Intel hd graphics 6200 сравнение с картами. Железный эксперимент: играем в разрешении Full HD на встроенной в процессор графике. Интегрированная графика в десктопных Skylake

Прочие модели 24.02.2019
Прочие модели
Аффтар не несет ответственности за спаленное оборудование и т.п., короче я просто разместил объяву

В данном FAQе я попытался популярно объяснить, что такое разгон, как его сделать, какой при этом возникает риск и как его избежать. Т.е. как повысить производительность машины без дополнительных финансовых вложений, но сохранить при этом стабильность и надежность, необходимые для профессиональной работы.

Хотя я и стремился изложить это максимально простым языком, перечитав все, я понял, что избежать технических терминов и разжевать все для полного чайника не получается. Поэтому я намеренно не стал объяснять, что такое BIOS и как туда попасть. Если человек откровенно не дружит с компьютером, и от прочтения этого текста остается ощущение «ниасилил» - лучше бросить это дело от греха подальше, разгон не ваша тема:blink:

FAQ предназначен для любознательных товарищей, которых не пугает шайтан-машина и который хотели бы попробовать, но им просто не хватает знаний для того, чтобы это сделать. Вот этот пробел данный FAQ и призван восполнить.

Как делают процессоры.

Все кристаллы для одного семейства процессоров, когда они выходят с конвейера – одинаковы. Т.е. начинка во всех Core 2 Duo от E6300 до X6800 одна и та же. Процессоры разной мощности получаются в результате тестирования, сортировки и отбраковки. Производитель тестирует все процессоры, и по результатам такого теста камень получает соответствующую маркировку. Т.е. кристаллы, которые «держат» более высокую частоту становятся X6800, остальные получают младшие номиналы.

К счастью для пользователя очень часто возникает ситуация, когда вся партия кристаллов прекрасно работает на высоких частотах. В этом случае производитель маркирует процессоры исходя исключительно из маркетинговых соображений. Если продавать все процессоры по высокой цене X6800, то купят их очень мало, только те, кто реально готов выложить $1200 за высокую производительность. Если же рассортировать процессоры, ориентируясь на разные группы потребителей, можно продать по сути один и тот же товар совершенно разным людям с разными бюджетами и разной покупательской психологией. В результате одинаковый изнутри процессор покупают и те, кому «подороже, покачественней, побыстрее» - профессионалы, геймеры-маниаки, и просто покупатели побогаче, так и те, кому «попроще, главное подешевле» - непритязательные или ограниченные бюджетом потребители. Первых мало, но продажа им товара сверхприбыльна по отношению к его себестоимости, с последних навар небольшой, но это компенсируется их огромным числом. А ведь есть еще и середнячки. Короче, с точки зрения экономики максимум продаж достигается сегментацией общего рынка и втюхиванием каждой категории покупателя того, чего он хочет. Это и есть хлеб маркетологов.

Теперь о технической стороне вопроса. Что такое разгон с инженерной точки зрения?

Частота, на которой работает кристалл процессора, задается материнской платой. Вы наверняка встречали в описаниях термин «шина FSB». Вот она-то этим и занимается. Стандартная тактовая частота шины FSB для материнских плат под Core 2 составляет 266 МГц. Внутренняя тактовая частота процесса получается умножением ее на некий множитель. Для E6300 она равна 266x7 = 1,86 ГГц; для X6800 266x11 = 2.93 ГГц. К превеликому сожалению, множитель этот зашит в процессор на железном уровне, и изменить его нельзя. Поэтому единственный маневр, который нам остался – повышение частоты FSB. Однако FSB задает рабочую частоту не только процессора, но и модулей памяти и PCI шины. Поэтому часто возникает ситуация, когда у процессора есть еще ресурс по разгону, но память уже говорит «йок!»

Что же нужно иметь для разгона Core 2?

Во-первых.

Материнскую плату, которая поддерживает в BIOSе настройки, необходимые для оверклокинга: частота FSB, напряжения питания ядра процессора и памяти т.п. Поскольку увеличение частоты FSB влечет за собой увеличение рабочей частоты не только памяти, но и PCI и PCI-E шины, то в передаче данных между процессором и видео или аудиокартой могут возникнуть сбои. Нам этого не надо, особенно с аудио К счастью, современные оверклокерские матери эффективно решают эту проблему благодаря асинхронной технологии. Такая мать позволяет повышать частоту FSB, сохраняя при этом частоту PCI/PCI-E шины неизменной. Если совсем по-простому, выбирайте из материнских плат ASUS или Gigabyte на чипсетах 965 и 975. Оба производителя имеют необходимые настройки для оверклокинга и хорошую репутацию.

Во-вторых.

Модули памяти, которые выдержат это издевательство. Еще раз напомню, что разгон FSB увеличивает также тактовую частоту памяти. Модули памяти DDR2 стандарта PC5300, которые обычно ставят с Core 2, работают на частоте 667 МГц, т.е. 266x2,5. Материнские платы также поддерживают и меньший множитель для памяти – двойку для стандарта PC4300, которые работают на частоте 533 МГц, т.е. 266x2. Вот это «двойка» и понадобится нам для разгона, потому что если разогнать шину до 400 МГц на множителе 2,5 то память будет работать на частоте 1000 МГц – в реальности ни один из 667 модулей этого не выдержит. Но даже на двойке при 400 МГц тактовая частота получается немалой 400x2 = 800 МГц. К сожалению, для модулей PC5300 это лотерея. Оверклокеры решают эту проблему подъемом напряжения питания памяти, но и это не всегда проходит, к тому же этот метод повышает риск перегрева модуля. Нам же важна стабильность.

Поэтому КРАЙНЕ ЖЕЛАТЕЛЬНО иметь специальные оверклокерские модули памяти, работающие на 800 МГц (PC6400). Такая память прошла тестирование и производитель гарантирует ее работоспособность на этой частоте.

Также напомню, что во избежание глюков очень желательно не смешивать модули разных производителей, и что для работы в двухканальном режиме (максимальная производительность) нужно ставить модули одинаковыми парами. Т.е. гигабайт – два одинаковых модуля по 512 МБ в парные слоты, обозначенные одинаковым цветом и т.п.

У меня уже стоит 667 память. Можно ли разогнать процессор с ней?

Попробовать можно. Но работоспособность такой памяти на частотах выше 667, никто не гарантирует. Хотя на практике может выйти, что она вполне выдержит и разгон. При этом можно попытаться поднять ей напряжение питания – иногда это работает. Но лучше, а главное, надежнее заменить ее на 800 МГц.

Какие существуют методы разгона?

1. Софтовый.

Обычно производитель поставляет с материнской платой утилиты с понятным графическим интерфейсом, которые позволяют изменять частоту FSB из Windows. У ASUS это Ai Booster, у Gigabyte – Easy Tune.

2. Через BIOS

Этот способ требует перезагрузки Windows, но дает, как правило, больше возможностей для тонкой настройки

Какой же метод самый правильный для музыкального компьютера?

Для работы с аудио и миди важна стабильность, поэтому экстремальный геймерский разгон с процессорами, работающими на пределе своих возможностей, с аццкими гудящими кулерами, призванными справляться с безумным количеством тепла, нам не подходит.

Самый простой вариант разгона – поднимать частоту FSB до тех пор, пока компьютер это тянет. Такой подход, как правило, реализован в софтовых утилитах. Его минус в том, что современные матери слишком умные. Они знают о том, что пользователь разгоняет компьютер, и на всякий случай поднимают напряжение питания процессора, памяти, PCI и т.п. Причем, чем больше вы разгоняете, тем больше поднимается напряжение. Для УМЕРЕННОГО разгона, который можно рекомендовать для музыкального компа, это излишне, кроме того, поднятие напряжения повышает риск перегрева памяти, чипсета и других элементов.

Самым оптимальным будет следующий подход:

1. Установить 800 (или даже 1066, она же PC8500, для тех, кому пажощ) мегагерцовые модули памяти
2. Снизить в BIOS множитель для памяти
3. Отключить в BIOS интеллектуальное управление напряжениями питания.
4. Поднимать FSB, следя за тем, чтобы рабочая частота разогнанной памяти не превышала ее номинал, т.е. для 800 при множителе 2 максимально поднимаем FSB до 400.

В этом случае память гарантированно выдерживает разгон – она же рассчитана на эту частоту а процессор и периферия работают при номинальных напряжениях.

Какой существует риск при таком разгоне?

Риск минимален. Купив правильную память и выставив номинальные напряжения, у нас практически все компоненты в системе работают в своем рабочем режиме. Единственное что повышается - это частота FSB (мать на это рассчитана) и внутренняя частота процессора. Не все процессоры обладают хорошим потенциалом для разгона. Младшие модели Conroe в этом плане обладают отличным заделом, и с легкостью выдерживают 50% повышение частоты без поднятия напряжения.

А потом, надо отличать экстремальный разгон, которым занимаются маниаки-оверклокеры от умеренного, который обсуждается в данном FAQe. Разница именно в напряжениях питания. Если вы их не поднимаете, значит компоненты системы работают в пределах допуска, и это гарантирует достаточную стабильность и надежность.

Нужно ли усиливать при этом охлаждение?

Процессоры с ядром Conroe потребляют очень мало мощности – 55-75 Ватт. Против 125 Ватт для Athlon FX-62 или 130 Ватт у Pentium D. Это означает низкое тепловыделение и низкую рабочую температуру. Для умеренного разгона, рекомендованного в этом FAQе вполне хватит и штатного кулера. Температура при этом вряд ли превысит 50-60 ºС под нагрузкой. В реальности это значение может быть даже существенно ниже.

А какой во всем этом смысл, не проще ли купить X6800 и не выпендриваться?

Смысл экономический. Младшие модели Core 2 стоят $180-230 и легко разгоняются на 50% (при FSB=400). Производительность самого младшего в линейке E6300 будет при этом по середине между E6700 и X6800, а разогнанный E6400 будет даже помощнее флагмана. Стоимость 800 МГц памяти не высока, она немногим дороже обычной 667, где-то на $15 за гиг. Стоимость же E6700 и X6800 на сегодня порядка $550 и $1200 соответственно.

Кстати старшие модели Conroe тоже неплохо гонятся. Почему бы не добавить системе еще производительности?

PS Bonus Track – Nastroika Gigabyte. E6300 (266x7) разгоняем до 400x7

1. Заходим в BIOS в меню MB Intellegent Tweaker
2. CPU Host Clock Control ставим в Enabled, чтобы можно было изменять частоту FSB
3. CPU Host Frequency (это и есть частота FSB) ставим 400
4. System Memory Multiplier ставим 2
5. В System Voltage Control убираем Auto и убеждаемся, что во всех последующих пунктах DDR2, PCI-E, FSB, (G) MCH, CPU стоит Normal (ругань про System Volatge Not Optimized игнорируем)
6. Сохраняем настройки, читаем Отче Наш и перегружаемся
7. Если компьютер глючит, не грузится и т.п., уменьшаем частоту FSB

The date the product was first introduced.

Lithography

Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.

# of Cores

Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor"s transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is measured in gigahertz (GHz), or billion cycles per second.

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

Bus Speed

A bus is a subsystem that transfers data between computer components or between computers. Types include front-side bus (FSB), which carries data between the CPU and memory controller hub; direct media interface (DMI), which is a point-to-point interconnection between an Intel integrated memory controller and an Intel I/O controller hub on the computer’s motherboard; and Quick Path Interconnect (QPI), which is a point-to-point interconnect between the CPU and the integrated memory controller.

FSB Parity

FSB parity provides error checking on data sent on the FSB (Front Side Bus).

TDP

Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. Refer to Datasheet for thermal solution requirements.

Scenario Design Power (SDP)

Scenario Design Power (SDP) is an additional thermal reference point meant to represent thermally relevant device usage in real-world environmental scenarios. It balances performance and power requirements across system workloads to represent real-world power usage. Reference product technical documentation for full power specifications.

VID Voltage Range

VID Voltage Range is an indicator of the minimum and maximum voltage values at which the processor is designed to operate. The processor communicates VID to the VRM (Voltage Regulator Module), which in turn delivers that correct voltage to the processor.

Embedded Options Available

Embedded Options Available indicates products that offer extended purchase availability for intelligent systems and embedded solutions. Product certification and use condition applications can be found in the Production Release Qualification (PRQ) report. See your Intel representative for details.

Sockets Supported

The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.

T CASE

Case Temperature is the maximum temperature allowed at the processor Integrated Heat Spreader (IHS).

Intel® Turbo Boost Technology ‡

Intel® Turbo Boost Technology dynamically increases the processor"s frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.

Intel® Hyper-Threading Technology ‡

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Virtualization Technology (VT-x) ‡

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® 64 ‡

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Idle States

Idle States (C-states) are used to save power when the processor is idle. C0 is the operational state, meaning that the CPU is doing useful work. C1 is the first idle state, C2 the second, and so on, where more power saving actions are taken for numerically higher C-states.

Enhanced Intel SpeedStep® Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.

Intel® Demand Based Switching

Intel® Demand Based Switching is a power-management technology in which the applied voltage and clock speed of a microprocessor are kept at the minimum necessary levels until more processing power is required. This technology was introduced as Intel SpeedStep® Technology in the server marketplace.

Intel® Trusted Execution Technology ‡

Intel® Trusted Execution Technology for safer computing is a versatile set of hardware extensions to Intel® processors and chipsets that enhance the digital office platform with security capabilities such as measured launch and protected execution. It enables an environment where applications can run within their own space, protected from all other software on the system.

Execute Disable Bit ‡

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.

Новые процессоры Intel, основанные на микроархитектуре Core, продолжают оставаться в центре внимания подавляющего большинства энтузиастов. Многочисленные тесты подтверждают, что именно процессоры Core 2 Duo на сегодня являются недосягаемыми лидерами по производительности как при работе в номинальном режиме, так и при разгоне. Поэтому, различные модификации Core2 Duo и Core 2 Extreme возглавляют своеобразный рейтинг наиболее желаемых покупок (wish-list) для многих пользователей, самостоятельно осуществляющих апгрейд собственных компьютеров. Иными словами, если массовый переход на новую платформу Core 2 ещё не начался, то вот-вот начнётся. В этой связи мы решили посвятить несколько обзоров той инфраструктуре, в которой процессоры Core 2 Duo чувствуют себя наиболее благоприятно.

В одной из первых статей этого цикла мы уделим внимание оперативной памяти, наиболее подходящей для использования в системах, основанных на Core 2 Duo. В настоящем материале мы попытаемся определить, какой параметр памяти наиболее влияет на производительность Core 2 Duo систем – пропускная способность или латентность. Это позволит нам сделать общие выводы о том, какая память из представленной на рынке DDR2 SDRAM более предпочтительна для использования в новых платформах. Кроме того, мы постараемся дать комплексные рекомендации о целесообразности приобретения тех или иных модулей DDR2 SDRAM для систем, основанных на новых процессорах Intel Core 2 Duo.

Intel Core 2 Duo и системная память: есть чему удивиться

Перед тем, как перейти к результатам тестов, которые, в принципе, могут дать исчерпывающие ответы на все поставленные вопросы, несколько слов хочется сказать о том, почему процессоры Core 2 Duo могут предъявлять специфические требования к подсистеме памяти для достижения максимального быстродействия. Ведь, вообще говоря, CPU этого класса совместимы с теми же самыми LGA775 платформами (с незначительными отличиями в электрических характеристиках), в которых применялись хорошо и разносторонне изученные ранее процессоры семейств Pentium 4 и Pentium D. Дело в том, что микроархитектура CPU семейства Core 2 Duo кардинально отличается от микроархитектуры NetBurst, это и выступает главной предпосылкой совершенно иной модели работы с оперативной памятью.

В первую очередь своё влияние оказывает инновационная двухъядерная структура процессоров Core 2 с разделяемым L2 кэшем второго уровня. Использование общего на два ядра кэша, а не двух раздельных на каждое из ядер кэшей второго уровня, даёт возможность освободить фронтальную шину и шину памяти от пересылок данных, направленных на сохранение когерентности кэш-памяти ядер. В то время как двухъядерные процессоры Pentium D использовали FSB и шину памяти для обмена данными между ядрами, в CPU семейства Core 2 Duo эта задача возлагается на кэш второго уровня. В итоге Core 2 Duo получил возможность использовать магистраль, соединяющую процессор и память, значительно эффективнее, освобождая её от "лишних" пересылок данных.

Второе изменение, которое оказалось способным улучшить производительность памяти в Core 2 Duo системах, это увеличение частоты шины Quad Pumped Bus, соединяющей процессор и северный мост чипсета. Результирующая частота этой шины возросла до 1067 МГц, что означает рост пропускной способности до 8.5 Гбайт в секунду. А это, в свою очередь, влечёт за собой то, что платформы, в основе которых используется процессор Core 2 Duo, получают возможность полностью загрузить работой всю полосу пропускания двухканальной подсистемы памяти, в которой используются, как минимум, DDR2-533 SDRAM модули. Применение же более высокочастотных модулей, очевидно, даст шанс дополнительно снизить латентности при обращении процессора к памяти.

Также нельзя забывать и о том, что микроархитектура Core содержит ряд технологий, повышающих эффективность работы CPU с памятью. К их числу следует отнести memory disambiguation (устранение противоречий) и значительно усовершенствованные по сравнению с Pentium 4 алгоритмы предварительной выборки данных. Подробнее об этих технологиях можно прочитать в статье "Секрет высокой производительности Intel Core 2 Duo: микроархитектура Core".

Несмотря на то, что процессоры Core 2 Duo продолжают использовать внешний контроллер памяти, расположенный в северном мосту чипсета, благодаря перечисленным выше особенностям новой микроархитектуры им удаётся соперничать по скорости работы с памятью даже с процессорами Athlon 64 X2, которые имеют контроллер памяти, встроенный в ядро. Например, на графиках ниже мы приводим данные измерения практической пропускной способности и латентности подсистем памяти, полученные в системах, основанных на Intel Pentium D 960, Intel Core 2 Duo E6700 и Athlon 64 X2 5000 . Во всех трёх системах мы использовали DDR2-800 SDRAM, работающую с таймингами 4-4-4-12.

Система, основанная на процессоре Core 2 Duo, обеспечивает более высокую производительность при работе с памятью, нежели система с CPU класса Pentium D, это находит отражение и в практических результатах, которые полностью согласуются с теорией. Несмотря на то, что процессоры Intel работают с памятью посредством одного и того же контроллера памяти, встроенного в северный мост чипсета (в данном случае тесты проводились на материнской плате с набором логики i975X), выбор CPU влияет на полученные результаты более чем значительно. Core 2 Duo способен обеспечить на 10% лучшую пропускную способность при работе с памятью, и значительно более низкую латентность при обращении к данным, которая, в зависимости от характера приложений (эффективности срабатывания алгоритмов предварительной выборки данных), может уменьшаться на величину от 20% до 40%. Таким образом, с точки зрения эффективности использования подсистемы памяти, Core 2 Duo однозначно выигрывает у процессоров предыдущего поколения с микроархитектурой NetBurst.

Не менее интересные выводы можно сделать и сопоставляя практические характеристики подсистем памяти платформ на базе Core 2 Duo и Athlon 64 X2. Эти результаты особенно любопытны ещё и потому, что системы исповедуют разный подход к расположению контроллера памяти, поскольку, в отличие от Core 2 Duo, Athlon 64 X2 (в Socket AM2 исполнении) обладает интегрированным в ядро контроллером DDR2 SDRAM. Именно благодаря интегрированному контроллеру памяти Athlon 64 X2 показывает хорошие результаты с точки зрения пропускной способности. Преимущество над подсистемой памяти платформы на базе Core 2 Duo просто подавляющее, что совершенно неудивительно, учитывая, что в интеловских системах скорость передачи данных между процессором и памятью ограничивается полосой пропускания фронтальной шины. Результат же таков, что в системе на базе нового процессора Intel КПД подсистемы памяти, использующей DDR2-800 SDRAM, составляет порядка 40%, в то время как КПД аналогичной подсистемы памяти, но используемой в Athlon 64 X2 системе, достигает 55-60%.

Что же касается латентности, то с этой характеристикой ситуация гораздо интереснее. Две тестовые утилиты из трёх показывают, что система с процессором Core 2 Duo способна продемонстрировать более низкую латентность подсистемы памяти, нежели система с процессором Athlon 64 X2. Этот результат, очевидно, достигается именно благодаря работе в процессоре с микроархитектурой Core алгоритмов предварительной выборки данных, которые оказываются весьма эффективными в большом числе случаев. В итоге, несмотря на то, что процессоры Core 2 Duo не могут похвастать наличием интегрированного контроллера памяти, это не мешает им показывать хорошие результаты в некоторых задачах, критичных к скорости работы подсистемы памяти.

Описание тестовой системы

Вторая группа тестов, которая была поведена нами при подготовке настоящего материала, была посвящена выяснению того влияния, которое оказывают на производительность Core 2 Duo платформ параметры подсистемы памяти: её частота и тайминги.

Тесты проводились при помощи материнской платы ASUS P5W DH Deluxe, которая основывается на базе набора логики i975X и при использовании частоты FSB 266 МГц способна тактовать память не только как DDR2-533, DDR2-667 и DDR2-800, но и как DDR2-1067. К слову сказать, устанавливать частоту DDR2 в 1067 МГц при частоте FSB 266 МГц способны далеко не все материнские платы на базе i975X. Данная частота не утверждена JEDEC и не является стандартной, что даёт повод для её игнорирования рядом производителей. Поэтому, нами была выбрана именно плата ASUS, спроектированная инженерами без предрассудков: BIOS данного продукта может задействовать все без исключения доступные в наборе логики делители для частоты памяти.

В целом, тестовая система была сформирована из следующего набора комплектующих:

Процессор Intel Core 2 Extreme X6800 (LGA775, 2.93GHz, 4MB L2);
Материнская плата ASUS P5W DH Deluxe (LGA775, Intel 975X Express);
Память:
Corsair TWIN2X2048-8500C5 (DDR2-1067, 2 x 1024 MB, 5-5-5-15);
Corsair TWIN2X2048-6400C4 (DDR2-800, 2 x 1024 MB, 4-4-4-12);
Графическая карта: PowerColor X1900 XTX 512MB (PCI-E x16);
Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150);
Операционная система: Microsoft Windows XP SP2 с DirectX 9.0c.

Тестирование выполнялось при настройках BIOS Setup материнских плат, установленных на максимальную производительность.

Пропускная способность против латентности: тестируем в 1001 раз

В первую очередь мы выполнили ряд измерений пропускной способности и латентности, прибегнув к синтетическим тестам.

Измерение пропускной способности магистрали процессор-память на практике позволяет сделать несколько весьма интересных выводов. В первую очередь, в глаза бросается тот факт, что использование памяти с разной частотой, теоретическая пропускная способность которой отличается весьма значительно, не даёт хорошо различимого эффекта на практике. Например, разница в теоретической пропускной способности DDR2-533 и DDR2-1067 SDRAM составляет 100%, в то время как разрыв между практическими результатами, полученными при использовании той и другой памяти, достигает в лучшем случае лишь 17%.

Очевидно, что столь печальная для быстрой DDR2-SDRAM картина обуславливается архитектурой Core 2 Duo систем, где память связана с процессором через две последовательные шины, соединяющие CPU и память с промежуточным узлом – чипсетом. В итоге узким местом на пути данных становится отнюдь не полоса пропускания двухканальной высокочастотной памяти, а шина Quad Pumped Bus, связывающая процессор с северным мостом набора логики. Её максимальная теоретическая пропускная способность для Core 2 Duo систем составляет 8.5 Гбайт в секунду, что равно пропускной способности двухканальной DDR2-533 SDRAM. Именно поэтому, на практике мы не видим значительного прироста в скорости подсистемы памяти, в основе которой применяются более скоростные модули, чем DDR2-533.

Казалось бы, это должно означать то, что использование более скоростной, чем DDR2-533 памяти в Core 2 Duo системах лишено смысла. Но это всё-таки не совсем так. С ростом частоты, на которой работает память, автоматически снижается её латентность и именно эта тенденция отслеживается на практике.

Разброс в результатах в этом случае получается куда более сильный. Поскольку латентность, наряду с пропускной способностью, способна оказывать значительное влияние на производительность системы в ряде приложений, определённый смысл в использовании с процессором Core 2 Duo памяти с высокой рабочей частотой должен быть.

Чтобы убедиться в этом, мы провели ряд тестов в реальных задачах.

Обратимся в первую очередь к результатам, полученным в популярном овеклокерском бенчмарке SuperPi. Зависимость скорости расчёта 8 миллионов знаков числа А от скорости памяти вполне прослеживается. На производительность влияние оказывает как частота, так и тайминги модулей памяти. В целом, можно сказать, что использование более быстрой с точки зрения частоты DDR2 SDRAM всегда даёт положительный эффект, если только её тайминги не характеризуются самыми плохими (большими) значениями для данной частоты.

Впрочем, чувствительными к скорости подсистемы памяти являются далеко не все приложения. Яркий пример – бенчмарк PCMark05, которому, по большому счёту, совершенно всё равно, какая DDR2 SDRAM установлена в вашей системе.

Хотя, тест памяти из этого же пакета, имеющий синтетическую природу, всё-таки позволяет выявить наиболее привлекательные варианты конфигурации подсистемы памяти. Его вердикт несколько отличается от того, что мы наблюдали в тесте SuperPi: в данном случае можно безо всяких оговорок говорить о том, что частота DDR2 SDRAM в Core 2 Duo системах оказывает большее влияние на итоговую производительность, чем её задержки.

Похожая тенденция прослеживается и в популярном бенчмарке 3DMark06, однако она в нём выражена настолько слабо, что для её наблюдения требуются значительные усилия при анализе результатов. На графике она практически не видна. И это ещё раз подтверждает сделанный выше вывод о том, что ограниченная пропускная способность фронтальной шины является мощным тормозом в деле ускорения работы системы посредством увеличения частоты работы подсистемы памяти.

3D игры всегда относились к приложениям, хорошо реагирующим на скорость работы подсистемы памяти. Это мы наблюдаем и здесь, за исключением того, что реакция в данном случае не "хорошая", а скорее "вялая". Тем не менее, преимущество скоростной памяти над более медленными аналогами заметить удаётся: и в целом можно говорить о том, что память с более высокой частотой даёт возможность получить большее число FPS, а зависимость производительности в играх от таймингов памяти выражена несколько слабее.

Впрочем, хочется заметить, что всё-таки не стоит переоценивать роль производительной памяти в игровых приложениях. При сравнении результатов, полученных при установке в систему DDR2-533 и DDR2-1067 SDRAM, получается, что установка в два раза более быстрой памяти даёт лишь 5-10% прирост в производительности. Иными словами, значительное ускорение работы подсистемы памяти приводит лишь к мизерному практическому эффекту.

И это в играх. А ведь масса других приложений реагирует на скорость подсистемы памяти гораздо меньше. Например, финальный рендеринг.

Здесь различие в результатах не превышает 1%, и оно практически незаметно на графике.

Перекодирование медиаконтента – также весьма малозависимая от скорости памяти задача. Но, как можно видеть на приведенной диаграмме, применение экстремально быстрой DDR2 SDRAM позволяет получить примерно 5-процентное преимущество над конфигурацией с самой медленной подсистемой памяти.

К счастью для производителей скоростной памяти, приложения, в которых быстрая DDR2 SDRAM может показать своё превосходство в полную силу, сущёствуют. Это, в частности, WinRAR – приложение, к помощи которого мы всегда обращаемся, когда возникает желание выявить преимущества более быстрой подсистемы памяти или более ёмкого процессорного кэша. Здесь применение DDR2-1067 SRDAM в платформе на базе процессора Core 2 Duo позволяет получить практически 50-процентное превосходство над DDR2-533 SDRAM. Однако не следует забывать, что такая ситуация это всего лишь частный случай. В подавляющем большинстве задач положительный эффект от использования быстрой памяти практически полностью сводится на нет ограниченной пропускной способностью фронтальной шины, соединяющей северный мост набора логики и процессор.

Производителям быстрой DDR2 SDRAM остаётся надеяться только на оверклокеров

После чтения предыдущего раздела возникает ощущение, что быстрая память практически не нужна для Core 2 Duo систем. Увеличение частоты, на которой работает подсистема памяти, влечёт за собой ощутимое повышение стоимости системы, но не приводит к сколько-нибудь значимому увеличению быстродействия. И это отчасти верно: в большинстве распространённых приложений гораздо более быстрая, чем DDR2-533, память способна обеспечить максимум 5-процентный прирост быстродействия. Виной всему не раз уже упоминавшееся узкое место – шина FSB, частота которой доведена Intel к настоящему моменту лишь до 266 МГц.

Однако это совершенно не означает, что быстрая память совершенно бесполезна для владельцев Core 2 Duo систем. Ведь хотя Intel ограничил частоту и пропускную способность фронтальной шины, никто не мешает нам увеличить её и без микропроцессорного гиганта. Да, как вы уже, наверное, поняли, далее речь пойдёт о разгоне.

Действительно, как показали многочисленные эксперименты, и наши в том числе, процессоры семейства Core 2 Duo являются прекрасным объектом для оверклокинга. И так как множитель этих процессоров по традиции зафиксирован, разгон приходится проводить увеличением частоты FSB. Если при этом принять во внимание то, что частотный потенциал ядра Conroe весьма впечатляющ, а также тот факт, что штатные множители процессоров Core 2 Duo сравнительно невысоки, при разгоне нередко приходится увеличивать частоту фронтальной шины более чем значительно. А это, в свою очередь, увеличивает пропускную способность магистрали процессор-чипсет, что делает использование быстрой DDR2 SDRAM гораздо более осмысленным мероприятием, нежели при эксплуатации CPU в штатном режиме.

Для того чтобы подтвердить всё вышесказанное на практике, мы решили провести тестирование производительности подсистемы памяти, использующей модули с различной частотой и задержками, применяя разогнанный процессор Core 2 Duo. В данном случае мы не ставили перед собой цель исследования предельной частоты, на которой способны работать CPU, основанные на ядре Conroe, мы просто решили посмотреть, какое влияние на быстродействие системы окажут параметры подсистемы памяти при некотором увеличении частоты FSB. Для опытов мы решили выставить частоту FSB в достаточно типичное значение 400 МГц (превышающее штатное значение на 50%). При использовании такой частоты процессорной шины её пропускная способность возрастает с 8.5 до 12.8 Гбайт в секунду, что, с теоретических позиций, должно сделать целесообразным использование в системе уже двухканальной DDR2-800 памяти.

Для тестов при разгоне мы решили использовать процессор Core 2 Duo E6300 со штатной частотой 1.86 ГГц и множителем 7x. Очевидно, что при увеличении частоты шины до 400 МГц частота этого CPU возрастает до 2.8 ГГц – частоты, с лёгкостью покоряемой такими процессорами.

Остальные комплектующие в тестовой системе, по сравнению с предыдущим набором испытаний, не менялись.

Следует отметить, что используемая нами материнская плата ASUS P5W DH Deluxe имеет некоторые особенности в части работы с памятью при разгоне. А именно, многие из делителей, формирующих частоту памяти, при увеличении частоты FSB утрачивают свою работоспособность. Так, до недавнего времени мы имели возможность провести тесты этой платы при частоте FSB, равной 400 МГц, лишь с памятью работающей либо на 600 МГц, либо на 800 МГц (с делителями FSB:DRAM, равными 4:3 или 1:1). Однако, к счастью, инженеры ASUS продолжают активно работать над этой материнской платой, благодаря чему версия BIOS номер 1305 стала стабильно функционировать в указанном состоянии и при частоте памяти равной 1000 МГц (с делителем 4:5). Таким образом, мы получили возможность провести репрезентативный тест, включающий режимы памяти не только с повышающими делителями (как в случае при штатном использовании процессора), но и с понижающими.

Также как и в прошлый раз, в первую очередь мы решили уделить внимание синтетическим бенчмаркам.

Результаты измерения практической пропускной способности магистрали процессор-память очень хорошо иллюстрируют результаты, полученные в предыдущем разделе. Когда частота памяти превосходит 800 МГц рост пропускной способности, действительно, практически останавливается, что и означает достижение максимума полосы пропускания фронтальной шины при её работе на 400-мегагерцовой частоте. В самом деле, прирост практической пропускной способности при увеличении частоты памяти с 600 МГц к 800 МГц составляет порядка 15%, при этом прирост той же величины при возрастании частоты памяти от 800 МГц до 1000 МГц меньше на порядок – он достигает лишь 2%.

Примерно такую же картину можно наблюдать и в тестах латентности. После достижения частоты памяти 800 МГц латентность перестаёт сколько-нибудь значительно уменьшаться. Поэтому, очевидно, что в Core 2 Duo системах в реальной работе DDR2-1000 SDRAM не сможет обеспечить серьёзного прироста быстродействия по сравнению с DDR2-800 SDRAM даже при разгоне FSB до 400 МГц. В то же время, увеличение частоты памяти до 800 МГц должно дать весомые результаты, для этого есть все необходимые предпосылки и с точки зрения пропускной способности, и с точки зрения латентности.

Всё верно. DDR2-800 даже с самыми плохими таймингами работает быстрее, чем DDR2-600 с самыми лучшими таймингами, а DDR2-1000 при этом лишь чуть-чуть улучшает результаты DDR2-800 при использовании одинаковых задержек. Это ли не явная иллюстрация того факта, что применять память, итоговая (DDR2) частота которой более чем вдвое превосходит частоту FSB, практически полностью бессмысленно?

Хотя PCMark05 слабо реагирует на производительность подсистемы памяти, общие тенденции отследить можно. Преимущество DDR2-800 над DDR2-600 SDRAM заметно, оно гораздо больше, чем мы наблюдали в тестах с неразогнанным процессором. А вот конфигурации с DDR2-1000 и вовсе даже отстают от системы с DDR2-800, которая позволяет установить несколько более агрессивные задержки 3-3-3-10. Впрочем, даже если сопоставить между собой результаты, полученные при использовании DDR2-800 и DDR2-1000 с одинаковыми таймингами, то система с более быстрой памятью имеет лишь чуть-чуть большее количество очков в PCMark05.

Всё вышесказанное равным образом можно отнести и к результатам, показанным тестовыми конфигурациями в комплексном подтесте памяти из пакета PCMark05.

Результаты в 3DMark06 слабо зависят от скорости подсистемы памяти. Поэтому какие-то новые выводы, базируясь на полученных в этом тесте данных, сделать невозможно. В то же время хочется напомнить, что увеличение производительности подсистемы памяти, даже в том случае, когда это явно влияет на практическую пропускную способность и латентность магистрали процессор-память, не всегда даёт ощутимый результат. Многие реальные приложения не столь активно работают с большими объёмами данных, что значительно ограничивает круг тех задач, для которых быстрая память действительно нужна. Таким образом, перед тем, как останавливать свой выбор на быстрых оверклокерских модулях DDR2 SDRAM, необходимо быть уверенным, что это действительно нужно, исходя из тех проблем, на решение которых будет нацелена система.

Например, 3D игры следует отнести к тем приложениям, которые от быстрой памяти, безусловно, выигрывают.

CENTER]

Так, при использовании частоты FSB 400 МГц превосходство системы с DDR2-800 над системой c DDR2-600 памятью с одинаковыми таймингами составляет от 2 до 7%, что можно считать неплохим результатом. При этом переход на применение DDR2-1000 SDRAM дивидендов практически не приносит, поскольку высокая пропускная способность этой памяти не может быть задействована в полной мере из-за ограниченности полосы пропускания шины FSB. Следует отметить влияние на быстродействие и таймингов памяти. Простая модификация задержек в BIOS Setup может также дать вполне весомый результат, заключающийся в изменении производительности в пределах 5%.

В задачах финального рендеринга, где в предыдущем случае (при частоте FSB 266 МГц) мы не видели никакого влияния со стороны параметров подсистемы памяти, наметились некоторые сдвиги. Рост частоты фронтальной шины позволил нам пронаблюдать некоторое, хотя и небольшое, изменение производительности при выборе различных таймингов и частоты памяти.

Картина, наблюдаемая при кодировании медиаконтента во многом похожа на то, что мы уже наблюдали в игровых приложениях. Мы видим ещё одно подтверждение того факта, что наращивание частоты памяти имеет смысл лишь до пределов, установленных пропускной способностью фронтальной шины.

Даже WinRAR, который при частоте шины 266 МГц демонстрировал некоторое преимущество, получаемое при увеличении частоты памяти, в случае разгона не выявляет практически никакого выигрыша при переходе от DDR2-800 к DDR2-1000 памяти.

Таким образом, подводя итог вышесказанному, можно говорить о том, что относительно быстрая память в Core 2 Duo системах может быть востребована в первую очередь именно оверклокерами. При увеличении частоты шины FSB свыше номинальных значений увеличение частоты памяти начинает играть гораздо более весомую роль в общем быстродействии системы, чем это происходит при эксплуатации платформы в штатном режиме. Приращение нами частоты FSB на 50%, до 400 МГц, позволило получить вполне осязаемый выигрыш от применения в системе DDR2-800 SDRAM. Этот выигрыш по своему относительному значению однозначно превосходит то зыбкое преимущество, которое было получено нами в аналогичных условиях при установке частоты FSB в штатное значение 266 МГц. Однако дальнейший рост частоты памяти до 1000 МГц не привёл к заметному росту производительности системы в целом, так как общая пропускная способность магистрали процессор-память стала ограничиваться пропускной способностью процессорной шины. Тем не менее, очевидно, что если при разгоне будут задействованы более высокие, чем 400 МГц, частоты FSB, то, несомненно, приобретёт смысл и установка в систему более скоростной, чем DDR2-800, памяти.

Выводы

Основные рекомендации, касающиеся оптимального выбора оперативной памяти для Core 2 Duo систем, были уже высказаны. Поэтому, внимательные читатели к данному моменту уже обладают полной информацией о том, на какие характеристики модулей DDR2 SDRAM следует обращать внимание при комплектовании платформ, построенных на процессорах Intel с новой микроархитектурой Core. Тем не менее, повторим основные выводы еще раз.

В первую очередь, необходимо отметить достаточно высокую эффективность алгоритмов предварительной выборки, реализованных в процессорах Core 2 Duo. Благодаря им, платформы с этими CPU имеют возможность на равных соперничать в латентности доступа к данным с Socket AM2 Athlon 64 системами, снабжёнными встроенным контроллером памяти. Однако, несмотря на столь впечатляющее достижение инженеров Intel, подсистема памяти Core 2 Duo систем, включающая внешний, расположенный в северном мосту набора логики контроллер памяти, не может конкурировать по общей эффективности с подсистемой памяти Socket AM2 систем. Проблема заключается в том, что платформы, основанные на новых процессорах Intel, не могут обеспечить столь же высокую пропускную способность памяти.

Пропускная способность памяти в Core 2 Duo системах оказывается ограниченной не столько характеристиками использованных в её основе модулей DDR2 SDRAM, сколько полосой пропускания шины, соединяющей процессор с северным мостом чипсета. Из-за этого, в частности, при работе Core 2 Duo систем в штатном режиме изменение частоты и таймингов памяти влияет на производительность достаточно слабо. Тем не менее, это влияние всё же существует, и, надо заметить, в первую очередь на скорость подсистемы памяти оказывает влияние частота памяти, а лишь затем – тайминги.

Гораздо интереснее выглядит картина при разгоне. В этом случае использование быстрой памяти начинает приобретать гораздо больше смысла с точки зрения итоговой производительности системы, причём наиболее оптимальным, как показывают практические эксперименты, является делитель FSB:DRAM 1:1. Иными словами, если использовать память с минимально возможными таймингами, в синхронном режиме практически всегда можно добиться более высокой производительности, чем в любых других вариантах. Таким образом, при разгоне частоты FSB до 400 МГц оптимальным выбором станет DDR2-800 SDRAM с низкими таймингами, а выше – уже DDR2-1000 или DDR2-1067 SDRAM. Ещё одним аргументом в пользу синхронного тактования памяти и процессорной шины при разгоне является и то, что делитель 1:1 работает в большинстве случаев (на большинстве материнских плат) наиболее стабильно.

«Зачем нужна эта встройка? Дайте больше ядер, мегагерц и кэша! » - вопрошает и восклицает среднестатистический компьютерный пользователь. Действительно, когда в компьютере используется дискретная видеокарта, то необходимость в интегрированной графике отпадает. Признаюсь, я слукавил относительно того, что сегодня центральный процессор без встроенного видео тяжелее найти, чем с оным. Такие платформы есть - это LGA2011-v3 для чипов Intel и AM3+ для «камней» AMD. В обоих случаях речь идет о топовых решениях, а за них надо платить. Мейнстрим-платформы, такие как Intel LGA1151/1150 и AMD FM2+, поголовно оснащаются процессорами с интегрированной графикой. Да, в ноутбуках «встройка» незаменима. Хотя бы потому, что в режиме 2D мобильные компьютеры дольше работают от аккумулятора. В десктопах толк от интегрированного видео есть в офисных сборках и так называемых HTPC. Во-первых, мы экономим на комплектующих. Во-вторых, мы опять экономим на энергопотреблении. Тем не менее в последнее время AMD и Intel всерьез говорят о том, что их встроенная графика - всем графикам графика! Годится в том числе и для гейминга. Это мы и проверим.

Играем в современные игры на встроенной в процессор графике

300% прироста

Впервые встроенная в процессор графика (iGPU) появилась в решениях Intel Clarkdale (архитектура Core первого поколения) в 2010 году. Именно интегрированная в процессор. Важная поправка, так как само понятие «встроенное видео» образовалось гораздо раньше. У Intel - в далеком 1999 году с выходом 810-го чипсета для Pentium II/III. В Clarkdale интегрированное видео HD Graphics реализовали в виде отдельной микросхемы, размещенной под теплораспределительной крышкой процессора. Графика производилась по старому на тот момент времени 45-нанометровому техпроцессу, основная вычислительная часть - по 32-нанометровым нормам. Первыми решениями Intel, в которых блок HD Graphics «поселился» вместе с остальными компонентами на одном кристалле, стали процессоры Sandy Bridge.

Intel Clarkdale - первый процессор со встроенной графикой

С тех пор встроенная в «камень» графика для мейнстрим-платформ LGA115* стала стандартом де-факто. Поколения Ivy Bridge, Haswell, Broadwell, Skylake - все обзавелись интегрированным видео.

Встроенная в процессор графика появилась 6 лет назад

В отличие от вычислительной части, «встройка» в решениях Intel заметно прогрессирует. HD Graphics 3000 в настольных процессорах Sandy Bridge K-серии насчитывает 12 исполнительных устройств. У HD Graphics 4000 в Ivy Bridge - 16; у HD Graphics 4600 в Haswell - 20, у HD Graphics 530 в Skylake - 25. Постоянно растут частоты как самого GPU, так и оперативной памяти. В итоге производительность встроенного видео за четыре года увеличилась в 3-4 раза! А ведь есть еще гораздо более мощная серия «встроек» Iris Pro, которые используются в определенных процессорах Intel. 300% процентов за четыре поколения - это вам не 5% в год .

Производительность встроенной графики Intel

Встроенная в процессор графика - это тот сегмент, в котором Intel приходится поспевать за AMD. В большинстве случаев решения «красных» оказываются быстрее. Ничего удивительно в этом нет, ведь AMD разрабатывает мощные игровые видеокарты. Вот и во встроенной графике настольных процессоров используется та же архитектура и те же наработки: GCN (Graphics Core Next) и 28 нанометров.

Гибридные чипы AMD дебютировали в 2011 году. Семейство кристаллов Llano стало первым, в котором встроенная графика была совмещена с вычислительной частью на одном кристалле. Маркетологи AMD смекнули, что тягаться с Intel на ее условиях не получится, поэтому ввели термин APU (Accelerated Processing Unit, процессор с видеоускорителем), хотя идея вынашивалась «красными» еще с 2006 года. После Llano вышли еще три поколения «гибридников»: Trinity, Richland и Kaveri (Godavari). Как я уже говорил, в современных чипах встроенное видео архитектурно ничем не отличается от графики, используемой в дискретных 3D-ускорителях Radeon. В итоге в чипах 2015-2016 годов половина транзисторного бюджета расходуется именно на iGPU.

Современная встроенная графика занимает половину полезной площади центрального процессора

Самое интересное в том, что развитие APU повлияло на будущее… игровых приставок. Вот и в PlayStation 4 с Xbox One используется чип AMD Jaguar - восьмиядерный, с графикой на архитектуре GCN. Ниже приведена таблица с характеристиками. Radeon R7 - это самое мощное интегрированное видео, какое есть у «красных» на сегодняшний день. Блок используется в гибридных процессорах AMD A10. Radeon R7 360 - это дискретная видеокарта начального уровня, которую, согласно моим рекомендациям , можно считать в 2016 году условно игровой. Как видите, современная «встройка» в плане характеристик несильно уступает Low-end-адаптеру. Нельзя сказать, что и графика игровых приставок обладает выдающимися характеристиками.

Само по себе появление процессоров со встроенной графикой во многих случаях ставит крест на необходимости покупать дискретный адаптер начального уровня. Однако уже сегодня интегрированное видео AMD и Intel посягает на святое - игровой сегмент. Например, в природе существует четырехъядерный процессор Core i7-6770HQ (2,6/3,5 ГГц) на архитектуре Skylake. В нем задействованы встроенная графика Iris Pro 580 и 128 Мбайт памяти eDRAM в роли кэша четвертого уровня. Интегрированное видео насчитывает сразу 72 исполнительных блока, работающих на частоте 950 МГц. Это мощнее графики Iris Pro 6200, в которой используется 48 исполнительных устройств. В итоге Iris Pro 580 оказывается быстрее таких дискретных видеокарт, как Radeon R7 360 и GeForce GTX 750, а также в ряде случаев навязывает конкуренцию GeForce GTX 750 Ti и Radeon R7 370. То ли еще будет, когда AMD переведет свои APU на 16-нанометровый техпроцесс, а оба производителя со временем начнут использовать вместе со встроенной графикой память HBM/HMC .

Intel Skull Canyon - компактный компьютер с самой мощной встроенной графикой

Тестирование

Для испытания современной встроенной графики я взял четыре процессора: по два от AMD и Intel. Все чипы оснащены разными iGPU. Так, у гибридников AMD A8 (плюс A10-7700K) видео Radeon R7 идет с 384 унифицированными процессорами. У старшей серии - A10 - на 128 блоков больше. Выше у флагмана и частота. Есть еще серия A6 - в ней с графическим потенциалом совсем все грустно, так как используется «встройка» Radeon R5 с 256 унифицированными процессорами. Рассматривать ее для игр в Full HD я не стал.

Самой мощной встроенной графикой обладают процессоры AMD A10 и Intel Broadwell

Что касается продукции Intel, то в самых ходовых чипах Skylake Core i3/i5/i7 для платформы LGA1151 используется модуль HD Graphics 530. Как я уже говорил, он содержит 25 исполнительных устройств: на 5 больше, чем у HD Graphics 4600 (Haswell), но на 23 меньше, чем у Iris Pro 6200 (Broadwell). В тесте использовался младший четырехъядерник - Core i5-6400.

AMD A8-7670K AMD A10-7890K Intel Core i5-6400 (обзор) Intel Core i5-5675C (обзор)
Техпроцесс 28 нм 28 нм 14 нм 14 нм
Поколение Kaveri (Godavari) Kaveri (Godavari) Skylake Broadwell
Платформа FM2+ FM2+ LGA1151 LGA1150
Количество ядер/потоков 4/4 4/4 4/4 4/4
Тактовая частота 3,6 (3,9) ГГц 4,1 (4,3) ГГц 2,7 (3,3) ГГц 3,1 (3,6) ГГц
Кэш третьего уровня Нет Нет 6 Мбайт 4 Мбайт
Встроенная графика Radeon R7, 757 МГц Radeon R7, 866 МГц HD Graphics 530, 950 МГц Iris Pro 6200, 1100 МГц
Контроллер памяти DDR3-2133, двухканальный DDR3-2133, двухканальный DDR4-2133, DDR3L-1333/1600 двухканальный DDR3-1600, двухканальный
Уровень TDP 95 Вт 95 Вт 65 Вт 65 Вт
Цена 7000 руб. 11 500 руб. 13 000 руб. 20 000 руб.
Купить

Ниже расписаны конфигурации всех тестовых стендов. Когда речь заходит о производительности встроенного видео, то необходимо уделить должное внимание выбору оперативной памяти, так как от нее тоже зависит, сколько FPS покажет интегрированная графика в итоге. В моем случае использовались киты DDR3/DDR4, функционирующие на эффективной частоте 2400 МГц.

Тестовые стенды
№1: №2: №3: №4:
Процессоры: AMD A8-7670K, AMD A10-7890K; Процессор: Intel Core i5-6400; Процессор: Intel Core i5-5675C; Процессор: AMD FX-4300;
Материнская плата: ASUS 970 PRO GAMING/AURA;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт. Видеокарта: NVIDIA GeForce GTX 750 Ti;
Оперативная память: DDR3-1866 (11-13-13-35), 2x 8 Гбайт.
Материнская плата: ASUS CROSSBLADE Ranger; Материнская плата: ASUS Z170 PRO GAMING; Материнская плата: ASRock Z97 Fatal1ty Performance;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт. Оперативная память: DDR4-2400 (14-14-14-36), 2x 8 Гбайт. Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт.
Материнская плата: ASUS CROSSBLADE Ranger; Материнская плата: ASUS Z170 PRO GAMING;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт. Оперативная память: DDR4-2400 (14-14-14-36), 2x 8 Гбайт.
Материнская плата: ASUS CROSSBLADE Ranger;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт.
Операционная система: Windows 10 Pro x64;
Периферия: монитор LG 31MU97;
Драйвер AMD: 16.4.1 Hotfix;
Драйвер Intel: 15.40.64.4404;
Драйвер NVIDIA: 364.72.

Поддержка оперативной памяти для процессоров AMD Kaveri

Такие комплекты выбраны неспроста. Согласно официальным данным, встроенный контроллер памяти процессоров Kaveri работает с памятью DDR3-2133, однако материнские платы на чипсете A88X (за счет дополнительного делителя) поддерживают и DDR3-2400. Чипы Intel вкупе с флагманской логикой Z170/Z97 Express взаимодействуют и с более скоростной памятью, пресетов в BIOS заметно больше. Что касается тестового стенда, то для платформы LGA1151 использовался двухканальный кит Kingston Savage HX428C14SB2K2/16, который без каких-либо проблем работает в разгоне до 3000 МГц. В других системах задействовалась память ADATA AX3U2400W8G11-DGV.

Выбор оперативной памяти

Небольшой эксперимент. В случае с процессорами Core i3/i5/i7 для платформы LGA1151 применение более быстрой памяти для ускорения графики не всегда рационально. Например, для Core i5-6400 (HD Graphics 530) смена комплекта DDR4-2400 МГц на DDR4-3000 в Bioshock Infinite дала всего 1,3 FPS. То есть при заданных мною настройках качества графики производительность «уперлась» именно в графическую подсистему.

Зависимость производительности встроенной графики процессора Intel от частоты оперативной памяти

При использовании гибридных процессоров AMD ситуация выглядит лучше. Увеличение скорости работы ОЗУ дает более внушительный прирост FPS, в дельте частот 1866-2400 МГц мы имеем дело с прибавкой в 2-4 кадра в секунду. Думаю, использование во всех тестовых стендах оперативной памяти с эффективной частотой 2400 МГц - это рациональное решение. И более приближенное к реальности.

Зависимость производительности встроенной графики процессора AMD от частоты оперативной памяти

Судить о быстродействии интегрированной графики будем по результатам тринадцати игровых приложений. Я их условно разделил на четыре категории. В первую входят популярные, но нетребовательные ПК-хиты. В них играют миллионы. Поэтому такие игры («танки», Word of Warcraft, League of Legends, Minecraft - сюда же) не имеют права быть требовательными. Мы вправе ожидать комфортного уровня FPS при высоких настройках качества графики в разрешении Full HD. Остальные категории были просто разделены на три временных отрезка: игры 2013/14, 2015 и 2016 годов.

Производительность встроенной графики зависит от частоты оперативной памяти

Качество графики подбиралось индивидуально для каждой программы. Для нетребовательных игр - это преимущественно высокие настройки. Для остальных приложений (за исключением Bioshock Infinite, Battlefield 4 и DiRT Rally) - низкое качество графики. Все же тестировать будем встроенную графику в разрешении Full HD. Скриншоты с описанием всех настроек качества графики расположены в одноименной. Будем считать играбельным показатель в 25 кадр/с.

Нетребовательные игры Игры 2013/14 годов Игры 2015 года Игры 2016 года
Dota 2 - высокое; Bioshock Infinite - среднее; Fallout 4 - низкое; Rise of the Tomb Raider - низкое;
Diablo III - высокое; Battlefield 4 -среднее; GTA V - стандартное; Need for Speed - низкое;
StarCraft II - высоко. Far Cry 4 - низкое. XCOM 2 - низкое.
DiRT Rally - высокое.
Diablo III - высокое; Battlefield 4 -среднее; GTA V - стандартное;
StarCraft II - высоко. Far Cry 4 - низкое. «Ведьмак 3: Дикая Охота» - низкое;
DiRT Rally - высокое.
Diablo III - высокое; Battlefield 4 -среднее;
StarCraft II - высоко. Far Cry 4 - низкое.
Diablo III - высокое;
StarCraft II - высоко.

HD

Основная цель тестирования - изучить производительность встроенной графики процессоров в разрешении Full HD, но для начала разомнемся на более низком HD. Вполне комфортно в таких условиях чувствовали себя iGPU Radeon R7 (как для A8, так и A10) и Iris Pro 6200. А вот HD Graphics 530 со своими 25 исполнительными устройствами в ряде случаев выдавала совершенно неиграбельную картинку. Конкретно: в пяти играх из тринадцати, так как в Rise of the Tomb Raider, Far Cry 4, «Ведьмак 3: Дикая Охота», Need for Speed и XCOM 2 снижать качество графики уже некуда. Очевидно, что в Full HD интегрированное видео чипа Skylake ожидает полный провал.

HD Graphics 530 сливает уже в разрешении 720p

Графика Radeon R7, используемая в A8-7670K, не справилась с тремя играми, Iris Pro 6200 - с двумя, а встройка A10-7890K - с одной.

Результаты тестирования в разрешении 1280x720 точек

Интересно, что есть игры, в которых интегрированное видео Core i5-5675C серьезно обходит Radeon R7. Например, в Diablo III, StarCraft II, Battlefield 4 и GTA V. В низком разрешении сказывается не только наличие 48 исполнительных устройств, но и процессорозависимость. А также наличие кэша четвертого уровня. В то же время A10-7890K обошел своего оппонента в более требовательных Rise of the Tomb Raider, Far Cry 4, «Ведьмак 3» и DiRT Rally. Архитектура GCN хорошо проявляет себя в современных (и не очень) хитах.

Начиная с сентября 2006 года, компания Intel неукоснительно придерживается стратегии выхода новых процессоров, известной как «Тик-так», следуя которой на каждый «Тик» приходится уменьшение технологических норм производства полупроводниковых кристаллов, тогда как на «Так» происходит смена микроархитектуры. Последний раз чипмейкер кардинально обновлял свои CPU в июне 2013 года, когда были представлены процессоры Haswell , получившие множество конструктивных решений, обеспечивших заметное увеличение быстродействия относительно моделей предыдущего поколения . Впрочем, ожидаемой в 2014 году итерации «Тик», которая должна была перевести массовые продукты на 14-нм технологический процесс, так и не произошло, в компании Intel ограничились выпуском линейки Haswell Refresh . Анонс 14-нм процессоров Intel Broadwell состоялся в 1 кв. 2015 года, причем, первыми были представлены энергоэффективные продукты для ноутбуков, систем All-in-One, а также компактных конфигураций, таких как Gigbyte Brix и MSI Cubi . Десктопных Broadwell-H пришлось ждать вплоть до начала лета 2015 г., когда чипмейкер наконец-то выпустил на рынок модели Core i5-5675C и Core i7-5775C, предназначенные для установки в системные платы с разъемом LGA1150.

Особенности микроархитектуры Broadwell

В соответствии со стратегией «Тик-так» новейшие процессоры должны были унаследовать микроархитектуру Haswell с минимальными изменениями, как это было при переходе с кристаллов Sandy Bridge на Ivy Bridge, при одновременном уменьшении норм производства до 14 нм. В принципе, для экономичных Broadwell-U так оно и произошло, однако, для настольных моделей чипмейкер сделал неожиданный разворот в сторону максимального повышения быстродействия графической подсистемы. Ни для кого не секрет, что гибридные процессоры AMD всегда превосходили продукцию конкурента по части быстродействия интегрированной видеокарты. Теперь, похоже, гегемонии APU настал конец, поскольку анонсированные Core i5-5675C и Core i7-5775C — первые продукты Intel в исполнении LGA1150, оснащенные производительным графическим ускорителем Iris Pro Graphics 6200. К слову, для их эксплуатации подойдет любая материнская плата на базе системной Intel 9-й серии после обновления управляющего микрокода, без которого корректная работа новейших процессоров не гарантируется.

Как уже было сказано, дизайн вычислительных ядер Broadwell-H не претерпел существенных изменений по сравнению с процессорами предыдущего поколения. Между тем производитель существенно переработал компоновку полупроводникового кристалла, который, несмотря на применение 14-нм технологического процесса, получился едва ли компактнее, чем 22-нм чипы Haswell. Как оказалось, почти 50% площади ядра занимает графический ускоритель Iris Pro Graphics 6200, тогда как на все остальные блоки процессора, в том числе четыре вычислительных ядра, кэш-память 3-го уровня и Uncore-часть, отводится примерно половина транзисторного бюджета. Следует отметить, что ради размещения мощного видеоядра «под нож» пошел даже кэш L3, который уменьшился на 25% по сравнению с 22-нм моделями.


В состав графического ускорителя входят два кластера по 24 исполнительных модулей в каждом, так что суммарно видеоакселератор Iris Pro Graphics 6200 насчитывает 48 юнитов, тогда как графическое ядро Intel HD Graphics 4600, которым оснащаются старшие процессоры Haswell в исполнении LGA1150, содержит только 20 унифицированных шейдерных процессоров. Кроме того, в Iris Pro Graphics 6200 улучшена работа блока Quick Sync, в частности, обеспечена поддержка аппаратного ускорения для кодирования/декодирования формата HEVC (H.265) и VP9, в том числе в разрешении 4К.


Контроллер памяти Broadwell-H рассчитан на работу с двумя каналами ОЗУ стандарта DDR3L 1333/1600 МГц, что, впрочем, отнюдь не мешает эксплуатировать новые процессоры в паре с «обычной» DDR3 с напряжением питания 1,5 В и выше. Но самой большой неожиданностью стало то, что Intel оснастила процессоры для настольных систем памятью eDRAM объемом 128 МБ, под которую выделен отдельный полупроводниковый кристалл, установленный на органической подложке центрального процессора. Впрочем, эти нюансы у модификаций в исполнении LGA1150 скрыты от пользователей под металлической крышкой распределителя, зато, они отлично видны на примере моделей в конструктивном исполнении BGA для ноутбуков и встраиваемых систем.


Массив памяти eDRAM играет роль кадрового буфера с минимальным временем доступа для графического ускорителя и выполняет функцию емкого кэша 4-го уровня для процессорных ядер, который может пригодиться при математическом моделировании, работе архиваторов и других приложений, требующих временного хранения больших объемов данных. Буферная память даже получила собственное кодовое имя Crystal Well, которое, очевидно, объясняет наличие буквы «С» в наименовании моделей Broadwell-H для настольных систем.

Процессор Core i5-5675C

Линейка процессоров Broadwell-H состоит из пяти моделей , из которых три выполнены в конструктивном исполнении FCBGA1364, и только два продукта — Core i5-5675C и Core i7-5775C — предназначены для установки в системные платы с разъемом LGA1150. Их характеристики в сравнении со спецификациями Haswell Refresh серии «К» приведены в следующей таблице.

Процессор Core i7-5775C Core i5-5675C Core i7-4790K Core i5-4690K
Ядро Broadwell-H Broadwell-H Haswell Haswell
Разъем LGA1150 LGA1150 LGA1150 LGA1150
Техпроцесс, нм 14 14 22 22
Число ядер (потоков) 4(8) 4 4(8) 4
Номинальная частота, МГц 3300 3100 4000 3500
Частота Turbo boost, МГц 3700 3600 4400 3900
L1-кэш, Кбайт 32 x 4 + 32 x 4 32 x 4 + 32 x 4 32 x 4 + 32 x 4 32 x 4 + 32 x 4
L2-кэш, Кбайт 256 x 4 256 x 4 256 x 4 256 x 4
L3-кэш, Мбайт 6 4 8 6
L4-кэш, Мбайт 128 128 - -
Графическое ядро Iris Pro Graphics 6200 Iris Pro Graphics 6200 Intel HD Graphics 4600 Intel HD Graphics 4600
Частота графического ядра, МГц 1150 1100 1250 1200
Число унифицированных шейдерных процессоров 48 48 20 20
Поддерживаемый тип памяти DDR3L-1600
DDR3L-1333
DDR3L-1600
DDR3L-1333
DDR3-1600
DDR3-1333
DDR3-1600
DDR3-1333
TDP, Вт 65 65 88 88
Рекомендованная стоимость, $ 377 277 350 243

Глядя на характеристики процессоров несложно заметить, что 14-нм модели заметно уступают старшим Haswell в частоте, причем, для пары Core i7 разница достигает 700 МГц, тогда как для младших модификаций преимущество не превышает 300-400 МГц в зависимости от нагрузки. Впрочем, Core i5-5675C и Core i7-5775C имеют незаблокированные коэффициенты умножения, что делает их привлекательными для любителей разгона. По графической подсистеме: меньшая на 100 МГц частота Iris Pro Graphics 6200 компенсируется в 2,4 раза большим количеством исполнительных блоков. Также, благодаря снижению тактовых частот и переходу на тонкий 14-нм процесс производителю удалось снизить потребление электроэнергии, в результате чего оба Broadwell-H укладываются в TDP 65 Вт. Несколько огорчает уменьшение на 2 МБ объема кэша 3-го уровня в новых процессорах, впрочем, они оснащаются гигантским кэшем L4 объемом 128 МБ, влияние которого на производительность мы обязательно попробуем выяснить на этапе тестирования. Наконец, нельзя не обратить внимание на возросшую примерно на 10% относительно Haswell розничную стоимость новых моделей, так что Broadwell-H следует рассматривать скорее не как замену продуктам предыдущего поколения, а в качестве расширения модельного ряда Intel для платформы LGA1150.

Прибывший в нашу тестовую лабораторию процессор Core i5-5675C, как обычно, оказался инженерным образцом, так что судить о его комплекте поставки не приходится. Внешне новинка ничем не отличается от 22-нм моделей, за исключением шрифта, которым нанесена маркировка на металлическую крышку теплораспределителя, под которой находятся полупроводниковые кристаллы. Что касается типа термоинтерфейса, то вопрос о его составе — сугубо риторический, точных данных на этот счет нет, но, вряд ли производитель стал использовать «жидкий металл» в массовых продуктах.


Оба процессора имеют идентичное конструктивное исполнение LGA1150. Отличаются они по расположению электронных компонентов на обратной стороне.

Intel Core i5-5675C (слева), Core i5-4690K (справа)


Несмотря на то, что с момента анонса новейших 14-нм процессоров Intel прошло чуть больше 2-х недель популярные диагностические утилиты безошибочно определяют спецификации Broadwell-H. От своего 22-нм прародителя Core i5-5675C унаследовал поддержку инструкций AVX, AVX2.0, FMA и аппаратное ускорение шифрования AES. Четыре вычислительных ядра, каждое из которых оснащено 32+32 КБ кэша 1-го уровня и 512 КБ кэша L2, работают на частоте 3100 МГц, которая под действием технологии Intel Turbo Boost может повышаться до 3600 МГц при условии сохранения тепловыделения в рамках TDP 65 Вт. Кстати, напряжения питания новичка 1,120-1,168 В нельзя назвать низким, во всяком случае, среди 22-нм моделей часто встречаются экземпляры, способные работать с меньшими значениями Vcore. При отсутствии вычислительной нагрузки технология Intel Enhanced SpeedStep уменьшает частоту процессорных ядер до 800 МГц при одновременном снижении напряжения питания до 0,34 В, что позволяет существенно экономить электроэнергию в простое.




Процессор оснащен кэшем 3-го уровня объемом 4 МБ, а также массивом памяти eDRAM 128 МБ. Последний работает на частоте 1800 МГц и в штатном режиме демонстрирует пропускную способность около 44 ГБ/с при записи данных и около 32 ГБ/с в операциях чтения, что заметно превышает скорость работы ОЗУ DDR3, функционирующей на частоте 1600 МГц в двухканальном режиме.


Что касается графической подсистемы Broadwell-H, то большинство специализированных программ, в том числе GPU-Z последней версии, пока что неспособны правильно определять технические характеристик Iris Pro Graphics 6200 за исключением ее названия. По информации от производителя видеоускоритель поддерживает API DirectX 11.2 и OpenGL 4.2, а также аппаратное ускорение неграфических вычислений OpenCL и DirectCompute 5.0.


Конечно, продвинутых пользователей и любителей разгона интересуют не только штатные характеристики процессора, но и его частотный потенциал, тем паче, что Core i5-5675C имеет разблокированные на повышение коэффициенты умножения. Здесь следует отметить, что не все системные платы оказались готовы к оверклокингу Broadwell-H, наилучшие результаты были получены при использовании «материнки» MSI Z97S SLI Krait Edition . С ее помощью Intel Core i5-5675C разогнался со штатных 3100 МГц до 4200 МГц простым повышением коэффициента умножения. Для обеспечения стабильности напряжение Vcore было увеличено до 1,33 В, а на вход встроенного преобразователя подавалось 1,8 В. Модули оперативной памяти функционировали в режиме 2400 МГц с таймингами 10-12-12-31-1Т при напряжении 1,65 В, так что нет никаких оснований опасаться несовместимости 14-нм процессоров с оверколкерсками комплектами ОЗУ. Несколько разочаровал разгон Uncore-части, для которой удалось добиться стабильной частоты 3600 МГц, что всего на 500 МГц выше штатного значения, а вот разгонять память eDRAM я так и не решился, поскольку в текущей прошивке отсутствует управление и контроль соответствующего напряжения. Ниже приведены настройки UEFI Setup, которые были уставлены при оверклокинге.



В результате система на базе разогнанного Intel Core i5-5675C без сбоев проходила длительное испытание в стресс-тесте LinX 0.6.5 в режиме AVX 2.0, температура самого горячего ядра не превышала 92° С при охлаждении с помощью мощного воздушного кулера. Впрочем, не следует забывать, что вопрос долговечности работы 14-нм полупроводниковых кристаллов еще мало изучен, поэтому, во избежание деградации не стоит чрезмерно завышать Vcore. Что же до нашего экземпляра, то дальнейший рост напряжения не позволил добиться увеличения частоты, а только приводил к повышению температуры процессора и включению режима пропуска тактов, который наступал по достижению 95° С.

Тестовый стенд

Для оценки частотного потенциала и уровня быстродействия процессора Intel Core i5-5675C использовался следующий набор аппаратного и программного обеспечения:

  • материнская плата: MSI Z97S SLI Krait Edition (Intel Z97, ATX, UEFI Setup 10.5 от 01.06.2015);
  • кулер: Noctua NH-D15 (два вентилятора NF-A15 PWM, 140 мм, 1300 об/мин);
  • термопаста: Noctua NT-H1 ;
  • оперативная память: G.Skill TridentX F3-2400C10D-8GTX (2x4 ГБ, DDR3-2400, CL10-12-12-31);
  • видеокарта: MSI N770 TF 2GD5/OC (GeForce GTX 770);
  • накопитель: Intel SSD 320 Series (300 ГБ, SATA 3Gb/s);
  • блок питания: Seasonic X-650 (650 Вт);
  • операционная система: Windows 8.1 64 bit;
  • драйвер чипсета: Intel Management Engine 10.0.30.1054, Intel INF Update Utility 10.0.22.0;
  • драйвер видеокарты: NVIDIA GeForce 340.43, Intel Graphics Accelerator Driver 15.36.21.64.4222.
В операционной системе брандмауэр, UAC, Windows Defender и файл подкачки отключались, настройки видеодрайвера не изменялись, тогда как технология Intel Turbo Boost и процессорные функции энергосбережения работали в штатном режиме. В качестве соперника для новичка при оценке быстродействия выступил процессор Intel Core i5-4960K «Devils Canyon», который также как и Core i5-5675C тестировался в штатном режиме, а также при максимальном разгоне, достижимом при использовании мощного воздушного кулера. Ниже в таблице представлены параметры эксплуатации обоих участников сегодняшнего обзора.
Core i5-5675С OC Core i5-4690K OC Core i5-5675С Core i5-4690K
Частота CPU, МГц 4200 4400 3100 3600
Напряжение Vcore, В 1,33 1,275 1,12 1,124
Частота Uncore, МГц 3600 4000 3100 3600
Напряжение Uncore, В 1,2 1,23 1,15 1,1
Частота ОЗУ, МГц 2400 2400 1600 1600
Тайминги 10-12-12-31-2T 10-12-12-31-2T 9-9-9-24-1T 9-9-9-24-1T

Что касается перечня тестового ПО, то он претерпел серьезные изменения, особенно, в части игровых бенчмарков, и приобрел следующий вид:
  • AIDA64 5.20.3449 (Cache & Memory Benchmark);
  • Futuremark PCMark 8 2.4.304;
  • WebXPRT 2015 (Internet Explorer 11);
  • Adobe Photoshop CC 14.2.1;
  • Cinebench R15 64bit;
  • TrueCrypt 7.1 (встроенный тест);
  • WinRAR 5.21 (встроенный тест);
  • x264 HD Benchmark v5.0;
  • Futuremark 3DMark 1.5.893;
  • Alien: Isolation;
  • BioShock Infinity;
  • Counter Strike: Global Offensive;
  • DotA 2;
  • GRID Autosport;
  • StarCraft II;
  • WarThunder;
  • World of Tanks.
Результаты тестирования

Тесты в синтетических программах и прикладном ПО

Прежде всего, при помощи программы AIDA64 была измерена пропускная способность подсистем ОЗУ тестовых стендов.





В штатном режиме в операциях чтения и копирования наличие кэша L4 обеспечило новичку небольшое преимущество, тогда как при записи данных в ОЗУ быстрее оказался Haswell, у которого выше частота Uncore-части. При разгоне Core i5-5675С заметно опередил своего соперника в подтесте копирования, тогда как в двух других дисциплинах более высокая частота обусловили преимущество Core i5-4690K. Что же до латентности, то у Broadwell-H она несколько выше, очевидно, за счет дополнительной задержки на выборку данных из буфера eDRAM.





Тестирование в популярном бенчмарке Futuremark PCMark 8 позволяет с большой точностью определить быстродействие центральных процессоров при выполнении типичных повседневных задач. Несмотря на заметное отставание по тактовой частоте Broadwell-H совсем немного уступил своему визави в трех тестах из четырех, видимо, сказался положительный эффект от использования кэша L4, тогда как в четвёртом сценарии Office процессор Core i5-5675С отстал от своего предшественника на 3-5%, которые вряд ли будут заметны при работе.


Различные облачные сервисы и Web-приложения предъявляют все более строгие требования к быстродействию персональных компьютеров, поэтому, была проверена скорость работы тестовых стендов в онлайн-бенчмарке WebXPRT 2015, запущенном в браузере Internet Explorer 11. В режиме по умолчанию новичок уступил сопернику не более 3%, тогда как после оверклокинга младший Broadwell-H взял реванш и заметно опередил Core i5-4690K.




С помощью программы Cinebench R15 была оценена скорость рендеринга трёхмерных изображений с применением графического движка Maxon CINEMA 4D. При выполнении задачи в один вычислительный поток новичок уступил Core i5-4690K, тогда как при задействовании всех четырех процессорных ядер Broadwell-H, несмотря на ощутимое отставание по частоте, сравнялся со своим соперником. Что же до анимации в режиме реального времени, то при задействовании видеокарты, работающей под управлением API OpenGL, Core i5-5675С показал на 10% лучшие результаты, чем Haswell, но с разгоном последний сократил отставание за счет «грубой» вычислительной мощи.


Судя по результатам в программе TrueCrypt алгоритму шифрования AES+Twofish «пришелся по вкусу» емкий кэш 4-го уровня у новичка, наличие которого позволило Core i5-5675С обыграть Core i5-4690K во всех режимах.


Итоги тестирования скорости сжатия данных в архиваторе WinRAR — отличный пример эффективного использования буфера eDRAM, в данной дисциплине преимущество Broadwell-H достигло 45%.



Однако, не все программы способны извлечь выгоду от конструктивных особенностей Core i5-5675С и яркое тому подтверждение — x264 HD Benchmark, в котором результаты тестирования расположились в четком соответствии с тактовыми частотами соперников.

Тесты в 3D-играх




Перед тем как запускать игровые тесты был проведен цикл измерений в популярном графическом бенчмарке Futuremark 3DMark. Во всех трех тестовых дисциплинах Core i5-5675С одержал уверенную победу. Похоже, видеоигры благосклонно относятся к наличию в составе процессора Broadwell-H кэша L4, посмотрим, как поведет себя новичок в реальных игровых приложениях.



В достаточно требовательной к быстродействию графической подсистеме игре Alien: Isolation оба процессора показали близкие результаты вне зависимости от режима работы, а в шутере от первого лица BioShock Infinity герой сегодняшнего обзора заметно опередил своего соперника на штатных частотах, но после разгона разрыв между ними сократился до минимума.



Популярный онлайн-шутер Counter Strike: Global Offensive — единственная игра, в которой победа досталась Core i5-4690K, зато, в онлайн-баталии DotA 2 преимущества архитектуры Broadwell-H проявились самым наилучшим образом. В штатном режиме Core i5-5675С обеспечил на 40% больший fps, тогда как в разгоне его преимущество не превысило 15%.



И в гоночном симуляторе GRID Autosport, и в стратегии реального времени StarCraft II новичок одержал очередную убедительную победу, прямо таки разгромив четырехъядерный Haswell, который до сих пор считался лучшим выбором для построения игрового ПК.



Многопользовательский военный симулятор WarThunder не отличается высокими требованиями к аппаратному обеспечению, тем не менее, даже в этом случае Core i5-5675С заметно превзошел Core i5-4690K. Что же до аркадного танкового симулятора World of Tanks, то в нем разница не так велика, очевидно, в этом случае частота смены кадров ограничивалась возможностями графического акселератора.

Энергопотребление

Для оценки энергопотребления тестовых стендов использовалось устройство Basetech Cost Control 3000, с помощью которого было измерено среднее потребление электроэнергии «от розетки» при отсутствии нагрузки, а также максимальное значения потребляемой мощности во время 20 проходов стресс-теста LinX 0.6.5 с объемом задачи 4096 МБ.


По части энергоэффективности Broadwell-H оказался недосягаем для процессора предыдущего поколения, изготовленного с применением 22-нм технологического процесса. При работе на штатных частотах в простое разница между соперниками составила 15%, а в нагрузке Core i5-5675С продемонстрировал на 30% меньшее энергопотребление, что в абсолютных цифрах вылилось в экономию около 36 Вт, тогда как разница в TDP процессоров составляет всего 23 Вт. Но еще более впечатляющие показатели энергоэффективности новичок показал после оверклокинга, где разница с разогнанным Core i5-4690K в пике достигала 56 Вт.

Быстродействие встроенной видеокарты в 3D-играх

Так как мощное графическое ядро Iris Pro Graphics 6200 является одним из главных конкурентных преимуществ Intel Core i5-5675С, то было бы глупо упустить шанс и не оценить его быстродействие, тем более, очень кстати в нашей тестовой лаборатории оказался новейший APU AMD A10-7870K, известный под кодовым именем Godavari . От предыдущего флагмана AMD A10-7850K этот гибридный процессор отличается повышенными тактовыми частотами вычислительных модулей и графической подсистемы, с его подробным обзором вы сможете познакомиться на страницах нашего ресурса в самом ближайшем будущем. А чтобы оценить преимущество Broadwell-H над процессорами Haswell в тестах компанию Core i5-5675С составил Core i5-4690K. Все измерения быстродействия проводились при работе процессоров в штатных режимах, а в 3D-играх, где это было возможным, выставлялось высокое качество изображения при разрешении Full HD.



По результатам тестирования в Alien: Isolation и BioShock Infinity процессор Core i5-5675С обеспечил самую высокую частоту смены кадров, опередив даже APU AMD. Тем временем быстродействие графической подсистемы Haswell оказалось почти вдвое ниже, чем у Broadwell-H.



В онлайн-играх Counter Strike: Global Offensive и DotA 2 новичок вновь одержал убедительную победу, оставив далеко позади флагманский AMD A10-7870K, не говоря уже про Core i5-4690K.

Что касается энергопотребления тестовых стендов при работе со встроенными видеокартами, то измерения, проведенные на протяжении всего цикла прохождения графических тестов, дали следующие результаты.


Самым экономичным неожиданно оказался… Core i5-4690K, но, он же показал и минимальный уровень быстродействия. Если же сравнивать энергоэффективность Core i5-5675С и AMD A10-7870K, то APU продемонстрировал на 34% большее энергопотребление в нагрузке, но оказался гораздо экономичнее в моменты простоя.

Выводы

Судя по результатам сегодняшнего тестирования, в новейших Broadwell-H чипмейккер сделал ставку, в первую очередь, на улучшение энергоэффективности, вследствие чего TDP новинок не превышает 65 Вт даже для старшей модели Core i7, а также на повышение быстродействия графической подсистемы. В итоге продуктивность встроенной видеокарты в современных видеоиграх выросла более чем в два раза по сравнению с процессорами Intel предыдущего поколения, что сразу же обеспечило Сore i5-5675С преимущество над самым производительным гибридным процессором AMD A10-7870K. Что касается буферной памяти eDRAM, то положительный эффект от ее использования наблюдался практически во всех приложениях: как минимум, ее наличие компенсировало меньшие тактовые частоты новичка относительно Core i5-4690K, а в отдельных случаях, таких как архивация или большинство видеоигр, прирост был виден невооруженным глазом. Увы, сегодняшнее тестирование показало, что Broadwell-H не могут похвастаться высоким уровнем разгона, поскольку их частотный потенциал немного уступает аналогичным показателям процессоров Haswell. Возможно, это говорит о недостаточной еще отладке нового 14-нм процесса производства, но этот факт может объясняться и сыростью управляющего микрокода материнской платы, а также индивидуальными особенностями нашего инженерного образца CPU. Впрочем, как показала практика, конструктивные решения Core i5-5675C почти всегда компенсировали отставание в тактовой частоте, и в большинстве случаев быстродействие новичка ничуть не уступало разогнанному Haswell.

Что касается рыночных перспектив Core i5-5675С, то его более высокая, чем у Core i5-4690K розничная стоимость полностью оправдывается только в том случае, если не планируется приобретение дискретного графического ускорителя. В этом случае младший Broadwell-H исключительно хорош: он не только обеспечивает отличное быстродействие в самых ресурсоемких приложениях, но также позволяет играть в современные видеоигры в разрешении Full HD при средне-высоких настройках качества. Таким образом, подтверждается высказанная ранее мысль, что младший Broadwell-H не становится заменой для Core i5-4690K, а, скорее, является его дополнением, нацеленным на несколько другую целевую аудиторию. А настоящего прорыва в быстродействии придется ждать до момента выхода Skylake!



Рекомендуем почитать

Наверх