Из каких частей состоит передатчик. Как устроен передатчик. Как работает радиоприемник

Помощь 13.04.2019
Помощь

«Радиоволны» передают музыку, разговоры, фотографии и данные незримо через воздух, часто более чем миллионы миль - это происходит каждый день тысячами различных способов! Даже при том, что радиоволны невидимы и абсолютно необнаружимы людьми, они полностью изменили общество. Говорим ли мы о сотовом телефоне, радионяне, беспроводном телефоне или о ком-либо из тысяч других беспроводных технологий, все они используют радиоволны для осуществления коммуникации.
Вот всего несколько повседневных технологий, которые значительным образом зависят от радиоволн:

  • Радиопередачи AM и FM
  • Беспроводные телефоны
  • Беспроводные сети
  • Радиоуправляемые игрушки
  • Телевизионные передачи
  • Сотовые телефоны
  • GPS-приёмники
  • Любительские радио
  • Спутниковая связь
  • Полицейское радио
  • Беспроводные часы
Данный список можно продолжать и продолжать… Даже такие вещи, как радиолокационные и микроволновые печи зависят от радиоволн. Также такие вещи, как связь и навигационные спутники не функционировали бы без радиоволн, равно как и современная авиация - самолёт сегодня зависит от десятка различных систем радиосвязи. Нынешняя тенденция к беспроводному доступу в Интернет использует радио, и это означает, что в будущем нас ждёт намного больше удобства.

Шутка-минутка


Самое смешное, что, по своей сути, радио является невероятно простой технологией. С помощью всего лишь нескольких электронных компонентов, которые стоят не более одного или двух долларов, вы можете создавать простые радиопередатчики и приёмники. История того, как что-то настолько простое стало основной технологией современного мира является захватывающей. В сегодняшней статье мы рассмотрим технологию под названием «радио», так что вы сможете полностью понять, как невидимые радиоволны делают столько много вещей, и нашу жизнь проще.

Простейшее радио

Радио может быть невероятно простым, и на рубеже веков эта простота сделала раннее экспериментирование возможным для примерно любого человека. Как просто получить радио? Один из примеров описывается далее:

  • Возьмите свежую 9-вольтовую батарейку и монету
  • Найдите AM-радио и настройте его на область дисков, где будет слышна статика
  • Теперь держите батарейку вблизи антенны и быстро нажмите на два контакта аккумулятора монетой (так, чтобы вы соединили их вместе на мгновение)
  • Вы услышите потрескивание в радио, которое вызвано связью и разъединением монеты
Да, простая батарейка и не менее простая монета являются радиопередатчиком. Данная комбинация не передаёт ничего полезного (только статика), и передача не будет производиться на далёкие расстояния (всего несколько дюймов, потому что нет оптимизации для расстояния). Но если вы используете статику, чтобы вытряхнуть Азбуку Морзе, вы можете фактически сообщить о чём-то не более чем на расстояние нескольких дюймов с этим непродуманным устройством.

Более сложное радио

Если вы хотите получить немного более сложное радио, используйте металлический файл и два куска проволоки. Соедините ручку файла к одному контакту 9-вольтовой батарейки, затем соедините второй кусок проволоки ко второму контакту и запустите конструкцию проводя вверх и вниз по файлу. Если вы сделаете это в темноте, вы сможете увидеть, как очень маленькие 9-вольтовые искры бегут вдоль файла, поскольку наконечник проволоки производит соединение и разъединение. Держите файл около AM-радио и тогда услышите много статики.

В первые дни радиопередатчики были названы искровыми катушками, и, кроме того, они создавали непрерывный поток искр при гораздо более высоких напряжениях (например, 20000 вольт). Высокое напряжение, соответственно, поспособствовало созданию больших искр, таких, какие вы видите в свече зажигания, например. Сегодня такой передатчик, как этот, незаконен, потому что спамит весь спектр радиочастот, но в первые дни он работал отлично и был очень распространён потому, что было не много людей, использующих радиоволны.

Основы радио: части

Как вы могли заметить из предыдущего раздела, создавать статику невероятно легко. Однако все радиостанции сегодня используют непрерывные волны синуса для передачи информации (аудио, видео, различные данные). Причина, по которой мы используемые непрерывные волны синуса сегодня - потому что есть много различных людей и устройств, которые в то же время хотят использовать радиоволны. Если бы у вас был какой-либо способ видеть их, то вы нашли бы, что есть буквально тысячи различных радиоволн (в форме волн синуса) вокруг вас прямо сейчас - телепередачи, радиопередачи AM и FM, полицейские и пожарные радио, спутниковые телевизионные передачи, разговоры сотовых телефонов, GPS-сигналы и так далее. Также удивительно, как много применений существует для радиоволн сегодня. Каждый отличающийся радиосигнал использует различную частоту волны синуса, и именно так они все разделены.

У любой радио-установки есть две части: передатчик (трансмиттер) и приёмник (ресивер). Передатчик перехватывает своего рода сообщение (это может быть звук чьего-либо голоса, изображение экрана телевизора, данные для радиомодема или любое другое что-то), кодирует его на волну синуса и передаёт с радиоволнами. Приёмник же, понятное дело, принимает радиоволны и расшифровывает сообщение от волны синуса, которую оно получает. И трансмиттер и ресивер используют антенны, чтобы излучить и захватить радиосигнал.

Основы радио: реальные примеры

Радионяня примерно так же проста, как и получаемая технология радиосвязи. Существует передатчик, который «сидит» в комнате ребёнка и приёмник, что родители используют, чтобы слушать своё чадо. Вот некоторые из важных характеристик типичной радионяни:

  • Модуляция : Амплитудная Модуляция (Amplitude Modulation, AM)
  • Диапазон частот : 49 МГц
  • Количество частот : 1 или 2
  • : 0.25 Вт


Типичная радионяня с передатчиком слева и приёмником справа. Передатчик находится, непосредственно, в комнате ребёнка и служит некой мини-радиостанцией. Родители же берут с собой приёмник и с помощью него слушают деяния ребёнка. Дальность связи ограничивается до 200 футов (61 метр)


Не волнуйтесь, если такие термины, как «модуляция» и «частота» не имеют смысла для вас сейчас - мы доберёмся до них через некоторое время и я объясню, что они значат.


Мобильный телефон содержит в себе как приёмник, так и передатчик, и оба работают одновременно на разных частотах. Сотовый телефон взаимодействует с сотовой вышкой и способен передавать сигналы на расстояние 2 или 3 мили (3-5 километров)


Сотовый телефон также радио и является гораздо более сложным устройством. Сотовый телефон содержит как передатчик, так и приёмник, и вы можете использовать одновременно их оба - так вы будете использовать сотни различных частот и сможете автоматически переключаться между ними. Вот некоторые из важных характеристик типичного аналогового сотового телефона:
  • Модуляция : Частотная Модуляция (Frequency Modulation, FM)
  • Диапазон частот : 800 МГц
  • Количество частот : 1.664
  • Мощность передатчика (трансмиттера) : 3 Вт

Простые передатчики (трансмиттеры)

Вы можете получить представление о том, как работает радиопередатчик, начиная с батарейки и куска проволоки. Как известно, батарея посылает электричество (поток электронов) через провод при подключении его между двумя контактами. Движущиеся электроны создают магнитное поле, окружающее провод, и поле достаточно сильное, чтобы повлиять на компас.

Давайте предположим, что вы берёте ещё один провод и помещаете его параллельно провода аккумулятора на несколько дюймов (5 сантиметров). При подключении очень чувствительного вольтметра к проводу произойдёт следующее: каждый раз, когда вы подключаете или отключаете первый провод от батареи, вы ощутите очень маленькое напряжение и ток во втором проводе; любое изменение магнитного поля может вызвать электрическое поле в проводнике - это основной принцип, лежащий в любом электрическом генераторе. Итак:

  • Батарея создаёт поток электронов в первом проводе
  • Подвижные электроны создают магнитное поле вокруг провода
  • Магнитное поле простирается до второго провода
  • Электроны начинают течь во втором проводе каждый раз, когда магнитное поле в первом проводе изменяется

Одна важная вещь, заметьте, состоит в том, что поток электронов во втором проводе только тогда, когда вы соединяете или разъединяете батарею. Магнитное поле не вызывает электроны течь в проводе, если магнитное поле не меняется. Подключение и отключение батарейки меняет магнитное поле (подключение аккумулятора к проводу создаёт магнитное поле, в то время как отключение разрушает его). Таким образом протекает поток электронов во втором проводе в те два момента.

Передача информации

Если у вас есть волна синуса и передатчик, который передаёт волну синуса в космос с антенной, у вас есть радиостанция. Единственная проблема заключается в том, что волна синуса не содержит никакой информации. Вы должны смодулировать волну в некотором роде, чтобы закодировать информацию на ней. Есть три распространённых способа смодулировать волну синуса:

Импульсная Модуляция - в PM вы просто включаете волну синуса и отключаете. Это простой способ отправить код Азбуки Морзе. PM не настолько распространана, но один хороший пример её - система радиосвязи, которая посылает сигналы в радиоуправляемые часы в Соединённых Штатах Америки. Один передатчик PM в состоянии покрыть все Соединённые Штаты Америки!

Амплитудная Модуляция - обе радиостанции AM и часть телевизионного сигнала сигнализируют амплитудную модуляцию для кодирования информации. В амплитудной модуляции амплитуда волны синуса (её напряжение от пика к пику) изменяется. Так, например, волна синуса, произведённая голосом человека, накладывается на волну синуса передатчика, чтобы изменить её амплитуду.

Частотная Модуляция - радионстанции FM и сотни других беспроводных технологий (включая звуковую часть телевизионного сигнала, беспроводные телефоны, сотовые телефоны и так далее) используют частотную модуляцию. Преимущество FM заключается в том, что она в значительной степени невосприимчива к статике. В FM изменение частоты волны синуса передатчика очень слабо основывается на информационном сигнале. После того, как вы смодулировали волну синуса с информацией, вы можете передать её!

Частота
Одна особенность волны синуса - своя частота. Частота волны синуса - количество раз, сколько колеблется она вверх и вниз в секунду. Когда вы слушаете радиопередачу AM, ваше радио настраивается на волну синуса с частотой приблизительно 1000000 циклов в секунду (циклы в секунду известны также как герцы). Например, 680 на дайле AM - это 680000 циклов в секунду. Радиосигналы FM работают в диапазоне 100000000 герц. Таким образом, 101.5 в дайле FM будет значится как 101500000 циклов в секунду.

Приём сигнала AM

Вот пример реального мира. При настройке вашего автомобильного AM-радио на станции, например, 680 на циферблате AM - значит, что волна синуса передатчика передаёт 680000 герц (волна синуса повторяет 680000 раз в секунду). Голос диджеев модулируется на этой несущей волне путём изменения амплитуды волны синуса передатчика. Усилитель усиливает сигнал на что-то вроде 50000 Вт для большой AM-станции. Тогда антенна передаёт радиоволны в космос.

Так как же AM-радио вашего автомобиля - приёмник - получает 680000-герцевый сигнал, который послан передатчиком и извлекает информацию (голос диджея) из него? Далее я перечислю вам шаги данного процесса:

  • Если вы не сидите прямо рядом с передатчиком, ваш радиоприёмник нуждается в антенне, чтобы помочь подобрать радиоволны передатчика из воздуха. AM-антенна представляет собой просто провод или металлическую палку, которая увеличивает количество металла, с которым могут взаимодействовать волны передатчика.
  • Также ваш радиоприёмник нуждается в тюнере. Антенна будет получать тысячи волн синуса. Работа тюнера заключается в отделении одной волны синуса от тысяч различных радиосигналов, которые получает антенна. В этом случае приёмник настроен на получение сигнала 680000 герц. Тюнеры работают используя принцип, называющийся резонанс, то есть тюнеры резонируют и усиливают одну особую частоту, в то время как все другие частоты игнорируются в воздухе. Резонатор, к слову, легко создать с помощью конденсатора и катушки индуктивности.
  • Тюнер заставляет радио получать всего одну частоту волны синуса (в нашем случае 680000 герц). Теперь радио должно извлечь голос диджея из этой волны синуса - это делается посредством одной из частей радио под названием детектор или демодулятор. В случае с AM-радио, детектор выполнен так, что имеет электронные компоненты, называемые диодами. Диод позволяет току течь в одном направлении и только через него.
  • Радио затем усиливает обрезанный сигнал и посылает его спикерам (или наушникам). Усилитель выполнен из одного или нескольких транзисторов (чем больше транзисторов, тем больше усиление и поэтому большая мощность приходится на динамики).
То, что вы слышите исходящее из динамиков - голос диджеев (привет, кэп). В FM-радио детектор отличается, но всё остальное то же самое. В FM-радио детектор изменяет частоту в звуке, но антенна, тюнер и усилитель - в основном то же самое.

Основы антенны

Вы, наверное, заметили, что почти каждое радио, будь то мобильный телефон, радио в автомобиле и многое другое, имеет антенну. Антенны бывают всех форм и размеров, в зависимости от частоты, которую антенна пытается получать. Радиопередатчики также используют чрезвычайно высокие башни-антенны для передачи их сигналов.

Идея антенны в радиопередатчике подразумевает под собой запуск радиоволны в космос. В приёмнике идея состоит в том, чтобы взять как можно больше данных передатчика и поставлять её тюнеру. Для спутников, которые находятся от нас в миллионах миль, NASA использует огромные спутниковые антенны до 200 футов (60 метров) в диаметре - только представьте себе подобную картинку маслом.

Размер оптимальной радиоантенны связан с частотой сигнала, который антенна пытается передавать или принимать. Причина этой взаимосвязи имеет отношение к скорости света, в результате чего на далёкие расстояния могут отправляться электроны. Скорость света составляет 186000 миль в секунду (300000 километров в секунду).

Антенны: реальные примеры

Давайте предположим, что вы пытаетесь построить радиовышку для радиостанции 680 AM. Она передаёт волну синуса с частотой 680000 герц. В одном цикле волны синуса передатчик будет перемещать электроны в антенну в одном направлении, переключиться и задержит их, снова переключиться и выставит их, а потом переключиться ещё раз и вернёт их обратно. Другими словами, электроны будут изменять направление четыре раза в течение одного цикла волны синуса. Если передатчик работает на 680000 герц, это означает, что каждый цикл завершается в (1/680000) 0.00000147 секунды. Одна четверть этого составляет 0.0000003675 секунды. Со скоростью света электроны могут пролететь 0.0684 мили (0.11 километра) через 0.0000003675 секунды. Это значит, что оптимальный размер антенны для передатчика на 680000 герц равен 361 футу (110 метрам). Таким образом, радиостанции AM нуждаются в очень высоких башнях. Для мобильного телефона, работающего на частоте 900000000 (900 МГц), с другой стороны, оптимальный размер антенны составляет около 8.3 сантиметра или 3 дюймов - именно поэтому мобильные телефоны могут иметь такие короткие антенны.

Вы могли бы задаться вопросом, почему когда радиопередатчик передаёт что-то, радиоволны хотят размножиться через пространство далеко от антенны со скоростью света. Почему радиоволны могут преодолевать миллионы миль? Оказывается, что в пространстве магнитное поле, создаваемое антенной, индуцирует электрическое поле в пространстве. Это электрическое поле, в свою очередь, вызывает ещё магнитное поле в пространстве, которое индуцирует другое магнитное поле, которое индуцирует другое магнитное поле, и так далее. Эти электрические и магнитные поля (электромагнитные поля) вызывают друг друга в пространстве со скоростью света, путешествуя таким образом далеко от антенны. Вот и всё на сегодня. Надеюсь, что статья была очень интересной, познавательной, полезной и вы узнали много нового о повседневной технологии.

В примере, рассматривается радиоприемник Альпинист, модель — 321 \фото № 1\. На лицевой панели расположены:

  • переключатель диапазонов для длинных и средних волн;
  • ручка включения радиоприемника с регулятором громкости

и ручка настройки.

На задней стенке приемника расположены гнезда для подключения:

    внешней антенны;

    заземления;

    наушников

и гнездо для подключения разъема с проводом от блока питания \фото №2\. Радиоприемник относится к третьему классу, выпуск — 1982 год.

Узлы и детали — приемника Альпинист

Для осмотра деталей и внутренней конструкции приемника, необходимо открутить всего лишь два болта \фото №3, фото №4\, головки болтов которых выполнены под плоскую отвертку.

На печатной плате расположены основные узлы и детали приемника Альпинист-321 \фото №5\. Сам корпус приемника изготовлен из полистирола. К узлам радиоприемников относятся электромонтажные схемы печатных плат:

    блока питания;

    блока УКВ;

    блока УНЧ;

    блока КСДВ

К деталям приемника \радиодеталям\, относятся:

    резисторы;

    конденсаторы;

    и деталей, смонтированых на печатной плате, необходимых для стабилизации и выпрямления тока. То-есть, в дополнение к силовому трансформатору, — обычно такая схема состоит из нескольких:

    • резисторов;

      транзисторов

    и конденсатора.

    Указание деталей — на плате приемника

    На четырех фотоснимках \фото №№ 6,7,8,9\ приемника Альпинист-321, авторучкой указаны катушки входных контуров:

      для длинных волн \L3\;

      для средних волн \L1\

    и две катушки связи:

    Все катушки намотаны на ферритовом стержне магнитной антенны. Магнитная антенна, для данного приемника, необходима для принятия радиоволн двух диапазонов — длинных и средних волн.

    И чтобы это выглядело более понятливо, сопоставим фотоснимки \6,7,8,9\ с конструкцией магнитной антенны радиоприемника:

    конструкция магнитной антенны

    На фотоснимке №10 дано изображение оси ручки настройки. При помощи верньерного устройства \механики передаточного отношения\, передается сила для совершения вращения шкива КПЕ — конденсатора переменной емкости.

    Привод верньерного устройства передает свое движение указателю шкалы, где при визуальном наблюдении за шкалой мы наблюдаем установленную нами частоту принимаемого сигнала. \фото №11\.

    Переключателем диапазонов осуществляется переключение принимаемого сигнала для длинных и средних волн \фото №12\.

    Настраивание приемника на необходимую нам частоту осуществляется двухсекционным блоком КПП. Подобные блоки, по своей конструкции могут выглядеть как с воздушным так и с твердым диэлектриком. Для данного приемника диэлектрик — воздушный, емкость которого составляет от 9 до 280 пикофарад \фото №№ 13,14\.

    В целом, данная радиодеталь называется — конденсатором переменной емкости , в конструкции которого входят — подвижная и неподвижная части пластин:

      ротор — подвижная часть;

      статор — неподвижная часть

    конструкции.

    Указание деталей на схеме

    На схеме, конденсатор переменной емкости выглядит следующим образом \фото №№ 15,16\:

    То-есть, для данной схемы мы можем заметить, что два конденсатора соединены пунктирной линией и являются в общем — двухсекционным конденсатором.

    Осью регулятора громкости при его вращении, изменяется сопротивление в цепи \фото №№ 17,18\. В общих чертах, регулятор громкости выполняет функцию реостата.

    В радиосхемах \фото №№ 19,20\, регулятор громкости имеет графическое обозначение как переменный резистор , при помощи которого осуществляется плавное регулирование сопротивления в цепи. От переменного резистора \фото №19\ как можно заметить, — отходит пунктирная линия к замыкающему и размыкающему ключу \фото №20\. Из данного обозначения следует, что регулятором громкости осуществляется не только регулирование звука но и осуществляется включение и отключение приемника.

    В следующем фрагменте схемы \фото №21\ указан отсек с элементами питания на 9 В. Данный отсек, как видно по схеме, — имеет разъемное контактное соединение со схемой приемника.

    На печатной плате \фото №№ 22,23\ указаны авторучкой — подстроечные конденсаторы переменной емкости . Корпус конденсатора выполнен из керамики с твердым диэлектриком. Емкость подстроечных конденсаторов небольшая и обычно составляет от 1,5 до 20 пикофарад, настройка которых осуществляется в заводских условиях. Если посмотреть внимательно, рядом с конденсаторами указаны их названия — С1,С2. Далее, смотрим по схеме.

    Соответственно, такие подстроечные конденсаторы переменной емкости в схеме обозначены следующим образом \фото №№ 24,25\, емкость которых составляет от 5 до 20 пикофарад \как указано в схеме\. Указанные конденсаторы \С1,С2\, как видно по схеме, соединены с входными контурами магнитной антенны.

    На двух фотоснимках печатной платы \фото №№ 26,27\ указаны подстроечные резисторы с плавной регулировкой. Регулировка таких резисторов проводится также, на заводе, — при изготовлении приемника.


    Как устроен передатчик

    Вожделенная тема многих: передатчики. Каждый человек, мало-мальски умеющий обращаться с паяльником, просто мечтает собрать какой-нибудь "жучок", или передатчик, чтобы выйти в эфир… Жажда славы портит людей… =)))
    В этом параграфе мы рассмотрим, из каких блоков состоит любой передатчик. В последующих параграфах мы разберем каждый блок на мелкие детальки =). Поехали!


    Итак, задача передатчика - послать в эфир электромагнитные волны. Чтобы появились электромагнитные волны - должны быть колебания, которые их порождают. То есть - колебания тока в передающей антенне. Чтобы появились колебания тока - нужно какое-то устройство, которое преобразовало бы постоянный ток источника питания (батарейки) в переменный ток. Это устройство называется генератор высокой частоты (ГВЧ). Почему высокой? Потому что радиовещание ведется на сравнительно высоких частотах (ВЧ), от 100 кГц и выше. Для сравнения: частоты звукового диапазона считаются низкими (НЧ), потому что их частота не превышает 20 кГц. Поэтому, все блоки схемы, работающие с радиосигналом - высокочастотные. Генератор - в том числе. А блоки, работающие со звуковым сигналом - низкочастотные. О них мы поговорим чуть дальше.

    Если подсоединить к выходу ГВЧ антенну - на антенне появится переменный ВЧ ток, который преобразуется в электромагнитные волны. Всё! Мы в эфире!

    Вот как выглядит схема нашего передатчика:

    На этой схеме почти нет привычных нам элементов: транзисторов, резисторов, конденсаторов и т.д. Есть только какая-то кисточка и страшный большой ящик. Не пугайтесь. Просто - это структурная схема. В структурной схеме обозначаются лишь некоторые электрические элементы. Остальные же элементы "прячут" в "ящик". Иными словами, отдельные части схемы показываются как прямоугольники. Такие схемы рисуются для сложных устройств, чтобы наглядно показать связи между его отдельными частями.

    На данной структурной схеме - один блок (ГВЧ) и один электрический элемент - антенна. Да, кстати, познакомьтесь! Такая симпатичная кисточка - это как раз она.

    Но не все так просто! Задача генератора - сгенерировать. Однако, мощность сигнала на выходе генератора не велика, и ее может не хватить для того, чтобы передать сигнал на нужное расстояние. Чтобы увеличить мощность, отдаваемую в антенну, нужен усилитель. Причем, не какой-нибудь, а усилитель мощности высокой частоты (УМВЧ). Схема усложняется:

    Ну, вроде бы все здорово. Но… А что мы, собственно, передаем? Просто ВЧ колебания? На фиг они кому нужны! Мы то ведь, на самом деле, хотим передать Арию Ивана и Лягушки из сказки Сектора Газа! (Надо же народ просвещать… =)) Что же для этого делать?

    А вот что! Надо каким-то образом запрятать звук в излучаемый ВЧ сигнал. Иначе говоря, нужно промодулировать высокочастотный радиосигнал низкочастотным звуковым сигналом. Промодулировать - это значит так хитро, по-особому, смешать эти сигналы, чтобы передавая ВЧ-радиосигнал, передавать вместе с ним и полезный звуковой НЧ-сигнал. Дело в том, что сам по себе, звуковой сигнал далеко не "улетит". Для того, чтобы преодолеть большие расстояния, ему нужен "помощник" - сигнал высокой частоты. Вот он то, как раз, с легкостью преодолевает большие расстояния, и не против помочь в этом другим. Ну, не против - получай! Вот тебе на шею наш звук - неси его куда подальше, через все невзгоды и радости…
    Кстати, этот ВЧ сигнал так и называют - "несущая". Подразумевается "несущая частота". Она носит на себе модулирующий сигнал, то есть, в нашем случае - звуковой.

    Модуляция - это есть процесс усаживания на шею бедной несущей толстого и ленивого модулирующего звукового сигнала. =) Этим занимается специальное устройство - модулятор.

    Страницы истории

    Радио (лат. radio - излучаю, испускаю лучи radius - луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.


    Принцип работы

    Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемый сигнал модулируетболее высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).Полученный модулированный сигнал излучается антенной в пространство.
    На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).


    Частотные диапазоны
    Частотная сетка, используемая в радиосвязи, условно разбита на диапазоны:

    • Длинные волны(ДВ)- f = 150-450 кГц (л = 2000-670 м)
    • Средние волны(СВ)- f = 500-1600 кГц (л = 600-190 м)
    • Короткие волны(КВ)- f = 3-30 МГц (л = 100-10 м)
    • Ультракороткие волны(УКВ)- f = 30 МГц- 300 МГц (л = 10-1 м)
    • Высокие частоты (ВЧ- сантиметровый диапазон)- f = 300 МГц- 3 ГГц (л = 1-0,1 м)
    • Крайне высокие частоты (КВЧ- миллиметровый диапазон)- f = 3 ГГц- 30 ГГц (л = 0,1-0,01 м)
    • Гипервысокие частоты (ГВЧ- микрометровый диапазон)- f = 30 ГГц- 300 ГГц (л = 0,01-0,001 м)


    В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

    • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
    • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
    • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т.н.зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью- более длинные (3 МГц). Короткие волны могут распространяться на больши м е расстояния при малой мощности передатчика.
    • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.
    • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи ит.д.
    • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
    • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.


    Распространение радиоволн

    Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).
    Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называется
    многолучёвостью . Вследствие многолучёвости и изменений параметров среды, возникают замирания (англ. fading )- изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

    Особые эффекты

    эффект антиподов- радиосигнал может хорошо приниматься в точке земной поверхности, приблизительно противоположной передатчику.
    Описанные примеры:

    • радиосвязьЭ.Кренкеля(RPX), находившегося наЗемле Франца-Иосифа12 января 1930г. сАнтарктикой(WFA).
    • радиосвязь плотаКон-Тики(приблизительно 6° ю.ш. 60° з.д.) сОсло, передатчик 6 Ватт.
    • эхо от волны, обошедшей Землю (фиксированная задержка)
    • редко наблюдаемый и малоизученный эффект LDE (Мировое эхо, эхо с большой задержкой).
    • эффект Доплераизменение частоты (длины волны) в зависимости от скорости приближения (или удаления) передатчика сигнала относительно приёмника. При их сближении частота увеличивается, при взаимном удалении уменьшается.


    Радиосвязь можно разделить на радиосвязь без применения ретрансляторов по длинам волн:

    • СДВ-связь
    • ДВ-связь
    • СВ-связь
    • КВ-связь
    • КВ-связь земной (поверхностной) волной
    • КВ-связь ионосферной (пространственной волной)волной
    • УКВ-связь
    • УКВ связь прямой видимости
    • тропосферная связь
    • С применением ретрансляторов:
    • Спутниковая связь,
    • Радиорелейная связь,
    • Сотовая связь.


    Использование широковещательной потоковой передачи

    Содержимое, передаваемое потоком с широковещательной передачей, больше всего подходит для сценариев, напоминающих просмотр телевизионной программы, при этом управление и потоковая передача содержимого выполняется из пункта источника или сервера. Этот тип пункта публикации наиболее часто используется для передачи прямых потоковых данных от кодировщиков, удалённых серверов или других широковещательных пунктов публикации. Если клиент подключается к широковещательному пункту публикации, то он получает широковещательные данные, трансляция которых уже началась. Например, если в 10:00 начинается трансляция совещания в компании, то клиенты, подключившиеся в 10:18, пропустят только первые 18 минут совещания. Клиенты могут запускать и останавливать поток, однако они не могут приостановить его, перемотать вперёд, назад или пропустить.
    Кроме того, на широковещательном пункте публикации можно выполнять потоковую передачу файлов и списков воспроизведения файлов. Если источником файлов служит широковещательный пункт публикации, то сервер передаёт файл или список воспроизведения как широковещательный поток. При этом в проигрывателе нельзя управлять воспроизведением, как в случае с потоком по запросу. Пользователи получают широковещательные данные прямого закодированного потока. Клиенты начинают воспроизводить уже передаваемый поток.
    Обычно широковещательный пункт публикации начинает потоковую передачу сразу после запуска и продолжает её до тех пор, пока он не будет остановлен или пока не закончится содержимое.
    Содержимое с широковещательного пункта публикации можно предоставлять как одноадресный или многоадресный поток. Поток с широковещательного пункта публикации можно сохранить как файл архива, а затем предложить его конечным пользователям в качестве повтора исходных широковещательных данных по запросу.

    Гражданская радиосвязь

    Решениями ГКРЧ России (Государственной комиссии по радиочастотам) для гражданской связи физическими и юридическими лицами на территории Российской Федерации выделены 3 группы частот:

    • 27МГц (Си-Би, «Citizens’ Band», гражданский диапазон), с разрешённой выходной мощностью передатчика до 10Вт. Автомобильныерациидиапазона 27 МГц широко используются для организации радиосвязи в службах такси, для связи водителей-дальнобойщиков;
    • 433МГц (LPD, «Low Power Device»), выделено 69 каналов длярацийс выходной мощностью передатчика не более 0,01Вт;
    • 446МГц (PMR, «Personal Mobile Radio»), выделено 8 каналов длярацийс выходной мощностью передатчика не более 0,5Вт.


    Радио используется в компьютерных сетях AMPRNet, в которых соединение обеспечивается любительскими радиостанциями.

    Радиолюбительская связь

    Радиолюбительская связь- многогранное техническоехобби, выражающееся в проведении радиосвязей в отведённых для этой цели диапазонах радиочастот. Данное хобби может иметь направленность в сторону той или иной составляющей, например:

    • конструирование и постройка любительской приёмно-передающей аппаратуры и антенн;
    • участие в различных соревнованиях по радиосвязи (радиоспорт);
    • коллекционированиекарточек-квитанций, высылаемых в подтверждение проведённых радиосвязей и/илидипломов, выдаваемых за проведение тех или иных связей;
    • поиск и проведение радиосвязей с радиолюбительскими станциями, работающими из отдалённых мест или из мест, с которых крайне редко работают любительские радиостанции (DXing );
    • работа какими-то определёнными видами излучения (телеграфия, телефония соднополоснойиличастотной модуляцией,цифровые виды связи);
    • связь на УКВ с использованием отражения радиоволн от Луны (EME), от зонполярного сияния(«Аврора»), отметеорных потоков, с ретрансляцией через радиолюбительскиеИСЗ;
    • работа малой мощностью передатчика (QRP), на простейшей аппаратуре;
    • участие в радиоэкспедициях- выход в эфир из отдалённых и труднодоступных мест и территорий планеты, где нет активных радиолюбителей.

    Радио (в переводе с лат. «radio» означает «излучаю», «испускаю лучи») - это вид беспроводного соединения, который предназначен для передачи и приема информации. При этом сигнал свободно распределяется в пространстве с помощью электромагнитных волн, которые еще называют «радиоволнами».

    Как работает радио?

    Принцип работы состоит в следующем: для того, чтобы информация была передана, сторона-отправитель моделирует необходимый сигнал, который характеризуется определенной амплитудой и частотой. На следующем этапе, сигнал формирует несущее (высокочастотное) колебание. После чего происходит излучение преобразованного сигнала в пространство с помощью антенны. В то время как приёмная сторона производит обратные действия: антенна улавливает модулированный сигнал и преобразовывает его с помощью фильтра низких частот (ФНЧ). Данное действие производится для того, чтобы избавиться от несущей (высокочастотной составляющей). Таким образом, приемная сторона извлекает из полученного высокочастотного колебания полезный сигнал. Однако, в некоторых случаях, из-за помех и наводок может происходить искажение передачи, вследствие чего полученный сигнал будет отличаться от переданного.

    Виды радиоволн и частотные диапазоны

    Международным союзом связи была принята следующая классификация частотных диапазонов:
    1. Мириаметровые волны (очень низкие частоты) - 3-30 кГц, длина волны - 10-100 км;
    2. Километровые волны (низкие частоты) - 3-300 кГц; длина волны - 1-10 км;
    3. Гектометровые волны (средние частоты) - 0,3-3 МГц, длина волны - 0,1-1 км;
    4. Декаметровые волны (высокие частоты) - 3-30 МГц, длина волны - 10-100 м;
    5. Метровые волны (очень высокие частоты) - 30-300 МГц, длина волны - 1-10 м;
    6. Дециметровые волны (ультравысокие частоты) - 0,3-3 ГГц, длина волны - 10-100 см;
    7. Сантиметровые волны (сверхвысокие частоты) - 3-30 ГГц, длина волны - 1-10 см;
    8. Миллиметровые волны (крайне высокие частоты) - 30-300 ГГц, длина волны - 0,1-1 см.
    В сфере радиовещания и используют только несколько типов радиоволн: сверхдлинные (мириаметровые), длинные (километровые), средние (гектометровые), короткие (декаметровые) и ультракороткие (высокочастотные).

    Законы распространения радиоволн

    В зависимости от излучаемых источником частот, каждый тип радиоволн имеет свои особенности и законы распределения в пространстве.

    Для длинных волн характерна повышенная степень поглощения ионосферой. Особую роль играют приземные радиоволны, которые распространяются, «окутывая» землю. Если говорить о мощности сигнала, то при отдалении от источника передачи, он уменьшается стремительными темпами.

    Средние волны наиболее уловимы для ионосферы днем, причем радиус действия в это время суток определяется приземной волной. Вечером ситуация кардинально меняется: средние радиоволны хорошо отражаются от ионосферы, а район распространения определяется отраженной волной.

    Так как способ распространения коротких волн - это отражение ионосферой, то вокруг передатчика сигнала образуется зона радиомолчания (в ней прием сигнала практически невозможен). Причем, в дневное время лучше распространяются короткие волны, а в ночное - более длинные. При условии уменьшения мощности радиопередатчика, радиоволны этого типа могут распространяться на значительные расстояния.
    Высокочастотные (ультракороткие) волны не отражаются ионосферой и распространяются, как правило, прямолинейно. Однако, в некоторых условиях, а именно из-за отличия плотностей в разных слоях атмосферы, радиоволны способны «огибать» земной шар. Для данного типа волн характерна высокая проникающая способность.

    Особенностью высоких частот (ВЧ) является их распространение в рамках прямой видимости. Такие волны используются для беспроводной передачи данных (WiFi) и мобильной связи. Крайне высокие частоты (КВЧ), подобно высоким частотам, не огибают преград и используются в технологиях спутниковой связи. Гипервысокие частоты имеют свойство отражения (подобно световым лучам), радиус действия определяется пределами видимости. Использование подобных электромагнитных волн крайне ограничено.

    Человечеству известны следующие условия распределения радиоволн. Сигнал может распространяться в атмосфере и пустоте, в то время как через воду и твердые предметы он проникнуть не может. Однако, вот что парадоксально. Благодаря таким явлениям как дифракция волн и преломление, связь между точками, находящимися вне прямой видимости, все-таки возможна.

    Волна, исходящая от источника передачи, может следовать сразу несколькими путями. Такое явление называется многолучевостью. По причине изменения параметров среды происходит перемена уровня принимаемого сигнала относительно времени. Его замирание приводит к тому, что электромагнитное поле в точке приема представляет собой сумму всех смещенных во времени радиоволн.

    Особые эффекты, возникающие при передаче радиоволн

    1. принцип антиподов говорит о том, что радиоволна хорошо воспринимается в той точке земной поверхности, которая приблизительно противоположна точке передачи сигнала.
    2. эффект фиксированной задержки - эхо от радиоволны, которая обошла Землю.
    3. эффект эхо с большой задержкой (LDE).
    4. принцип Доплера - зависимость длины радиоволны от скорости приближения и удаления от источника передачи (в случае приближения - частота увеличивается, удаления - уменьшается).
    5. Люксембург-Горьковский эффект - изменение высокочастотных колебаний вследствие неленейных эффектов в результате распределения волн в ионосфере.

    Условно, радиосвязь по длинам волн можно подразделить на два вида:
    - связь без применения ретрансляторов (СДВ-связь, ДВ-связь, СВ-связь и т.д.)
    - связь с применением ретрансляторов (спутниковая, радиорелейная, сотовая).
    Ретранслятором называют специальное «посредническое» оборудование для связи, которое объединяет несколько радиопередатчиков, удаленных друг от друга на некоторое расстояние.

    Частоты гражданской радиосвязи

    По решению Российской Государственной комиссии по радиочастотам, для обеспечения гражданской связи физических и юридических лиц, было выделено три группы допустимых частот:
    - «Citizen’s Band» - 27 МГц, с мощностью источника передачи до 10 Вт.
    - «Low Power Device» - 433 МГц, с допустимой мощностью раций до 0,01 Вт.
    - «Personal Mobile Radio» - 436 МГц, с выходной мощностью передачи до 0,5 Вт.

    Что такое «радиолюбительская связь»?

    Под понятием «радиолюбительская связь» подразумевается многостороннее техническое увлечение, которое выражается в проведении радиосвязи в допустимых диапазонах частот. Хобби радиолюбителя имеет несколько направлений:

    • конструирование аппаратуры по приему и передаче радиосигнала;
    • радиотехнический спорт (участие в соревнованиях среди радиолюбителей);
    • составление коллекции карточек-квитанций и свидетельств о проведенных радиосвязях;
    • проведение поисковой работы и организация связи с удаленными любительскими радиостанциями;
    • работа с различными видами излучений;
    • проведение связи на ультракоротких волнах, используя принцип отражения сигнала (от Луны, метеорных потоков и т.д.);
    • работа с источниками передачи небольшой мощности;
    • участие в различных радиоэкспедициях.

    Изобретатели первых устройств для радиопередачи информации

    Основателем первой действующей системы приема-передачи информации с помощью радиотелеграфии принято считать инженера из Гульельмо Маркони. В России же изобретателем радиопередачи считают А. С. Попова. Однако, как выяснилось позже, никто из этих не придумал устройство приема-передачи информации самостоятельно. Маркони соединил в одно устройство технологические разработки приёмника А. С. Попова и передатчика Генриха Герца.

    Однако, после того как американский Никола Тесла запатентовал устройство радиосвязи, он отсудил право основателя разработки у Маркони. Такое решение было вызвано примитивизмом изобретения итальянского инженера в сравнении с достаточно совершенным устройством американца. Система Теслы позволяла преобразовывать акустический звук в сигнал, осуществлять его передачу на расстояние и модулировать радиоволну приемников обратно в акустический звук. Все современные радиоустройства имеют подобную конструкцию, к основе которой лежит технология колебательного контура.

    Популярность запроса "радио" в поисковой системе

    Самыми популярными в России являются следующие радиостанции:
    - Радио Premium
    -Love radio
    - Радио «Кабриолет»
    - Радио Автомат и гитара
    - Радио ВАНЯ
    - Ретро FM
    - Радио ДАЧА
    -
    - Русское радио. Золотой граммофон.
    - Авторадио
    -
    - Дорожное радио
    - Натали
    - Русское радио
    - Радио Ди-ФМ
    - Русский Хит
    - Мега Радио
    - Радио "Relax FM"
    - Europa Flus
    - Радио Русский шансон.

    Как видим, запрос "радио" является достаточно популярным среди русскоговорящих пользователей, его вводили за месяц 8 915 477 раза.

    В и информационных агентствах сети, данное слово "радио" упоминалось за месяц 1050 раз.



Рекомендуем почитать

Наверх