее ИКМ в АИМ. Далее групповой сигнал с АИМ разделяется описанным выше способом.

Схемы И приемника выполняют роль временных параметрических фильтров или ключей.

При ВРК тоже имеют место взаимные помехи, которые обуслов­лены двумя причинами: линейными искажениями и несовершенст­вом синхронизации. Действительно, при ограничении спектра импуль­сов (линейные искажения) их фронты "заваливаются", и импульсы одного канала накладываются на импульсы другого, от чего и обра­зуются переходные помехи. Для снижения их уровня вводят защитные интервалы, что соответствует некоторому расширению спектра сиг­нала.

Эффективность использования частотного спектра при ВРК практически (не теоретически) хуже, чем при ЧРК: с увеличением числа каналов растет полоса частот. Зато при ВРК отсутствуют помехи нелинейного происхождения и аппаратура значительно проще, а пик-фактор сигнала меньше, чем при ЧРК. Существенным преимущест­вом ВРК является высокая помехоустойчивость импульсных методов передачи (ИКМ, ФИМ и др.).

При ВРК просто выделить каналы на приемной стороне без какого-либо ограничения их качества. Аппара­тура имеет малые размеры, массу, что обусловлено широким исполь­зованием интегральных микросхем, элементов цифровой вычисли­тельной техники, микропроцессоров.

Основной недостаток ВРК - необходимость обеспечения синхронизации передающей и приемной сторон системы передачи.

Отметим, что при ВРК канальные сигналы ортогональны между собой, поскольку они не перекрываются во времени. Это значит, что при их передаче может быть использовано и фазовое разделение ка­налов (ВФРК). Примером тому может являться однополосная пере­дача цифровых сигналов, минимальная частотная манипуляция и др.

Автоматика, телемеханика и связь на железнодорожном транспорте (АТС) Многоканальная телефонная связь и методы разделения каналов

Многоканальная телефонная связь и методы разделения каналов

Многоканальная телефонная связь (МТС)

При обычной телефонной связи число одновременно действующих соединений должно быть меньше или равно числу предоставляемых каналов связи, а это удорожает строительство кабельных линий при большом числе абонентов. Выходом в этом случае является организация многоканальной связи на некоторых участках телефонной сети.

СПИ - система преобразования информации;

ТЛФ - телефон;

ГК - групповой канал;

Д - делитель;

ГС - групповой сигнал.

Каналы тональной частоты ТА имеют диапазон 0,4 - 3,1 кГц и объединяются в групповой сигнал, которые занимают полосу частот N (3,1 кГц + защитный интервал). Защитный интервал примерно равен 0,3 кГц.

Если изобразить сетку частот f, ты мы увидим, что каналы расположены следующим образом

1, 2, …, N - номера телефонных каналов.

Преимущество многоканальной телефонной связи состоит в уменьшении затрат на прокладку линий связи, поскольку по одной паре проводов удается передать одновременно несколько разговоров. Полоса пропускания воздушной линии связи со стальными проводниками составляет 30 кГц, с медными - 150 кГц, для кабельных линий связи - 10 МГц, для коаксиального кабеля примерно - 1000 МГц.

Реально используются следующие варианты по числу каналов:

1-й уровень - 12 телефонных каналов.

2-й уровень - 60 каналов.

3-й уровень - 300 каналов.

Методы разделения каналов

1. Частотное разделение каналов (ЧРК) - FDMA

Данный метод стоится с применением многоканальных фильтров и преобразователей частоты.

ПФ - полосовой фильтр;

ПЧ - преобразователь частоты;

ТЛФ - телефонный аппарат;

С - сумматор.

Преобразователь частоты с номером i производит амплитудную модуляцию с i-го телефонного аппарата, полосовым фильтром выделяется верхняя или нижняя боковые посолы амплитудно-модулированного сигнала. А в сумматоре происходит формирование группового сигнала. После передачи по общему каналу процесс обработки происходит в обратном направлении.

2. Временное разделение каналов (ВРК) - TDMA

При временном разделении каналов сигнал с каждого телефонного аппарата преобразуется в цифровую форму. При этом формируются пакеты данных, содержащие определенное число бит (бит - единица информации в цифровом виде). Сформированные пакеты для каждого телефонного канала передаются в специально отведенные временные слоты, которые делятся на временные каналы. Отдельные слоты разделены защитными временными интервалами.

Принцип временного разделения каналов широко используется в современных системах передачи информации, поскольку позволяет сократить избыточность информации при сжатии данных цифровыми методами. Временное разделение каналов используется не только в проводных сетях общего пользования, но и в сотовых системах связи.

3. Кодовое разделение каналов (КРК) - CDMA

Принцип кодового разделения каналов заключается в разделении каналов по кодам.

4. Спектральное разделение каналов (СРК) - WDMA

Принцип спектрального разделения заключается в разделение каналов по длине волны.

Принципы многоканальной передачи Используемые методы разделения каналов (РК) можно классифицировать на линейные и нелинейные (комбинационные). В большинстве случаев разделения каналов каждому источнику сообщения выделяется специальный сигнал, называемый канальным. Промодулированные сообщениями канальные сигналы объединяются, в результате чего образуется групповой сигнал (ГС). Если операция объединения линейна, то получившийся сигнал называют линейным групповым сигналом. За стандартный канал принимают канал тональной частоты (канал ТЧ), обеспечивающий передачу сообщений с эффективно передаваемой полосой частот 300… 3400 Гц, соответствующей основному спектру телефонного сигнала.

Многоканальные системы образуются путем объединения каналов ТЧ в группы, обычно кратные 12 каналам. В свою очередь, часто используют «вторичное уплотнение» каналов ТЧ телеграфными каналами передачи данных. Обобщённая структурная схема системы многоканальной связи

Канальные передатчики вместе с суммирующим устройством образуют аппаратуру объединения. Групповой передатчик М, линия связи ЛС и групповой приемник П составляют групповой канал связи (тракт передачи), который вместе с аппаратурой объединения и индивидуальными приемниками составляет систему многоканальной связи. Иначе говоря, на приемной стороне должна быть предусмотрена аппаратура разделения.

Чтобы разделяющие устройства были в состоянии различать сигналы отдельных каналов, должны существовать определенные признаки, присущие только данному сигналу. Такими признаками в общем случае могут быть параметры переносчика, например амплитуда, частота или фаза в случае непрерывной модуляции гармонического переносчика. При дискретных видах модуляции различающим признаком может служить и форма сигналов. Соответственно различаются и способы разделения сигналов: частотный, временной, фазовый и другие.

Таким образом, на выходе четырёхполюсника наряду с частотами входных сигналов (ω, Ω) появились: постоянная составляющая вторые гармоники входных сигналов составляющие суммарной (ω + Ω) и разностной (ω – Ω) частот. (2ω, 2Ω); Информация будет иметь место и в сигналах с частотами (ωн + Ω) и (ωн – Ω), которые расположены зеркально по отношению к ω и называются верхней (ω + Ω) и нижней (ω – Ω) боковыми частотами. Если на модулятор подать сигнал несущей частоты U 1(t) = Um∙Cosωнt и сигнал тональной частоты в полосе Ωн … Ωв (где Ωн = 0. 3 к. Гц, Ωв = 3. 4 к. Гц), то спектр сигнала на выходе четырёхполюсника будет иметь вид:

Спектр сигнала на выходе четырехполюсника Полезными продуктами преобразования (модуляции) являются верхняя и нижняя боковые полосы. Для восстановления сигнала на приёме на вход демодулятора достаточно подать несущую частоту (ωн) и одну из боковых частот.

В МСП-ЧРК по каналу передаётся только сигнал одной боковой полосы, а несущая частота берётся от местного генератора. На выходе каждого канального модулятора включается полосовой фильтр с полосой пропускания ∆ω = Ωв – Ωн = 3. 1 к. Гц. С целью уменьшения влияния соседних каналов (переходных помех), обусловленного неидеальностью АЧХ фильтров, между спектрами сигнальных сообщений вводятся защитные интервалы. Для каналов ТЧ они равны 0. 9 к. Гц. Спектр группового сигнала с защитными интервалами

Принципы построения аппаратуры ЧРК В системах ЧРК с числом каналов 12 и более реализуется принцип многократного преобразования частоты Вначале каждый из каналов ТЧ «привязывается» к той или иной 12 -канальной группе, называемой первичной группой (ПГ). Оконечное оборудование (включающее АОК и АРК) строится с таким расчётом, чтобы на каждом этапе преобразования частоты формировались всё более и более укрупнённые группы каналов ТЧ. Причём в любой группе число каналов кратно 12.

Каждый канал содержит следующие индивидуальные устройства: на передаче ограничитель амплитуд ОА, модулятор М и полосовой фильтр ПФ; на приёме полосовой фильтр ПФ, демодулятор ДМ, фильтр нижних частот ФНЧ и усилитель низкой частоты УНЧ. Для преобразования исходного сигнала на модуляторы и демодуляторы каждого канала подаются несущие частоты, кратные 4 к. Гц. При организации телефонной связи можно использовать либо двухполосную двухпроводную, либо однополосную четырёхпроводную систему передачи. Схема, изображённая на рисунке, относится ко второму варианту.

Если канал используется для телефонной связи, то двухпроводный участок цепи от абонента соединяется с четырёхпроводным каналом через дифференциальную систему (ДС). В случае передачи других сигналов (телеграфных, данных, звукового вещания и т. д.), для которых необходим один или несколько односторонних каналов, ДС отключается. Амплитудные ограничители предотвращают перегрузку групповых усилителей (а, следовательно, уменьшают вероятность возникновения нелинейных помех) в моменты появления пиковых значений напряжений нескольких речевых сигналов.

Одинаковые полосы частот пяти ПГ разносятся по частоте в полосе 312 … 552 к. Гц и образуют 60 -канальную (вторичную) группу (ВГ). С помощью полосовых фильтров ПФ 1 – ПФ 5, подключенных к выходам групповых преобразователей, образуются сигналы вида ОБП с полосой частот 48 к. Гц каждый. В результате сложения этих неперекрывающихся по спектру пяти сигналов образуется спектр ВГ с полосой частот 240 к. Гц.

Для снижения переходных влияний между сигналами ВГ, передаваемыми по смежным трактам, в спектре ВГ могут использоваться как прямые, так и инверсные спектры ПГ 2 – ПГ 5. В первом случае на ГП 2 – ГП 5 подаются несущие частоты 468, 516, 564, 612 к. Гц, а соответствующие полосовые фильтры выделяют нижние боковые полосы (как показано на рисунке выше). Во втором случае на ГП 2 – ГП 5 подаются несущие частоты 300, 348, 396, 444 к. Гц, а полосовыми фильтрами ПФ 2 – ПФ 5 выделяются верхние боковые полосы. Несущая частота для ПГ 1 в обоих случаях одинаковая (420 к. Гц), и спектр ПГ 1 не инверсируется.

Основные характеристики групповых сообщений Эти параметры определяются соответствующими частотными, информационными и энергетическими характеристиками. По рекомендации МККТТ средняя мощность сообщения в активном канале в точке с нулевым относительным уровнем устанавливается равной 88 мк. Вт0 (– 10. 6 д. Бм 0). Однако при расчёте Pср МККТТ рекомендует принимать величину P 1 = 31. 6 мк. Вт0 (– 15 д. Бм 0) Если N ≥ 240, то средняя мощность группового сообщения в точке нулевого относительного уровня Pср = 31. 6 N, мк. Вт, а соответствующий уровень средней мощности pср = – 15 + 10 lg N , д. Бм 0.

Если N

Временное разделение каналов (ВРК), аналоговые методы передачи При ВРК на передающей стороне непрерывные сигналы от абонентов передаются поочерёдно. Принцип временного разделения каналов

Для этого эти сигналы преобразуются в ряд дискретных значений, периодически повторяющихся через определённые интервалы времени Тд, которые называются периодом дискретизации. Согласно теореме В. А. Котельникова период дискретизации непрерывного, ограниченного по спектру сигнала с верхней частотой Fв >> Fн должен быть равен Tд = 1/Fд, Fд ≥ 2 Fв Интервал времени между ближайшими импульсами группового сигнала Тк называется канальным интервалом или тайм-слотом (Time Slot).

Из принципа временного объединения сигналов следует, что передача в таких системах осуществляется циклами, то есть периодически в виде групп из Nгр = N + n импульсов, где N – количество информационных сигналов, n – количество служебных сигналов (импульсов синхронизации – ИС, служебной связи, управления и вызовов). Тогда величина канального интервала ∆tк = Тд/Nгр Таким образом, при ВРК сообщения от N абонентов и дополнительных устройств передаются по общему каналу связи в виде последовательности импульсов, длительность каждого из которых τи

Групповой сигнал при ВРК с ФИМ При временном разделении каналов возможны следующие виды импульсной модуляции: АИМ – амплитудно-импульсная модуляция; ШИМ – широтно-импульсная модуляция; ФИМ – фазоимпульсная модуляция.

Каждый из перечисленных методов импульсной модуляции имеет свои достоинства и недостатки. АИМ – проста в реализации, но плохая помехоустойчивость. Используется как промежуточный вид модуляции преобразовании аналогового сигнала в цифровой При ШИМ спектр сигнала меняется в зависимости от длительности импульса. Минимальному уровню сигнала соответствует минимальная длительность импульса и, соответственно, максимальный спектр сигнала. При ограниченной полосе канала такие импульсы сильно искажаются.

В аппаратуре с ВРК и аналоговыми методами модуляции наибольшее применение получила ФИМ, так как при её использовании можно уменьшить мешающее действие аддитивных шумов и помех путём двухстороннего ограничения импульсов по амплитуде, а также оптимальным образом согласовать неизменную длительность импульсов с полосой пропускания канала. Поэтому в системах передачи с ВРК используется, в основном, ФИМ. Характерной особенностью спектров сигналов при импульсной модуляции является наличие составляющих с частотами Ωн…Ωв передаваемого сообщения uк (t) Эта особенность спектра указывает на возможность демодуляции АИМ и ШИМ фильтром нижних частот (ФНЧ) с частотой среза, равной Ωв.

Демодуляция не будет сопровождаться искажениями, если в полосу пропускания ФНЧ не попадут составляющие нижней боковой полосы (ωд – Ωв) … (ωд – Ωн), а это условие будет выполняться, если выбрать Fд > 2 Fв. Обычно принимают ωд = (2. 3 … 2. 4)Ωв и при дискретизации телефонного сообщения с полосой частот 0. 3 … 3. 4 к. Гц частоту дискретизации Fд = ωд/2π выбирают равной 8 к. Гц, к. Гц а период дискретизации Тд = 1/Fд = 125 мкс При ФИМ составляющие спектра модулирующего сообщения (Ωн…Ωв) зависят от его частоты и имеют малую амплитуду, поэтому демодуляция ФИМ производится только путём преобразования в АИМ или ШИМ с последующей фильтрацией в ФНЧ.

Для обеспечения работы канальных модуляторов и дополнительных устройств, последовательности импульсов с частотой дискретизации Fд сдвинуты относительно первого канала на i·∆tк, где i – номер канала. Таким образом, моменты начала работы КМ определяются запускающими импульсами от РК, который определяет моменты подключения к общему широкополосному каналу соответствующего абонента или дополнительного устройства. Полученный групповой сигнал uгр(t) подаётся на вход регенератора (Р), который придаёт дискретным сигналам различных каналов одинаковые характеристики, например одинаковую форму импульса.

Все устройства, предназначенные для образования сигнала uгр(t): КМ 1 … КМN, РК, ГИС, ДУВ, ДСС, Р – входят в аппаратуру объединения сигналов (АО). Для обеспечения правильного разделения каналов РК′ АР должен работать синхронно и синфазно с РК АО, что осуществляется с помощью импульсов синхронизации (ИС), выделяемых соответствующими селекторами (СИС) и блоком синхронизации (БС). Сообщения с выходов КД поступают к соответствующим абонентам через дифференциальные системы.

Помехоустойчивость систем передачи с ВРК во многом определяется точностью и надёжностью работы системы синхронизации и распределителей каналов, установленных в аппаратуре объединения и разделения каналов Для обеспечения точности работы системы синхронизации импульсы синхронизации (ИС) должны иметь параметры, позволяющие наиболее просто и надёжно выделять их из последовательности импульсов группового сигнала u*гр(t). Наиболее целесообразным при ФИМ оказалось применение сдвоенных ИС, для передачи которых выделяют один из канальных интервалов ∆tк в каждом периоде дискретизации Тд.

Определим число каналов, которое можно получить в системе с ФИМ. Тд = (2∆tмакс + tз)Nгр, где tз – защитный интервал; ∆tмакс – максимальное смещение (девиация) импульсов. При этом полагаем, что длительность импульсов мала по сравнению с tз и tмакс. , Максимальная девиация импульсов при заданном количестве каналов Принимаем, поэтому

Учитывая, что при телефонной передаче Тд = 125 мкс, получим: при Nгр = 6 ∆tмакс = 8 мкс, при Nгр = 12 ∆tмакс = 3 мкс, при Nгр = 24 ∆tмакс = 1. 5 мкс. Помехоустойчивость системы с ФИМ тем выше, чем больше ∆tмакс. При передаче сигналов с ФИМ по радиоканалам на второй ступени (в радиопередатчике) может использоваться амплитудная (АМ) или частотная (ЧМ) модуляция. В системах с ФИМ – АМ обычно ограничиваются 24 каналами, а в более помехоустойчивой системе ФИМ – ЧМ – 48 каналами.

Тема: Принцип кодового разделения каналов

Принцип кодового разделения каналовCDMA (англ. Code Division Multiple Access) - множественный доступ с кодовым разделением.Каналы трафика при таком способе разделения среды создаются присвоением каждому пользователю отдельного числового кода, который распространяется по всей ширине полосы. Нет временного разделения, все абоненты постоянно используют всю ширину канала. Полоса частот одного канала очень широка, вещание абонентов накладываeтся друг на друга но, поскольку их коды отличаются, они могут быть дифференцированы.

Технология множественного доступа с кодовым разделением каналов известна давно. В СССР первая работа, посвященная этой теме, была опубликована еще в 1935 году ее автором Д.В. Агеевым.

После войны в течение долгого времени технология CDMA использовалась в военных системах связи, как в СССР, так и в США. Во второй половине 80-х годов военное ведомство США рассекретило данную технологию и началось ее использование в гражданских средствах связи. Способ применяется в сотовой связи (в России, например, оператором Skylink) и в спутниковой навигации (GPS).

Технология кодового разделения каналов CDMA, благодаря высокой спектральной эффективности, является радикальным решением дальнейшей эволюции сотовых систем связи.

Рисунок 42 Технология множественного доступа

с кодовым разделением каналов

CDMA2000 является стандартом 3G в эволюционном развитии сетей cdmaOne (основанных на IS-95). При сохранении основных принципов, заложенных версией IS-95A, технология стандарта CDMA непрерывно развивается и совершенствуется.

Последующее развитие технологии CDMA происходит в рамках технологии CDMA2000. При построении системы мобильной связи на основе технологии CDMA2000 1Х первая фаза обеспечивает передачу данных со скоростью до 153 кбит/с, что позволяет предоставлять услуги голосовой связи, передачу коротких сообщений, работу с электронной почтой, интернетом, базами данных, передачу данных и неподвижных изображений.

Рисунок 43 Построение системы мобильной связи

на основе технологии CDMA2000

Переход к следующей фазе CDMA2000 1xEV-DO происходит при использовании той же полосы частот 1,23 МГц, скорость передачи - до 2.4 Мбит/с в прямом канале и до 153 кбит/с в обратном, что делает эту систему связи отвечающей требованиям 3G и дает возможность предоставлять самый широкий спектр услуг, вплоть до передачи видео в режиме реального времени. Следующей фазой развития стандарта является 1ХEV-DO Rev A, что позволяет увеличить сетевую емкость и скорость передачи данных. На данном этапе обеспечивается передача данных со скоростью до 3.1 Мбит/с по направлению к абоненту и до 1.8 Мбит/с по направлению от абонента. Операторы смогут предоставлять те же услуги, что и на базе Rev. 0, а, кроме того, передавать голос, данные и осуществлять широковещание по IP сетям. В мире уже есть несколько таких дейсвующих сетей. Поскольку прогресс не стоит на месте, разработчики оборудования уже работают над реализацией следующей фазы - 1ХEV-DO Rev B, - что позволит достигнуть следующих скоростей на одном частотном канале: 4.9 Мбит/с к абоненту и 2.4 Мбит/с от абонента. К тому же будет обеспечиваться возможность объединения нескольких частотных каналов для увеличения скорости. Например, объединение 15-ти частотных каналов (максимально возможное количество) позволит достигать скоростей 73,5 Мбит/с к абоненту и 27 Мбит/с от абонента. Применение таких сетей - улучшенная работа чувствительных к временным задержкам приложений типа VoIP, Push to Talk, видеотелефония, параллельное использование голоса и мультимедиа, мультисессионные сетевые игры и др.



Основными компонентами коммерческого успеха системы CDMA2000 являются более широкая зона обслуживания, высокое качество речи (практически эквивалентное проводным системам), гибкость и дешевизна внедрения новых услуг. Данная технология обеспечивает высокую помехозащищенность, устойчивость канала связи от перехвата и прослушивания, что делает его привлекательным в использовании для всех категорий абонентов.

Также немаловажную роль играет низкая излучаемая мощность радиопередатчиков абонентских устройств. Так, для систем CDMA2000 максимальная излучаемая мощность составляет 250 мВт, в то время как для систем GSM-900 этот показатель равен 2 Вт (в импульсе), а для GSM-1800 1 Вт (в импульсе). Справедливости ради отметим, что мнение о вредном влиянии излучения мобильных телефонов на организм человека учеными так и не доказано, но и не опровергнуто.

Группа стандартов CDMA коренным образом отличается от своих собратьев по сотовой телефонии и эти стандарты по праву считаются стандартами 2.5 поколения. Если FDMA (NMT, AMPS, NAMPS) и его продолжение - TDMA (GSM, DAMPS) используют набор частотных диапазонов с разделением каждого канала на временные интервалы (для TDMA) для множественного доступа абонетов к услугам сотовой сети, то в CDMA всё по-другому.

CDMA использует технологию Direct Sequence (Pseudo Noise) Spread Spectrum (прямая последовательность (псевдошум) с широким спектром). Основа DSSS - использование шумоподобной несущей, и гораздо более широкой полосы, чем необходимо для обычных способов модуляции. Хотя DSSS была изобретена ещё в 1940-е, коммерческое применение началось только в 1995 году. Причиной тому - отсутствие технологий позволяющих создавать малогабаритные приёмопередатчики использующие DSSS.

Кратко о CDMA.

Представьте себе узкополосный сигнал промодулированный неким потоком данных со скоростью, например 9600 bps. Пусть есть уникальная, повторяющаяся, псевдослучайная цифровая последовательность со значительно большей скоростью, скажем 1.25 Mbps. Если менять фазу узкополосного сигнала в соответствии с псевдослучайной последовательностью, то мы получим шумоподобный сигнал с широким спектром, содержащий в себе информацию. Если рассмотреть, что происходит с точки зрения частоты - то получится что информационный сигнал "расплылся" (spread) по спектру шумоподобного сигнала (pseudonoise). Теперь осталось выдать этот широкополосный сигнал в эфир.

На пути от передатчика к приёмнику к сигналу добавятся помехи и сигналы других передатчиков. Принятый и демодулированный сигнал перемножим с точной копией шумоподобного сигнала, который использовался для модуляции (здесь необходима очень высокая степень синхронизации приёмника и передатчика) и получим узкополосную составляющую с высокой энергией на единицу частоты - переданный поток данных. Так как помехи и сигналы от других передатчиков не совпадают с использованным шумоподобным сигналом, то после перемножения они ещё больше расползутся по спектру и их энергия на единицу частоты уменьшится.

Таким образом, используя разные псевдослучайные последовательности (коды) можно организовать несколько независимых каналов передачи данных в одной и той же полосе частот.

Нужно сказать, что вышеприведенное описание технологии DSSS сильно упрощено, хотя, надеюсь, даёт представление о том, как это всё работает.

И чем CDMA лучше других?

В системах с частотным разделением каналов (как в FDMA, так и в TDMA) существует проблема так называемого "многократного использования" (reuse) частотных каналов. Чтобы не мешать друг другу, соседние базовые станции должны использовать разные каналы. Таким образом, если у БС 6 соседей (наиболее часто рассматриваемый случай, при этом зону каждой БС можно представить как шестиугольник, а всё вместе выглядит как пчелиные соты:)) то количество каналов, которые может использовать эта БС в семь раз меньше чем общее количество каналов в отведённом для сети диапазоне. Это приводит к уменьшению ёмкости сети и необходимости увеличивать плотность установки БС в густонаселённых районах. Для CDMA такой проблемы вообще нет. Все БС работают на одном и том же канале. Таким образом, частотный ресурс используется более полно. Ёмкость CDMA сети обычно в несколько раз выше, чем TDMA, и на порядок выше чем FDMA сетей.

Для того, чтобы телефоны находящиеся близко к БС не забивали своим сигналом более отдалённых абонентов, в CDMA предусмотрена плавная регулировка мощности, что приводит к значительному сокращению энергопотребления телефона вблизи БС и, соответственно, увеличению времени работы телефона без подзарядки.

Одной из приятных особенностей CDMA сетей является возможность "мягкого" перехода от одной БС к другой (soft handoff). При этом, возможна ситуация когда одного абонента "ведут" сразу несколько БС. Абонент просто не заметит, что его "передали" другой БС. Естественно, чтобы такое стало возможным, необходима прецизионная синхронизация БС. В коммерческих системах это достигается использованием сигналов времени от GPS (Global Positioning System) американской спутниковой системы определения координат.

CDMA это практически полностью цифровой стандарт. Обычно все преобразования информационного сигнала происходят в цифровой форме, и только радиочасть аппарата является аналоговой, причём гораздо более простой, чем для других групп стандартов. Это позволяет практически весь телефон выполнить в виде одной микросхемы с большой степенью интеграции, тем самым значительно снизив стоимость телефона.

Цифровая сущность CDMA весьма располагает к использованию этой технологии для безпроводной передачи данных. В рассмотренном выше примере мы задали не очень высокую скорость, однако существующие реализации CDMA позволяют многократно увеличивать скорость передачи данных, правда, за счет сокращения ёмкости сети.

Стандарты CDMA используют более современный кодек для оцифровки речи, что субъективно повышает качество передачи аналогового сигнала по сравнению с действующими TDMA стандартами.

Из минусов CDMA можно отметить необходимость использования достаточно широкой и неразрывной полосы, что не всегда возможно в современной обстановке дефицита частотного ресурса и большую сложность реализации данной технологии в "железе"

Перспективы CDMA

В мире, развитие CDMA идет нарастающими темпами. Наибольшее распространение получили стандарты IS-95 (800 MHz) и CDMA PCS (1900 MHz). На май 2000г в 43 странах использующих CDMA насчитывалось более 57 миллионов абонентов, причём с мая 1999 количество пользователей удвоилось. Исторически сложилось так, что CDMA наиболее распространён в Северной и Южной Америке и Юго-Восточной Азии. С принятием Китаем CDMA как федерального стандарта сомнений в том, что этот стандарт станет основным на нашей планете, практически не осталось.

Cтандарты CDMA изначально включали в себя функцию передачи данных и на сегодня, почти все современные CDMA телефоны способны предоставлять пользователю 14.4 Kbps цифровой канал. А сама сеть использует IP протокол для передачи данных. Таким образом, CDMA уже сейчас полностью Internet-совместима. Нет проблем и с более высокими скоростями. Некоторые операторы CDMA в US уже предоставляют услуги передачи данных со скоростями до 144 Kbps. Кроме того, система используемая этими операторами позволяет динамически изменять пропускную способность канала в зависимости от активности клиента и загрузки сети, тем самым оптимизируя использование ресурсов сети. По заявлениям CDMA Development Group уже сейчас достижима скорость 300 Kbps, что вплотную приближает существующие CDMA стандарты к 3-му поколению.

У CDMA гораздо меньше проблем с переходом к 3-му поколению по сравнению с TDMA системами. TIA/EIA (Telecommunication Industry Association / Electronic Industries Alliance) предолжила группу стандартов cdma2000 (IS-2000) которые являются развитием ныне действующего IS-95. Основные отличия cdma2000 от своего предшественника - большее количество диапазонов для использования в организации мобильной связи и увеличение скорости передачи данных до 1Mbps на физическом уровне. Также добавлены новые протоколы для обеспечения всевозможных сервисов. Особо следует подчеркнуть требование стандарта об обратной совместимости с IS-95. Все мобильные станции cdma2000 должны работать в сетях IS-95, и соответственно все базовые станции cdma2000 должны обслуживать мобильные станции IS-95. Более того, имеется требование обеспечения handoff"а (перехода от одной соты к другой) между cdma2000 и IS-95. Таким образом, возможна незаметная для пользователя миграция сети от IS-95 к cdma2000. Также примечателен факт, что стандартом предусмотрено использование некоторых диапазонов используемых ныне старыми аналоговыми стандартами (например Band Class 5 (NMT-450)) что даёт возможность операторам этих стандартов перейти от 1-го поколения сразу к 3-ему, постепенно отдавая участки своего диапазона под cdma2000, по мере увеличения количества абонентов пользующихся новым оборудованием. Однако даже в cdma2000 сохранена возможность работы мобильных и базовых станций в аналоговом режиме. Этот режим практически идентичен стандарту AMPS c A-Key идентификацией и предназначен для обеспечения связи там, где использование цифрового режима по тем или иным причинам невозможно.

Сdma2000 был принят в группу IMT-2000, которая определяет глобальное виденье организацией ITU (International Telecommunication Union) систем 3-го поколения, в качестве одного из основных радиоинтерфейсов, что позволяет предполагать его дальнейшее распространение. Причём из-за преимуществ перед TDMA технологиями (стандарт UWC-136 также предлагается в качестве одного из возможных радиоинтерфейсов в IMT-2000) вполне возможно распространение CDMA и в Европе, которая на данный момент является вотчиной TDMA стандарта GSM.



Рекомендуем почитать

Наверх