Таблицы в оракл как построить схему

Скачать Viber 23.03.2019
Скачать Viber

К частоте модулирующего сигнала

Употребляется в документе:

ГОСТ 24375-80

Телекоммуникационный словарь . 2013 .

Смотреть что такое "Индекс частотной модуляции" в других словарях:

    индекс частотной модуляции - Отношение девиации радиочастоты к частоте модулирующего сигнала. [ГОСТ 24375 80] Тематики радиосвязь Обобщающие термины радиопередача … Справочник технического переводчика

    Индекс - 6. Индекс Кодированная импульсная последовательность, записанная на сервоповерхности вида: dddddododdo, где d означает: для сервозоны пару дибитов, для защитных зон одиночный дибит; о означает: для сервозоны отсутствующую пару дибитов, для… …

    Девиация частоты - наибольшее отклонение мгновенной частоты модулированного радиосигнала при частотной модуляции от значения его несущей частоты. Эта величина равна половине полосы качания, т. е. разности максимальной и минимальной мгновенных частот. При больших… … Википедия

    ФАЗОВАЯ МОДУЛЯЦИЯ - вид модуляции колебаний, при к ром передаваемый сигнал управляет фазой несущего ВЧ колебания. Если модулирующий сигнал синусоидальный, то спектр и форма сигналов в случае Ф. м. и частотной модуляции совпадают. Различия обнаруживаются при более… … Физическая энциклопедия

    ГОСТ 16465-70: Сигналы радиотехнические измерительные. Термины и определения - Терминология ГОСТ 16465 70: Сигналы радиотехнические измерительные. Термины и определения оригинал документа: 40. Абсолютное отклонение сигналов Максимальное значение разности мгновенных значений сигналов, взятых в один и тот же момент времени на … Словарь-справочник терминов нормативно-технической документации

    методика - 3.8 методика: Последовательность операций (действий), выполняемых с использованием инструмента и оборудования для осуществления метода. Примечание Совокупность последовательности реализации операций и правил конкретной деятельности с указанием… … Словарь-справочник терминов нормативно-технической документации

    Цветное телевидение - Телевидение, в котором осуществляется передача цветных изображений. Донося до зрителя богатство красок окружающего мира, Ц. т. позволяет сделать восприятие изображения более полным. Принцип передачи цветных изображений в… … Большая советская энциклопедия

Как известно, источником электромагнитного поля является переменный электрический ток, текущий по проводнику. А устройство, создающее электромагнитное поле в пространстве, представляет собой генератор переменного тока, соединенный с антенной. Антенна излучает электромагнитные волны в окружающее пространство. Такое устройство принято называть радиопередающим.
Мы знаем, что в окружающем нас пространстве имеются электромагнитные волны, излучаемые этими устройствами, знаем частоту передачи, знаем, что волны несут для нас информацию. Поэтому нам важно получить техническое средство, с помощью которого мы сможем преобразовать информацию, содержащуюся в электромагнитной волне, к такому виду, который возможен для восприятия нашими органами чувств. В данном случае мы хотим преобразовать ее в звуковые колебания. Так вот, устройство, перехватывающее электромагнитную волну и преобразующее ее в удобный для восприятия вид, называется радиоприемным устройством.
Вопрос второй. Каким образом «насытить» электромагнитную волну необходимой информацией? Самый простой способ — поступить по принципу: есть волна — нет волны. Первые радиопередающие и радиоприемные устройства были спроектированы именно по такому принципу, а для передачи информации приняли азбуку Морзе. К слову сказать, столь примитивный способ передачи информации оказался настолько надежным и помехоустойчивым, что его используют до сих пор, называя «телеграфным» способом.
В начале XX века телеграфная радиосвязь изумила многих, но в дальнейшем, когда к ней привыкли, появилось желание передавать не только точки-тире, но еще и голос. Задача оказалась не слишком простой — ведь диапазон частот, слышимый человеческим ухом, лежит в низкочастотной области, а именно от 16 Гц до 10 кГц. В то же время для получения эффективного излучения электромагнитной энергии необходимы высокочастотные колебания. Как же быть?
Задачу решили наложением низкочастотного сигнала на высокочастотные колебания, а сам процесс наложения назвали модуляцией. Математически процесс модуляции иллюстрируется очень просто. К примеру, периодическое электрическое колебание можно записать так:

где U m -амплитуда колебания

ω 0 - частота колебания

φ 0 - фаза колебания

Процесс модуляции представляет собой изменения одного из параметров колебания высокой частоты по закону управляющего низкочастотного сигнала. В зависимости от того, какой параметр (амплитуда, частота, фаза) подвергается изменению, различают амплитудную, частотную и фазовую модуляции.
Колебания высокой частоты, используемые для передачи сигналов, носят название несущей частоты.
Исторически первой появилась амплитудная модуляция. Она до сих пор используется на радиовещательных диапазонах длинных, средних и коротких волн несмотря на то, что обладает низкой помехозащищенностью и крайне неэффективна. Причин тому несколько. Во-первых, коротковолновый диапазон — это единственный диапазон, в котором сравнительно просто обеспечивается радиовещание по всему миру. Для коротких волн не нужны ретрансляторы — они сами достигают нужных точек за счет отражения. Во-вторых, конструктивные особенности радиоприемников, имеющихся в эксплуатации, не позволяют перейти на более эффективные способы радиовещания.
Давайте кратко рассмотрим особенности амплитудной модуляции. Для простоты будем считать, что управляющим сигналом служит гармоническое (синусоидальное) колебание. Выражение для амплитудно-модулированной несущей запишется следующим образом:

где Ω- частота управляющего сигнала

Кривая, соединяющая точки, соответствующие амплитудным значениям несущей, называется огибающей. Базовый параметр, характеризующий AM колебание, — это коэффициент модуляции. В других источниках может встретиться понятие глубины модуляции, что по сути одно и то же.


Коэффициент модуляции не должен быть слишком маленьким, в противном случае мы не сможем различить полезную информацию на фоне несущей. Однако, если его значение будет больше 1, это вызовет перемодуляцию и, как следствие, искажение информации. Поэтому стандартное значение m в радиовещательной технике равно 0,3. В этом случае при наиболее громких звуках не наступает перемодуляция.
Здесь уместно рассказать о таком понятии, как спектр радиосигнала. Уже знакомая нам гармоническая функция изображается синусоидой во временной области, то есть в такой, где по горизонтальной оси графика откладывается время. Но существует еще одна широко используемая область — частотная, в которой гармоническое колебание выглядит так, как показано на рисунке, то есть вертикальной черточкой. Обратите внимание: по горизонтальной оси откладывается уже не время, а частота.

Важно отметить, что спектр периодического, но несинусоидального колебания представляет собой набор синусоидальных «дискрет», вертикальных черточек.

Французским математиком Ж. Фурье (1768—1830) было доказано, что любой несинусоидальный сигнал можно по определенному правилу составить из суммы гармонических функций. Как показала практика, производить расчеты в частотной области намного проще и нагляднее, чем заниматься тем же делом в области временной. Таким образом, анализ Фурье занял в радиотехнике одно из ведущих мест.
Следует также сказать, что непериодические сигналы, к которым относится речь человека и музыка, тоже подчиняются анализу Фурье, только их спектр уже не дискретный, а сплошной, что и отражено на рисунке.


Амплитудно-модулированное колебание это периодический сигнал, который уже не имеет гармонического характера. Спектральный состав AM сигнала легко оценить, если преобразовать его аналитическое выражение с помощью известной формулы произведения синусов. В результате получим

Хорошо видно, что спектр AM колебания содержит, кроме несущей, две боковые частоты: (ω 0 - Ω) и (ω 0 + Ω) .
Для передачи разборчивой речи необходимо, чтобы передатчик имел возможность модулировать несущую на любой из частот, лежащих в полосе от 250 Гц (Ω H) до 3 кГц (Ω В) . Спектр AM колебания в этом случае будет иметь, кроме несущей, две зеркально-симметричные боковые полосы, в точности повторяющие форму спектра низкочастотного сигнала.

В заключение краткого рассказа об AM сигналах предлагаю оценить эффективность такого вида радиовещания с точки зрения использования мощности передатчика. Действительно, как уже было сказано, коэффициент модуляции в стандартных условиях радиовещания не превосходит 0,3. Амплитуда каждой из боковых полос составляет m /2, то есть 0,15 амплитуды несущей. Мощность, квадратично зависящая от амплитуды сигнала, в данном случае составляет 0,0225 от мощности несущей. Представьте себе: менее 5% сигнала несет полезную информацию, которая содержится в боковых полосах и более нигде! Осознали этот факт достаточно поздно, когда радиовещание на основе классической AM модуляции стало стандартом.
Поиски более удачных, более эффективных и более помехозащищенных способов радиовещания привели к тому, что в 1935 году была предложена система с угловой модуляцией. Угловая модуляция — это модуляция посредством частоты несущей или ее фазы при постоянстве амплитуды. Данный вид модуляции лежит в основе радиовещания на УКВ. В начале рассказ о фазовой модуляции (ФМ). Предположим, что модуляцию несущей осуществляет гармоническое колебание. Тогда закон изменения фазы несущей

Где φ о — начальная фаза колебания.

Подставляя выражение для фазы в аналитическое выражение несущей, получаем

Важно заметить, что величина ΔφsinΩt характеризует опережение (отставание) по фазе модулированного сигнала от фазы, которую имел бы немодулированный сигнал.


Мгновенное значение фазового угла модулированного ФМ колебания определяется из выражения

Угловая частота колебания является производной фазового угла по времени:

Где ΔφΩ = Δω — амплитуда отклонения частоты ω от частоты Θ .

Физический смысл полученного соотношения таков: меняя фазу колебания, мы неизбежно меняем и его частоту, причем величина отклонения частоты зависит как от амплитуды модулирующего сигнала, так и от его частоты. Величина максимального фазового отклонения весьма просто связана с максимальным частотным отклонением — девиацией:

Где Δω — девиация частоты; β — индекс модуляции
На практике девиацию обычно выражают не в рад/с, а в Гц, что в 2π раз меньше.

Теперь настало время рассмотреть частотную модуляцию (ЧМ) при воздействии синусоидального управляющего сигнала. Обозначим амплитуду отклонения частоты через Δω :

После преобразований получим аналитическое выражение ЧМ
колебания:

Обозначим:

Хорошо видно, что при изменении частоты несущей меняется и ее фаза. Более того, мы пришли к выражению, которое было выведено в рассказе об ФМ. Может сложиться впечатление, что ЧМ и ФМ одно и то же. Действительно, рассматривая частный случай (модулирование синусоидальным сигналом), мы получим идентичные спектры и не заметим разницы. Однако разница проявится, как только управляющий сигнал перестанет быть гармоническим. Причина в индексе модуляции и его зависимости от входного воздействия.

Нетрудно заметить, что ФМ обеспечивает постоянный индекс модуляции при любой модулирующей частоте. Для ЧМ индекс модуляции понятие менее определенное, поскольку он меняется с изменением модулирующей частоты. Отсюда можно сделать заключение, что спектры колебаний ЧМ и ФМ вида будут несколько отличаться друг от друга. Но как быть с индексом модуляции для ЧМ, как определить его? В радиотехнике принято оценивать индекс модуляции для максимальной модулирующей частоты. Для более низких частот индекс модуляции становится больше.
Осталось оценить вид и ширину спектра сигнала с угловой модуляцией. При небольших индексах модуляции (β < 0,5 ) выражение для модулированного ЧМ и ФМ сигнала может быть приведено к виду:

He правда ли, знакомое выражение? Давайте взглянем на такое же точно выражение для AM сигнала, чтобы убедиться — память нас не подвела. При малых фазовых отклонениях амплитудные спектры АМ, ФМ и ЧМ сигналов идентичны. Различие наблюдается лишь в фазовых спектрах, но это более тонкий анализ, и мы не будем на нем заострять внимание.
Если индекс модуляции таков, что уже более нельзя пользоваться простыми соотношениями, на помощь приходит анализ Бесселя, позволяющий представить сигнал с угловой модуляцией более наглядно:

Видно, что в спектре сигнала появляются боковые частоты с индексами «к». При возрастании β амплитуды боковых частот высших порядков начинают быстро расти, а амплитуда несущей — уменьшаться. Возможен даже такой вариант, когда амплитуда несущей и боковых полос первого порядка станут равными нулю!
Угловая модуляция, при которой наблюдается заметное появление боковых полос высших порядков, называется широкополосной.

Точно определить ее спектр при воздействии непериодического сигнала - задача намного более трудоемкая, чем такая же задача исследования АМ. Приближенно считают, что ширина спектра радиовещательного широкополосного ЧМ сигнала

Где В - ширина спектра модулированного сигнала

Ω в - верхняя модулирующая частота сигнала.

Можно также определить ширину спектра и через девиацию частоты

Итак, чтобы принять радиопередачу без заметных на слух частотных искажений, необходимо учитывать наличие не только боковых полос первого порядка, но еще и полос высших порядков.

Хотя менее и интуитивно понятная, чем амплитудная модуляция, частотная модуляция (ЧМ, англ. FM) по-прежнему является довольно простым способом беспроводной передачи данных.

Мы все, по крайней мере, смутно знакомы с частотной модуляцией - это источник термина «FM радио». Если мы считаем частоту тем, что имеет мгновенное значение, а не как нечто, состоящее из нескольких периодов сигнала, деленных на соответствующий период времени, мы можем непрерывно изменять частоту в соответствии с мгновенной величиной низкочастотного сигнала.

Математика

В первой статье данной главы мы обсудили парадоксальную величину, называемую мгновенной частотой. Если вы считаете этот термин незнакомым или запутанным, вернитесь на эту страницу и прочитайте раздел «Частотная модуляция (ЧМ, англ. FM) и фазовая модуляция (ФМ, англ. PM)». Тем не менее, вы всё еще можете быть немного запутаны, и это понятно: идея мгновенной частоты нарушает основной принцип, согласно которому «частота» указывает, как часто сигнал завершает полный цикл: десять раз в секунду, миллион раз в секунду или сколько бы то ни было раз.

Мы не будем пытаться заниматься каким-либо тщательным или всесторонним рассмотрением мгновенной частоты в качестве математической концепции. (Если вы намерены подробно изучить эту проблему, вот академический документ , который должен помочь.) В контексте FM важно понять, что мгновенная частота естественно вытекает из того, что частота сигнала несущей изменяется непрерывно в ответ на модулирующую волну (т.е. низкочастотный сигнал). Мгновенное значение модулирующего сигнала влияет на частоту в определенный момент, а не на частоту одного или нескольких полных циклов.

На самом деле это верно только для аналоговой частотной модуляции; в цифровой ЧМ один бит соответствует дискретному числу циклов. Это приводит к интересной ситуации, когда более старая технология (аналоговая ЧМ) менее интуитивно понятна, чем более новая технология (цифровая частотная модуляция, также называемая частотной манипуляцией или FSK (Frequency Shift Keying)).

Вам не нужно размышлять над мгновенной частотой, чтобы понимать цифровую частотную модуляцию

Как и в предыдущей статье мы будем обозначать несущую как sin(ω нес t) . У нее уже есть частота (а именно, ω нес), поэтому мы должны использовать термин «дополнительное отклонение частоты » для обозначения частотной составляющей, внесенной процедурой модуляции. Этот термин несколько вводит в заблуждение, поскольку «дополнительное» подразумевает более высокую частоту, тогда как модуляция может приводить к несущей частоте, которая выше или ниже номинальной несущей частоты. Фактически поэтому частотная модуляция (в отличие от амплитудной модуляции) не требует смещенного низкочастотного сигнала: положительные значения низкочастотного сигнала увеличивают частоту несущей, а отрицательные значения низкочастотного сигнала уменьшают частоту несущей. В этих условиях демодуляция не является проблемой, поскольку все значения низкочастотного сигнала соответствуют уникальным частотам.

В любом случае, вернемся к нашему сигналу несущей: sin(ω нес t) . Если мы добавим низкочастотный сигнал (x нч) к величине внутри круглых скобок, мы получим отклонение фазы , линейно пропорциональное низкочастотному сигналу. Но нам нужна частотная модуляция, а не фазовая, поэтому мы хотим, чтобы линейно пропорционально низкочастотному сигналу было отклонение частоты . Из первой статьи данной главы мы знаем, что мы можем получить частоту, взяв производную фазы по времени. Таким образом, если мы хотим, чтобы частота была пропорциональна x нч, мы должны добавить не сам низкочастотный сигнал, а скорее интеграл от низкочастотного сигнала (поскольку взятие производной отменяет интеграл, у нас остается x нч как отклонение частоты).

Единственное, что нам нужно здесь добавить, это индекс модуляции m. В предыдущей статье мы увидели, что индекс модуляции можно использовать для того, чтобы изменения амплитуды несущей были более или менее чувствительны к изменениям амплитуды низкочастотного сигнала. Его функция в FM аналогична: индекс модуляции позволяет нам точно настраивать интенсивность изменения частоты, которое возникает при изменении амплитуды низкочастотного сигнала.

Временна́я область

Давайте посмотрим на несколько сигналов во временной области. Ниже показана наша несущая 10 МГц:

Низкочастотным модулирующим сигналом будет синусоида 1 МГц, показанная ниже:

Частотно-модулированный сигнал генерируется с помощью формулы, приведенной выше. Интеграл от sin(x) равен -cos(x) + C . Константа C здесь не важна, поэтому для вычисления FM сигнала мы можем использовать следующую формулу:

Результат показан ниже (красным показан низкочастотный модулирующий сигнал):

Похоже, что несущая не изменилась, но если присмотреться, пики немного ближе друг к другу, когда низкочастотный модулирующий сигнала приближается к своему максимальному значению. Итак, у нас есть частотная модуляция; но проблема заключается в том, что изменения модулирующего сигнала не создают достаточного изменения частоты несущей. Мы можем легко исправить эту ситуацию, увеличив индекс модуляции. Используем m =4.

Частотная модуляция (m =4)

Теперь мы можем более четко видеть, как частота модулированной несущей непрерывно следует за мгновенным значением амплитуды низкочастотного модулирующего сигнала.

Частотная область

Формы AM и FM сигналов при одинаковых сигнале несущей и низкочастотном модулирующем сигнале выглядят совершенно по-разному. Поэтому интересно обнаружить, что AM и узкополосная FM дают аналогичные изменения в частотной области. (Узкополосная частотная модуляция предусматривает ограниченную полосу модулирующего сигнала и позволяет упростить анализ.) В обоих случая низкочастотный спектр (включая отрицательные частоты) переносится в полосу, которая простирается выше и ниже несущей частоты. В AM спектр самого низкочастотного модулирующего сигнала сдвигается вверх. В FM это спектр интеграла низкочастотного модулирующего сигнала, который появляется в полосе, окружающей несущую частоту.

Для модуляции, показанной выше, с m=1 мы получаем следующий спектр:

Следующий спектр соответствует m=4:

Это очень ясно показывает, что индекс модуляции влияет на частотные составляющие частотно-модулированного сигнала. Спектральный анализ частотной модуляции сложнее, чем для амплитудной модуляции; поэтому для частотно-модулированных сигналов трудно предсказать ширину полосы частот.

Резюме

  • Математическое представление частотной модуляции состоит из синусоидального выражения с интегралом низкочастотного модулирующего сигнала, добавленного к аргументу функции синуса или косинуса.
  • Индекс модуляции может использоваться, чтобы сделать отклонение частоты более чувствительным или менее чувствительным к изменениям амплитуды низкочастотного модулирующего сигнала.
  • Узкополосная частотная модуляция приводит к переносу спектра интеграла низкочастотного модулирующего сигнала в полосу, окружающую несущую частоту.
  • На спектр ЧМ влияет индекс модуляции, а также отношение амплитуды модулирующего сигнала к частоте модулирующего сигнала.

Введение

Частотно-манипулированные FSK сигналы одни из самых распространенных в современной цифровой связи. Это обусловлено прежде всего простотой их генерирования и приема, ввиду нечувствительности к начальной фазе. В данной статье мы рассмотрим принцип формирования и параметры FSK модуляции и одной из ее модификаций — CPFSK (FSK с непрерывной фазой). В русскоязычной литературе также встречается аббревиатура «ЧМн» для обозначения частотно-манипулированных сигналов.

FSK модуляция. Индекс FSK модуляции

Для начала рассмотрим двоичную FSK модуляцию, когда исходный модулирующий сигнал представляет собой двоичную бинарную последовательность нулей и единиц следующую с битовой скоростью . Формирователь FSK сигнала и принцип его функционирования можно условно представить, как это показано на рисунке 1.


Рисунок 1: Принцип формирования FSK сигнала

На рисунке 1 показано два генератора, формирующие колебания и на различных частотах (смотри поясняющие осциллограммы рисунка 1). Также имеется электронный ключ, управляемый цифровым сигналом , таким образом, что при передаче логической «1» на выход подается сигнал , а при передаче логического «0» - сигнал . Таким образом, частота выходного сигнала «манипулируется» в зависимости от битовой последовательности. Не смотря на простоту приведенной схемы, она на практике не применяется, поскольку требуется очень быстродействующий ключ с минимальным переходным процессом, а также при произвольной начальной фазе генераторов возможны скачки по фазе при смене символа, что в свою очередь приводит к расширению спектра. На практике получила распространение FSK модуляция с непрерывной фазой CPFSK. Рассмотрим данный вид модуляции более подробно. FSK сигналы являются частным случаем сигналов с частотной модуляцией (FM) при модулирующем сигнале в виде двоичной битовой последовательности . Таким образом, для модуляции FSK можно использовать схему FM модулятора на базе универсального квадратурного модулятора , как это показано на рисунке 2.


Рисунок 2: Структурная схема формирования FSK сигнала на базе FM модулятора

Поясняющие графики работы приведенной на рисунке 2 структурной схемы показаны на рисунке 3.


Рисунок 3: Поясняющие графики работы FSK модулятора

На верхнем графике показана исходная битовая последовательность следующая со скоростью бод, т.е. длительность одного бита последовательности . Блок нормировки формирует сигнал с уровнем и с нулевым средним, как это показано на среднем графике рисунка 3, при этом форма сигнала сохраняется. Далее используется как модулирующий сигнал на входе FM модулятора. Первым блоком FM модулятора стоит интегратор, который интегрирует сигнал в результате получается сигнал в виде «пилы» как это показано на нижнем графике рисунка 3. Необходимо отметить, что при интегрировании импульс единичной амплитуды на выходе интегратора будет иметь амплитуду После сигнал на выходе интегратора усиливается в раз, где — частота девиации FM сигнала. При рассмотрении FM сигналов говорилось, что частота девиации задает полосу сигнала на выходе модулятора. При цифровой модуляции частота девиации задает разнос частот манипуляции. Представим в виде произведения:

(1)

Где носит название индекса FSK модуляции и определяет во сколько раз разнос частот манипуляции превышает битовую скорость, — циклическая частота модулирующего сигнала, — частота повторения бита при чередовании нулей и единиц в цифровом сигнале (в 2 раза ниже скорости передачи информации ). После усиления и задания девиации частоты производится формирование квадратурных компонент и и модуляция при помощи универсального квадратурного модулятора.

Сделаем замечание. Смысл сигнала на выходе интегратора ни что иное как мгновенная фаза FSK сигнала. Поскольку на выходе интегратора фаза не имеет разрывов, то формируемый таким образом FSK сигнал называется FSK сигнал с непрерывной фазой или CPFSK. Также в некоторой литературе такой способ модуляции носит название модуляция с памятью, так как интегратор «помнит» значения полученные ранее, в то время как ключ на рисунке 1 « не помнит » свое положение в предыдущие моменты времени (модулятор на рисунке 1 носит название модулятор без памяти).

Cпектр FSK сигнала

Рассмотрим спектр FSK сигнала. Ранее уже говорилось, что спектр сигналов с угловой модуляцией в общем случае не выражается аналитически. Однако в случае с бинарной последовательностью, можно получить оценку спектра FSK сигналов следуя следующим рассуждениям. Представим сигнал на входе FM модулятора в виде суммы двух сигналов:
(2)

Графически это показано на рисунке 5.


Рисунок 5: Представление FSK сигнала

Таким образом, спектр FSK сигнала есть сумма спектров сигналов и . Но согласно (4) и — перенесенные на соответствующие частоты сигналы и , которые в свою очередь представляют собой последовательность импульсов длительности Поскольку битовая последовательность случайная, то спектральная плотности и сигналов и может быть представлена, как это показано на рисунке 6.


Рисунок 6: спектральная плотность случайного битового потока

Тогда спектры и сигналов и , а также результирующий спектр FSK сигнала представлены рисунке 7.


Рисунок 7: Спектр FSK сигнала

Таким образом, мы получили спектр FSK сигнала. Видно, что составляющие FSK сигнала разнесены на частоту девиации, а согласно (1), частота девиации зависит от битовой скорости и индекса модуляции . При фиксированной битовой скорости составляющие спектра FSK сигнала будут тем ближе, чем меньше индекс FSK модуляции. На рисунке 8 показаны спектры FSK сигнала при различном индексе модуляции.




>

Рисунок 8: Спектры FSK сигнала при различном индексе модуляции

Из рисунка 8 следует, что при уменьшении индекса FSK модуляции составляющие FSK сигнала сдвигаются и при основные лепестки соприкасаются, а при перекрываются на половину. Таким образом, индекс модуляции задает положение составляющих FSK вне зависимости от несущей частоты и битовой скорости модулирующего сигнала.

На рисунке представлен спектр FSK и основные частотные соотношения.

Рисунок 9: Основные частотные соотношения в спектре FSK

Параметр задает количество боковых лепестков между составляющими спектра.

Частотная манипуляция без разрыва фазы (CPFSK)

При передаче информации, как правило, существуют ограничения на ширину спектра сигнала, поэтому на практике используют схему модуляции CPFSK без разрывов фазы и при малых значениях индекса модуляции . Спектр CPFSK сигнала при и показан на рисунке 10 синим цветом (красным показан спектр FSK с разрывом фазы).

Рисунок 10: Спектр CPFSK сигнала при различных индексах модуляции

Из рисунка 10 хорошо видно, что отсутствие разрывов фазы приводит к существенному снижению максимального бокового лепестка на 6..8 дБ, а также скорость убывания боковых лепестков возрастает. Таким образом, формирование CPFSK сигнала на основе универсального квадратурного модулятора (рисунок 2) гораздо предпочтительнее, чем на основе ключа.

Векторная диаграмма CPFSK сигнала

Рассмотрим теперь векторную диаграмму CPFSK сигнала. Для этого вспомним, что CPFSK сигнал является частным случаем FM сигнала при цифровом входном сигнале, поэтому его векторная диаграмма не отличается от векторной диаграммы FM сигнала. Однако при рассмотрении FM сигнала было введено понятие девиации фазы, т.е. фазового набега на одном периоде модулирующего сигнала. Рассмотрим девиацию фазы в случае CPFSK модуляции.

Из выражения (1) можно заметить, что

(5)

Для расчета набега фазы рассмотрим рисунок 11.


Рисунок 11: Пояснения к расчету фазового набега

Исходный нормированный цифровой сигнал показан синим цветом, зеленым показан сигнал на выходе интегратора , а красным сигнал , умноженный на частоту девиации. Тогда набег фазы на одном информационном символе можно рассчитать следующим образом:

Таким образом, получили, что набег фазы зависит от индекса модуляции и при . Необходимо сделать замечание. Под набегом фазы подразумевается набег фазы на временном интервале , т.е. только на одном информационном символе. Если имеется несколько информационных символов, то их суммарный набег зависит от передаваемой информации и может принимать любое значение в интервале от до с шагом где — количество передаваемых символов цифровой информации. Рассмотрим это подробнее. Пусть имеется 3 бита цифровой информации , где может принимать значения 0 или 1. Поведение.


Рисунок 12: Различные фазовые траектории

Аналогично можно построить для всех восьми комбинаций . Если все возможные фазовые траектории свести в одну диаграмму то получится диаграмма представленная на рисунке 13. Зеленым и черным показаны траектории для и , соответствующие рисунку 12.


Рисунок 13: Полная фазовая диаграмма для 3-х бит информации

Выводы

Таким образом мы рассмотрели FSK и CPFSK сигналы, привели структурную схему FSK модулятора на основе управляемого ключа, а также схему формирования CPFSK на основе универсального квадратурного модулятора. Было показано, что спектр CPFSK сигнала обладает меньшим уровнем боковых лепестков по сравнению с FSK сигналом, что обусловлено непрерывной фазой сигнала. Подробно был рассмотрен вопрос связанный с влиянием индекса модуляции на фазу комплексной огибающей CPFSK сигнала. В следующих разделах мы рассмотрим широко распространенный частный случай CPFSK модуляции — MSK.

Рассмотренные выше методы анализа первичных сигналов позволяют определить их спектральные и энергетические характеристики. Первичные сигналы являются основными носителями информации. Вместе с тем их спектральные характеристики не соответствуют частотным характеристикам каналов передачи радиотехнических информационных систем. Как правило, энергия первичных сигналов сосредоточена в области низких частот. Так, например, при передаче речи или музыки энергия первичного сигнала сосредоточена примерно в диапазоне частот от 20 Гц до 15 кГц. В то же время диапазон дециметровых волн, который широко используются для передачи информационных и музыкальных программ, занимает частоты от 300 до 3000 мегагерц. Возникает задача переноса спектров первичных сигналов в соответствующие диапазоны радиочастот для передачи их по радиоканалам. Эта задача решается посредствам операции модуляции.

Модуляцией называется процедура преобразования низкочастотных первичных сигналов в сигналы радиочастотного диапазона .

В процедуре модуляции участвуют первичный сигнал и некоторое вспомогательное колебание , называемое несущим колебанием или просто несущей. В общем виде процедуру модуляции можно представить следующим образом

где – правило преобразования (оператор) первичного сигнала в модулированного колебание .

Это правило указывает, какой параметр (или несколько параметров) несущего колебания изменяются по закону изменения . Поскольку управляет изменением параметров , то, как было отмечено в первом разделе, сигнал , является управляющим (модулирующим), а – модулированным сигналами. Очевидно, соответствует оператору обобщенной структурной схемы РТИС.

Выражение (4.1) позволяет провести классификацию видов модуляции, которая представлена на рис. 4.1.

Рис. 4.1

В качестве классификационных признаков выберем вид (форму) управляющего сигнала , форму несущего колебания и вид управляемого параметра несущего колебания.

В первом разделе была проведена классификация первичных сигналов. В радиотехнических информационных системах наиболее широкое распространение в качестве первичных (управляющих) сигналов получили непрерывные и цифровые сигналы. В соответствии с этим по виду управляющего сигнала можно выделить непрерывную и дискретную модуляцию.

В качестве несущего колебания в практической радиотехнике используются гармонические колебания и импульсные последовательности. В соответствии с формой несущего колебания различают модуляцию гармонической несущей и импульсную модуляцию .

И наконец, по виду управляемого параметра несущего колебания в случае гармонической несущей различают амплитудную , частотную и фазовую модуляцию . Очевидно, в этом случае в качестве управляемого параметра выступают соответственно амплитуда, частота или начальная фаза гармонического колебания. Если в качестве несущего колебания используется импульсная последовательность, то аналогом частотной модуляции является широтная импульсная модуляция , где управляемым параметром выступает длительность импульса, а аналогом фазовой модуляции – временная импульсная модуляция , где управляемым параметром выступает положение импульса на временной оси.

В современных радиотехнических системах наиболее широко в качестве несущего колебания используется гармоническое колебание. Учитывая это обстоятельство в дальнейшем, основное внимание будет уделено сигналам с непрерывной и дискретной модуляцией гармонической несущей.

4.2. Сигналы с непрерывной амплитудной модуляцией

Рассмотрение модулированных сигналов начнем с сигналов, у которых в качестве изменяемого параметра выступает амплитуда несущего колебания. Модулированный сигнал в этом случае является амплитудно-модулированным или сигналом с амплитудной модуляцией (АМ-сигналом ).

Как уже было отмечено выше, основное внимание будет уделено сигналам, несущее колебание которых представляет собой гармоническое колебание вида

где – амплитуда несущего колебания,

– частота несущего колебания.

В качестве модулирующих сигналов сначала рассмотрим непрерывные сигналы . Тогда модулированные сигналы будут являться сигналами с непрерывной амплитудной модуляцией . Такой сигнал описывается выражением

где – огибающая АМ-сигнала,

– коэффициент амплитудной модуляции.

Из выражения (4.2) следует, что АМ-сигнал представляет собой произведение огибающей на гармоническую функцию . Коэффициент амплитудной модуляции характеризует глубину модуляции и в общем случае описывается выражением

. (4.3)

Очевидно, при сигнал представляет собой просто несущее колебание.

Для более детального анализа характеристик АМ-сигналов рассмотрим простейший АМ-сигнал, в котором в качестве модулирующего сигнала выступает гармоническое колебание

, (4.4)

где , – соответственно амплитуда и частота модулирующего (управляющего) сигнала, причем . В этом случае сигнал описывается выражением

, (4.5)

и называется сигналом однотональной амплитудной модуляции.

На рис. 4.2 изображены модулирующий сигнал , колебание несущей частоты и сигнал .

Для такого сигнала коэффициент глубины амплитудной модуляции равен

Воспользовавшись известным тригонометрическим соот-ношением

после несложных преобразований получим

Выражение (4.6) устанавливает спектральный состав однотонального АМ-сигнала. Первое слагаемое представляет собой немодулированное колебание (несущее колебание). Второе и третье слагаемые соответствуют новым гармоническим составляющим, появившимся в результате модуляции амплитуды несущего колебания; частоты этих колебаний и называются нижней и верхней боковыми частотами, а сами составляющие – нижней и верхней боковыми составляющими.

Амплитуды этих двух колебаний одинаковы и составляют величину

, (4.7)

На рис. 4.3 изображен амплитудный спектр однотонального АМ-сигнала. Из этого рисунка следует, что амплитуды боковых составляющих располагаются симметрично относительно амплитуды и начальной фазы несущего колебания. Очевидно, ширина спектра однотонального АМ-сигнала равна удвоенной частоте управляющего сигнала

В общем случае, когда управляющий сигнал характеризуется произвольным спектром, сосредоточенным в полосе частот от до , спектральный характер АМ-сигнала принципиально не отличается от однотонального.

На рис. 4.4 изображены спектры управляющего сигнала и сигнала с амплитудной модуляцией. В отличие от однотонального АМ-сигнала в спектре произвольного АМ-сигнала фигурируют нижняя и верхняя боковые полосы. При этом верхняя боковая полоса является копией спектра управляющего сигнала, сдвинутой по оси частот на

величину , а нижняя боковая полоса представляет собой зекаль-ное отображение верхней. Очевидно, ширина спектра произвольного АМ-сигнала

т.е. равна удвоенной верхней граничной частоте управляющего сигнала.

Возвратимся к сигналу однотональной амплитудной модуляции и найдем его энергетические характеристики. Средняя мощность АМ-сигнала за период управляющего сигнала определяется по формуле:

. (4.9)

Так как , а , положим , где . Подставляя выражение (4.6) в (4.9), после несложных, но достаточно громоздких преобразований с учетом того, что и с использованием тригонометрических соотношений

Здесь первое слагаемое характеризует среднюю мощность несущего колебания, а второе – суммарную среднюю мощность боковых составляющих, т.е.

Так как суммарная средняя мощность боковых составляющих делится поровну между нижней и верхней, что вытекает из (4.7), то отсюда следует

Таким образом, на передачу несущего колебания в АМ-сигнале тратится более половины мощности (с учетом того, что ), чем на передачу боковых составляющих. Так как информация заложена именно в боковых составляющих, передача составляющей несущего колебания нецелесообразна с энергетической точки зрения. Поиск более эффективных методов использования принципа амплитудной модуляции приводит к сигналам балансной и однополосной амплитудной модуляции.

4.3. Сигналы балансной и однополосной амплитудной модуляции

Сигналы балансной амплитудной модуляции (БАМ) характеризуются отсутствием в спектре составляющей несущего колебания. Перейдем сразу к рассмотрению сигналов однотональной балансной модуляции, когда в качестве управляющего колебания выступает гармонический сигнал вида (4.4). Исключение из (4.6) составляющей несущего колебания

приводит к результату

Рассчитаем среднюю мощность сигнала балансной модуляции. Подстановка (4.12) в (4.9) после преобразований дает выражение

.

Очевидно, что энергетический выигрыш при использовании сигналов балансной модуляции по сравнению с классической амплитудной модуляцией будет равен

При этот выигрыш составляет величину .

На рис. 4.5 представлен один из вариантов структурной схемы формирователя сигналов балансной амплитудной модуляции. Формирователь содержит:

  • Инв1, Инв2 – инверторы сигналов (устройства, изменяющие полярность напряжений на противоположную);
  • АМ1, АМ2 – амплитудные модуляторы;
  • SM – сумматор.

Колебание несущей частоты поступает на входы модуляторов АМ1 и АМ2 непосредственно. Что касается управляющего сигнала , то на второй вход АМ1 он поступает непосредственно, а на второй вход АМ2 – через инвертор Инв1. В результате на выходах модуляторов формируются колебания вида

На входы сумматора поступают соответственно колебания и . Результирующий сигнал на выходе сумматора составит

В случае однотональной амплитудной модуляции выражение (4.13) принимает вид

Используя формулу произведения косинусов, после преобразований получим

что с точностью до постоянного множителя совпадает с (4.12). Очевидно, ширина спектра сигналов БАМ равна ширине спектра сигналов АМ.

Балансная амплитудная модуляция позволяет исключить передачу несущего колебания, что приводит к энергетическому выигрышу. Вместе с тем, обе боковые полосы (боковые составляющие в случае однотональной АМ) несут одну и ту же информацию. Напрашивается вывод о целесообразности формирования и передачи сигналов с подавленной одной из боковых полос. В этом случае мы приходим к однополосной амплитудной модуляции (ОАМ).

Если из спектра сигнала БАМ исключить одну из боковых составляющих (скажем верхнюю боковую составляющую), то в случае гармонического управляющего сигнала получим

Так как средняя мощность сигнала БАМ делится поровну между боковыми составляющими, то очевидно, что средняя мощность сигнала ОАМ составит

Энергетический выигрыш по сравнению с амплитудной модуляцией составит

а при он будет равен .

Формирование однополосного АМ-сигнала может быть осуществлено на базе формирователей сигналов балансной модуляции. Структурная схема формирователя однополосного АМ-сигнала представлена на рис. 4.6.

В состав формирователя сигнала однополосной амплитудной модуляции входят:

На входы БАМ1 поступают сигналы:

Тогда на его выходе в соответствии с (4.15) формируется сигнал

На входы БАМ2 поступают сигналы

и .

С выхода БАМ2 снимается колебание, описываемое в соответствии с (4.14) с заменой косинусов на синусы

С учетом известного тригонометрического соотношения

выходной сигнал БАМ2 преобразуется к виду

Сложение сигналов (4.17) и (4.18) в сумматоре SM дает

что с точностью до постоянного множителя совпадает с (4.16). Что касается спектральных характеристик, то ширина спектра сигналов ОАМ вдвое меньше спектра АМ или БАМ сигналов.

Таким образом, при одинаковых и однополосная АМ обеспечивает существенный энергетический выигрыш по сравнению с классической АМ и балансной модуляцией. Вместе с тем, реализация сигналов балансной амплитудной и однополосной амплитудной модуляции сопряжена с некоторыми трудностями, касающимися необходимости восстановления несущего колебания при обработке сигналов на приемной стороне. Эта задача решается устройствами синхронизации передающей и приемной сторон, что в общем плане приводит к усложнению аппаратуры.

4.4. Сигналы с непрерывной угловой модуляцией

4.4.1. Обобщенное представление сигналов с угловой модуляцией

В предыдущем разделе была рассмотрена процедура модуляции, когда информационным параметром, изменяемым в соответствии с законом управляющего (модулирующего) сигнала являлась амплитуда несущего колебания. Однако помимо амплитуды несущее колебание характеризуется также частотой и начальной фазой

где – полная фаза несущего колебания, которая определяет текущее значение фазового угла.

Изменение либо , либо в соответствии с управляющим сигналом соответствует угловой модуляции . Таким образом, понятие угловой модуляции включает в себя как частотную (ЧМ), так и фазовую (ФМ) модуляцию.

Рассмотрим обобщенные аналитические соотношения для сигналов с угловой модуляцией. При частотной модуляции в соответствии с управляющим сигналом изменяется мгновенная частота несущего колебания в пределах от нижней до граничных частот

Наибольшее значение частотного отклонения от называется девиацией частоты

.

Если граничные частоты расположены симметрично относительно , то девиация частоты

. (4.22)

Именно такой случай частотной модуляции будет рассматриваться в дальнейшем.

Закон изменения полной фазы определяется как интеграл от мгновенной частоты. Тогда, с учетом (4.21) и (4.22), можно записать

Подставляя (4.23) в (4.20), получим обобщенное аналитическое выражение сигнала с частотной модуляцией

Слагаемое представляет собой составляющую полной фазы, обусловленную наличием частотной модуляции. Нетрудно убедится в том, что полная фаза сигнала с частотной модуляцией изменяется по закону интеграла от .

При фазовой модуляции , в соответствии с модулирующем сигналом , изменяется начальная фаза несущего колебания в пределах от нижнего до верхнего граничных значений фазы

Наибольшее отклонение фазового сдвига от называется девиацией фазы . Если и расположены симметрично относительно , то . В этом случае полная фаза сигнала с фазовой модуляцией

Тогда, подставляя (4.26) в (4.20), получим обобщенное аналитическое выражение сигнала с фазовой модуляцией

Рассмотрим, как изменяется мгновенная частота сигнала при фазовой модуляции. Известно, что мгновенная частота и текущая пол-

ная фаза связаны соотношением

.

Подставляя в это выражение формулу (4.26) и проведя операцию дифференцирования, получим

где – составляющая частоты, обусловленная наличием фазовой модуляции несущего колебания (4.20).

Таким образом, изменение начальной фазы несущего колебания приводит к изменению мгновенных значений частоты по закону производной от по времени.

Практическая реализация устройств формирования сигналов угловой модуляции может осуществляться одним из двух методов: прямым или косвенным. При прямом методе в соответствии с законом изменения управляющего сигнала изменяются параметры колебательного контура генератора несущего колебания. Выходной сигнал при этом оказывается промодулированным по частоте. Для получения сигнала фазовой модуляции на входе частотного модулятора включается дифференцирующая цепь.

Сигналы фазовой модуляции при прямом методе формируются путём изменения параметров колебательного контура усилителя, подключённого к выходу генератора несущего колебания. Для преобразования сигналов фазовой модуляции в сигнал частотной модуляции управляющее колебание подаётся на вход фазового модулятора через интегрирующую цепь.

Косвенные методы не предполагают непосредственного воздействия управляющего сигнала на параметры колебательного контура. Один из косвенных методов базируется на преобразовании амплитудно-модулированных сигналов в сигналы фазовой модуляции, а те, в свою очередь, - в сигналы частотной модуляции. Более подробно, вопросы формирования сигналов частотной и фазовой модуляции будут рассмотрены ниже.

4.4.2. Сигналы с частотной модуляцией

Анализ характеристик сигналов с угловой модуляцией мы начнём с рассмотрения однотональной частотной модуляции. Управляющий сигнал в этом случае представляет собой колебание единичной амплитуды (к этому виду всегда можно привести )

, (4.29)

а модулируемым параметром несущего колебания является мгновенная частота. Тогда, подставляя (4.29) в (4.24), получим:

Выполнив операцию интегрирования, приходим к следующему выражению сигнала однотональной частотной модуляции

Отношение

называется индексом частотной модуляции и имеет физический смысл части девиации частоты , приходящуюся на единицу частоты модулирующего сигнала. Так например, если девиация частоты несущего колебания МГц составляет , а частота управляющего сигнала кГц, то индекс частотной модуляции составит . В выражении (4.30) начальная фаза не учитывается как не имеющая принципиального значения.

Временная диаграмма сигнала при однотональной ЧМ представлена на рис. 4.7

Рассмотрение спектральных характеристик ЧМ-сигнала начнём с частного случая малого индекса частотной модуляции . Воспользовавшись соотношением

представим (4.30) в виде

Поскольку , то можно воспользоваться приближёнными представлениями

и выражение (4.31) приобретает вид

Воспользовавшись известным тригонометрическим соотношением

и полагая и , получим:

Это выражение напоминает выражение (4.6) для однотонального АМ – сигнала. Отличие состоит в том, что, если в однотональном АМ – сигнале начальные фазы боковых составляющих одинаковы , то в однотональном ЧМ сигнале при малых индексах частотной модуляции они отличаются на угол , т.е. находятся в противофазе.

Спектральная диаграмма такого сигнала показана на рис. 4.8

В скобках указаны значения начальной фазы боковых составляющих. Очевидно, ширина спектра ЧМ – сигнала при малых индексах частотной модуляции равна

.

Сигналы с частотной модуляцией с малым в практической радиотехнике применяются достаточно редко.

В реальных радиотехнических системах индекс частотной модуляции существенно превышает единицу.

Так например, в современных аналоговых системах мобильной связи, использующих для передачи речевых сообщений сигналы частотной модуляции при верхней частоте речевого сигнала кГц и девиации частоты кГц, индекс , как нетрудно убедиться, достигает значения ~3-4. В системах же радиовещания метрового диапазона индекс частотной модуляции может превышать значения, равного 10. Поэтому рассмотрим спектральные характеристики ЧМ сигналов при произвольных значениях величины .

Возвратимся к выражению (4.32). Известны следующие виды разложения

где – фунция Бесселя первого рода -го порядка.

Подставляя эти выражения в (4.32), после несложных, но довольно громоздких преобразований с использованием уже неоднократно упомянутых выше соотношений произведений косинусов и синусов, получим

(4.36)

где .

Полученное выражение представляет собой разложение однотонального ЧМ – сигнала на гармонические составляющие, т.е. амплитудный спектр. Первое слагаемое этого выражения является спектральной составляющей колебания несущей частоты с амплитудой . Первая сумма выражения (4.35) характеризует боковые составляющие с амплитудами и частотами , т.е. нижнюю боковую полосу, а вторая сумма – боковые составляющие с амплитудами и частотами , т.е. верхнюю боковую полосу спектра.

Спектральная диаграмма ЧМ – сигнала при произвольном представлена на рис. 4.9.

Проанализируем характер амплитудного спектра ЧМ – сигнала. В первую очередь отметим, что спектр является симметричным относительно частоты несущего колебания и теоретически является бесконечным.

Составляющие боковых боковых полос расположены на расстоянии Ω друг от друга, а их амплитуды зависят от индекса частотной модуляции. И наконец, у спектральных составляющих нижней и верхней боковых частот с чётными индексами начальные фазы совпадают, а у спектральных составляющих с нечётными индексами отличаются на угол .

В таблице 4.1 приведены значения функции Бесселя для различных i и . Обратим внимание на составляющую несущего колебания . Амплитуда этой составляющей равна . Из таблицы 4.1 следует, что при амплитуда , т.е. спектральная составляющая несущего колебания в спектре ЧМ – сигнала отсутствует. Но это не означает отсутствия несущего колебания в ЧМ – сигнале (4.30). Просто энергия несущего колебания перераспределяется между составляющими боковых полос.

Таблица 4.1

Как уже подчёркивалось выше спектр ЧМ – сигнала теоретически является бесконечным. На практике же полоса пропускания радиотехнических устройств всегда ограничена. Оценим практическую ширину спектра, при котором воспроизведение ЧМ – сигнала можно считать неискажённым.

Средняя мощность ЧМ – сигнала определяется как сумма средних мощностей спектральных составляющих

Проведённые расчёты показали, что около 99% энергии ЧМ – сигнала сосредоточено в частотных составляющих с номерами . А это означает, что частотными составляющими с номерами можно пренебречь. Тогда практическая ширина спектра при однотональной ЧМ с учётом его симметрии относительно

а при больших значения

Т.е. равна удвоенной девиации частоты.

Таким образом, ширина спектра ЧМ – сигнала приблизительно в раз больше ширины спектра АМ – сигнала. Вместе с тем, для передачи информации используется вся энергия сигнала. В этом состоит преимущества сигналов частотной модуляции над сигналами амплитудной модуляции.

4.5. Сигналы с дискретной модуляцией

Рассмотренные выше сигналы с непрерывной модуляцией, в основном используются в системах радиовещания, радиотелефонии, телевидения и других. Вместе с тем, переход на цифровые технологии в радиотехнике, в том числе и в перечисленных областях, обусловил широкое использование сигналов с дискретной модуляцией или манипуляцией. Так как исторически сигналы дискретной модуляции впервые были использованы для передачи телеграфных сообщений, такие сигналы ещё называют сигналами амплитудной (АТ), частотной (ЧТ), и фазовой (ФТ) телеграфии. Ниже при описании соответствующих сигналов будет использована эта аббревиатура, что позволит отличать их от сигналов с непрерывной модуляцией.

4.5.1. Сигналы с дискретной амплитудной модуляцией

Сигналы дискретной амплитудной модуляции характеризуются тем, что амплитуда несущего колебания изменяется в соответствии с управляющим сигналом, который представляет собой последовательности импульсов, обычно прямоугольной формы. При исследовании характеристик сигналов с непрерывной модуляцией в качестве управляющего сигнала рассматривался гармонический сигнал. По аналогии с этим для сигналов с дискретной модуляцией в качестве управляющего сигнала используем периодическую последовательность прямоугольных импульсов

Очевидно, как следует из (4.39), длительность импульса составляет , а скважность .

На рис. 4.10 представлены эпюры управляющего сигнала , несущего колебания и амплитудно-манипулированного сигнала . Здесь и далее будем полагать амплитуду импульсов управляющего сигнала равной , а начальную фазу несущего колебания . Тогда сигнал с дискретной амплитудной модуляцией можно записать следующим образом

Ранее было получено разложение последовательности прямоугольных импульсов в ряд Фурье (2.13). Для рассматриваемого случая и выражение (2.13) принимает вид

Подставляя (4.41) в (4.40) и используя формулу произведения косинусов, получим:

На рис. 4.11 изображён амплитудный спектр сигнала, модулированного по амплитуде последовательностью прямоугольных импульсов. Спектр содержит составляющую несущей частоты с амплитудой и две боковые полосы каждая из которых состоит из бесконечного числа гармонических составляющих, располагающихся на частотах , амплитуды которых изменяются по закону . Боковые полосы, так же как и при непрерывной АМ, расположены зеркально по отношению к спектральной составляющей несущей частоты. Нули амплитудного спектра сигнала АТ соответствуют нулям амплитудного спектра сигнала , но сдвинуты влево и вправо на величину .

Ввиду того, что основная часть энергии управляющего сигнала сосредоточена в пределах первого лепестка спектра, практическую ширину спектра в рассматриваемом случае, исходя из рис. 4.11, можно определить как

. (4.43)

Этот результат согласуется с расчётами спектра, приведёнными в [Л.4], где показано, что большая часть мощности сосредоточена в боковых составляющих с частотами и .

4.5.2. Сигналы с дискретной частотной модуляцией

При анализе сигналов с дискретной угловой модуляцией удобно в качестве модулирующего сигнала использовать периодическую последовательность прямоугольных импульсов вида “меандр”. Тогда управляющий сигнал на интервале времени принимает значение , а на интервале времени - значение . Снова, как и при анализе сигналов АТ будем полагать .

Как следует из подраздела 4.3.1 сигнал с частотной модуляцией описывается выражением (4.24). Тогда с учётом того, что на интервале управляющий сигнал , а на интервале управляющий сигнал , проведя операцию интегрирования, получим выражение сигнала ЧТ

На рис 4.12 приведены временные диаграммы управляющего сигнала , несущего колебания и сигнала дискретной частотной модуляции .

С другой стороны сигнал ЧТ, как это следует из рис. 4.12, может быть представлен суммой двух сигналов дискретной амплитудной модуляции и , частоты несущих колебаний которых соответственно равны

,



Рекомендуем почитать

Наверх