Hd 4870 сравнение. Видеокарты. Игровые тесты: Company of Heroes: Opposing Fronts

Viber OUT 15.03.2019
Viber OUT

HIS RADEON HD 4870 512MB PCI-E

Подключение к аналоговым мониторам с d-Sub (VGA) производится через специальные адаптеры-переходники DVI-to-d-Sub. Также поставляются переходники DVI-to-HDMI (мы помним, что данные ускорители поддерживают полноценную передачу видео и звука на HDMI-приемник), поэтому проблем с такими мониторами также не должно быть.

Максимальные разрешения и частоты:

  • 240 Hz Max Refresh Rate
  • 2048 × 1536 × 32bit x85Hz Max - по аналоговому интерфейсу
  • 2560 × 1600 @ 60Hz Max - по цифровому интерфейсу (все DVI-гнезда с Dual-Link)

Что касается возможностей видеокарт по проигрыванию MPEG2 (DVD-Video), то еще в 2002 году мы изучали этот вопрос , с тех пор мало что поменялось. В зависимости от фильма загрузка CPU при проигрывании на современных видеокартах не поднимается выше 25%.

По поводу HDTV. Одно из исследований также проведено, и с ним можно ознакомиться .

К сожалению, на настоящий момент утилита RivaTuner (автор А.Николайчук AKA Unwinder) не поддерживает новую серию, и потому мониторинга нет.

Комплектация.

Базовый комплект поставки должен включать в себя: руководство пользователя, диск с драйверами и утилитами, переходник-адаптер DVI-to-VGA, мост CrossFire, DVI-to-HMDI адаптер, адаптер компонентного вывода (TV-out), а также разветвители внешнего питания. Далее мы покажем, что предлагается к карте дополнительно.

Упаковки.

Установка и драйверы

Конфигурация тестового стенда:

  • Компьютер на базе Intel Core2 (775 Socket)
    • процессор Intel Core2 Extreme QX9650 (3000 MHz);
    • системная плата Zotac 790i Ultra на чипсете Nvidia nForce 790i Ultra;
    • оперативная память 2 GB DDR3 SDRAM Corsair 2000MHz (CAS (tCL)=5; RAS to CAS delay (tRCD)=5; Row Precharge (tRP)=5; tRAS=15);
    • жесткий диск WD Caviar SE WD1600JD 160GB SATA.
    • блок питания Tagan TG900-BZ 900W.
  • операционная система Windows Vista 32bit SP1; DirectX 10.1;
  • монитор Dell 3007WFP (30").
  • драйверы ATI версии CATALYST 8.6; Nvidia версии 175.16 (9ххх серия) и 177.34 (GTX 2xx).

VSync отключен.

Синтетические тесты

Используемые нами пакеты синтетических тестов можно скачать здесь:

  • D3D RightMark Beta 4 (1050) с описанием на сайте 3d.rightmark.org
  • D3D RightMark Pixel Shading 2 и D3D RightMark Pixel Shading 3 — тесты пиксельных шейдеров версий 2.0 и 3.0 ссылка .
  • RightMark3D 2.0 с кратким описанием: ,

Для работы RightMark3D 2.0 требуется установленный пакет MS Visual Studio 2005 runtime, а также последнее обновление DirectX runtime.

Синтетические тесты проводились на следующих видеокартах:

  • RADEON HD 4870 HD4870 )
  • RADEON HD 4850 со стандартными параметрами (далее HD4850 )
  • RADEON HD 3870 X2 со стандартными параметрами (далее HD3870X2 )
  • RADEON HD 3870 со стандартными параметрами (далее HD3870 )
  • Nvidia Geforce GTX 260 со стандартными параметрами (далее GTX260 )
  • Nvidia Geforce 9800 GTX со стандартными параметрами (далее GF9800GTX )

Для сравнения результатов новой видеокарты RADEON HD 4870, были выбраны именно эти модели видеокарт по следующим причинам: с RADEON HD 3870 X2 её будет интересно сравнить, как с двухчиповым решением компании AMD на GPU предыдущей архитектуры, чтобы оценить влияние улучшений архитектуры и разницу в производительности. Сравнительная производительность RADEON HD 4850 интересна для того, чтобы узнать вклад повышенных частот GPU и применения нового типа памяти GDDR5. Geforce 9800 GTX хоть и не является прямым конкурентом, но интересен, как прыдущее поколение чипов Nvidia, да и цена HD 4870 не так далека от его ускоренной версии GTX+. А Geforce GTX 260 выступает уже как прямой конкурент RADEON HD 4870, это сравнение и будет главной битвой.

Direct3D 9: Тесты Pixel Filling

В тесте определяется пиковая производительность выборки текстур (texel rate) в режиме FFP для разного числа текстур, накладываемых на один пиксель:

Ничего нового и интересного, всё соответствует разнице в частотах. Как обычно, видеокарты не достигают теоретических значений. Результаты синтетики не дотягивают до теории, ближе всего к ним подходит HD 3870, основанная на RV670. Но для всех новых видеокарт Nvidia и AMD, в данном тесте теоретический максимум не достигается. RV770 в нашем тесте выбирает около 26-27 текселей за один такт из 32-битных текстур при билинейной фильтрации, не дотягивая до 40 теоретических. У карт Nvidia эффективность даже ещё ниже — 35-37 текселей за такт при теоретических 64.

Что касается сравнения HD 4870 с прямым конкурентом GTX 260, то они весьма близки в этом тесте, а вот до Geforce 9800 GTX обе не дотягивают. Новая карта AMD значительно опережает старую, и обгоняет младшую модель линейки HD 4800 в соответствии с частотами. Интересно, что в тесте с одной текстурой HD 4870 немного отстаёт от HD 3870, это связано с теоретически большей производительностью блоков ROP у последнего при 32-битном фреймбуфере без антиалиасинга. В случае же с большим количеством текстур на пиксель, способности блоков ROP не мешают показывать более высокие результаты карте на основе RV770. Посмотрим на результаты в тесте филлрейта:

Второй синтетический тест измеряет скорость заполнения, и в нём мы видим ту же самую ситуацию, но уже с учетом количества записанных в буфер кадра пикселей. В случаях с 0 и 1 накладываемыми текстурами у RADEON HD 4870 получается всё тот же чуть более низкий результат, чем у HD 3870, что обусловлено рабочей частотой блоков ROP. Но, как и на предыдущей диаграмме, в ситуациях с большим количеством текстур на пиксель, новая видеоплата выходит вперёд.

Direct3D 9: Тесты Geometry Processing Speed

Рассмотрим пару предельных геометрических тестов, и первым у нас будет самый простой вершинный шейдер, показывающий максимальную пропускную способность по треугольникам:

Все современные чипы основаны на унифицированных архитектурах, их универсальные исполнительные блоки в этом тесте заняты только геометрической работой, и решения показывают высокие результаты, явно упирающиеся не в пиковую производительность унифицированных блоков, а в производительность других блоков, например, triangle setup.

Результаты это и показывают — RV670 и RV770 весьма близки при сходных частотах. Результаты решений AMD традиционно более высокие, чем у карт Nvidia. RADEON HD 4870 в этом тесте выигрывает и у обеих карт Nvidia, и у своих собратьев. Так как мы убрали из рассмотрения промежуточные тесты на скорость обработки геометрии с одним источником освещения, то переходим к рассмотрению самой сложной геометрической задачи с тремя источниками света, включающей статические и динамические переходы:

В этом варианте разница между решениями AMD и Nvidia видна лучше, разрыв немного увеличился, видеоплаты производства второй компании «просели». HD 4870 и HD 3870 примерно равны на схожих частотах, они снова ограничены чем-то вроде triangle setup, так как цифры почти не изменились с прошлого теста.

Снова все видеокарты AMD опережают и Geforce 9800 GTX и GTX 260. В реальных приложениях универсальные шейдерные процессоры заняты в основном пиксельными расчетами, к исследованию производительности которых мы и переходим.

Direct3D 9: Тесты Pixel Shaders

Первая группа пиксельных шейдеров, которую мы рассматриваем, является очень простой для современных видеочипов, она включает в себя различные версии пиксельных программ сравнительно низкой сложности: 1.1, 1.4 и 2.0.

Хоть тесты слишком просты для современных архитектур и не показывают их истинную силу, их интересно смотреть при смене архитектур. В простых тестах производительность ограничена скоростью текстурных выборок, а в чипе RV770 производительность текстурирования как раз улучшена. Это позволило добиться победы по всем фронтам, HD 4870 опережает обе карты Nvidia во всех рассмотренных задачах и быстрее HD 3870 иногда до двух раз.

В более сложных тестах RADEON HD 4870 также показывает отличные результаты, значительно опережая и предшественника и конкурентов. А вот Geforce GTX 260 из-за меньшей скорости текстурирования не впечатляет, немного выигрывая у 9800 GTX лишь в двух самых сложных тестах. Посмотрим на результаты тестов более сложных пиксельных программ промежуточных версий:

Великолепный результат для RADEON HD 4870! В сильно зависящем от скорости текстурирования тесте процедурной визуализации воды «Water», где используется зависимая выборка из текстур больших уровней вложенности, и карты располагаются по скорости текстурирования, новая модель значительно обгоняет обе карты Nvidia, а разница с HD 3870 просто поразительна.

Второй тест интенсивнее загружает вычислительные блоки, и он лучше подходит для архитектур AMD, обладающих большим количеством потоковых процессоров. В нём новое решение AMD снова показывает лучший результат, быстрее и Geforce GTX 260 и 9800 GTX в 1.5-2 раза! И снова, по сравнению с предыдущим поколением, новая плата ускорилась более чем в два раза. Разница с HD 4850 соответствует разнице в частотах GPU.

Direct3D 9: Тесты пиксельных шейдеров New Pixel Shaders

Эти тесты пиксельных шейдеров DirectX 9 ещё сложнее, они делятся на две категории. Начнем с более простых шейдеров версии 2.0:

  • Parallax Mapping — знакомый по большинству современных игр метод наложения текстур, подробно описанный в статье
  • Frozen Glass — сложная процедурная текстура замороженного стекла с управляемыми параметрами

Существует два варианта этих шейдеров: с ориентацией на математические вычисления, и с предпочтением выборки значений из текстур. Рассмотрим математически интенсивные варианты, более перспективные с точки зрения будущих приложений:

Это математические тесты, зависящие от частоты шейдерных блоков и скорости текстурирования, тут важен баланс чипа. Производительность видеокарт в тесте «Frozen Glass» ограничена не только математикой, но и скоростью текстурных выборок, поэтому старые RADEON показывают самый слабый результат. А вот новые… Смотрите сами, они заметно быстрее предыдущего. А рассматриваемый сегодня HD 4870 вовсе опережает и Geforce 9800 GTX и GTX 260.

Во втором тесте «Parallax Mapping», новинки от AMD ещё сильнее. Если HD 4850 показывает результат чуть выше GTX 260, то HD 4870 значительно опережает обе модели от Nvidia. Улучшения в TMU значительно усилили результаты линейки HD 4800, в этих тестах они стали новыми лидерами. Рассмотрим эти же тесты в модификации с предпочтением выборок из текстур математическим вычислениям, там результаты могут получиться даже более интересными:

Результаты RADEON HD 4850 и Geforce 9800 GTX весьма близки, но HD 4870 ожидаемо обходит обоих за счёт более высокой частоты чипа. Взаимное положение карт немного изменилось, заметен упор в скорость текстурных блоков. И обе карты на RV770 обгоняют предыдущий одночиповый топ в два и более раза. А вот GTX 260 показал в этом случае весьма слабые результаты, отстав даже от предшественника.

Рассмотрим результаты ещё двух тестов пиксельных шейдеров — версии 3.0, самых сложных из наших тестов пиксельных шейдеров для Direct3D 9. Тесты отличаются тем, что сильно нагружают и ALU и текстурные модули, обе шейдерные программы сложные, длинные, включают большое количество ветвлений:

  • Steep Parallax Mapping — значительно более «тяжелая» разновидность техники parallax mapping, также описанная в статье
  • Fur — процедурный шейдер, визуализирующий мех

Новая архитектура компании AMD в этих тестах показывает себя с лучшей стороны, в отличие от предыдущих решений, которые проигрывали картам Nvidia. HD 4870 с большим запасом опережает всех соперников, разница с HD 3870 просто огромна. Да и Geforce 9800 GTX с Geforce GTX 260 остаются далеко позади.

Снова мы видим отличные результаты переработанной архитектуры AMD в наших DirectX 9 тестах. Но что получится в DX10, ведь в прошлых исследованиях там дела были явно похуже. Сейчас узнаем, сравнив уже с двухчиповой картой предыдущего поколения, так как с одночиповыми RV670 всё давно понятно…

Direct3D 10: Тесты пиксельных шейдеров PS 4.0 (текстурирование, циклы)

В новую версию RightMark3D 2.0 вошли два знакомых PS 3.0 теста под Direct3D 9, которые были переписаны под DirectX 10, а также ещё два полностью новых теста. В первую пару добавились возможности включения самозатенения и шейдерного суперсэмплинга, что дополнительно увеличивает нагрузку на видеочипы.

Данные тесты измеряют производительность выполнения пиксельных шейдеров с циклами, при большом количестве текстурных выборок (в самом тяжелом режиме до нескольких сотен выборок на пиксель!) и сравнительно небольшой загрузке ALU. Иными словами, в них измеряется скорость текстурных выборок и эффективность ветвлений в пиксельном шейдере.

Первым тестом пиксельных шейдеров будет Fur. При самых низких настройках в нём используется от 15 до 30 текстурных выборок из карты высот и две выборки из основной текстуры. Режим Effect detail — «High» увеличивает количество выборок до 40-80, включение «шейдерного» суперсэмплинга — до 60-120 выборок, а режим «High» совместно с SSAA отличается максимальной «тяжестью» — от 160 до 320 выборок из карты высот.

Проверим сначала режимы без включенного суперсэмплинга, они относительно просты, и соотношение результатов в режимах «Low» и «High» должно быть примерно одинаковым.

Производительность в этом тесте зависит не только от количества и скорости блоков TMU, но и от филлрейта и ПСП. Как мы и ожидали, в Direct3D 10 тесты процедурной визуализации меха с большим количеством текстурных выборок ничего особенно не изменилось — всё такое же огромное преимущество решений Nvidia над AMD. Посмотрим, что будет дальше, этот тест карты AMD всегда проваливают.

Хотя HD 4870 и проиграл обеим картам Nvidia, относительно младшей модели линейки он показал преимущество, соответствующее разности частот. Да и двухчиповый RADEON HD 3870 X2 обогнал новое решение HD 4870 только в тяжелом режиме. Очень хороший результат, если не смотреть на цифры Nvidia. Посмотрим на результат этого же теста, но с включенным «шейдерным» суперсэмплингом, увеличивающим работу в четыре раза, возможно в такой ситуации что-то изменится, и ПСП с филлрейтом будут влиять меньше:

Включение суперсэмплинга теоретически увеличивает нагрузку в четыре раза, в этот раз подавляющее преимущество карт Nvidia также никуда не делось, хотя новые видеокарты AMD уже явно ближе к Geforce 9800 GTX. В остальном, с увеличением сложности шейдера и нагрузки на видеочип, разница между HD 4870 и двухчиповым HD 3870 X2 почти та же, они близки друг к другу.

Второй тест, измеряющий производительность выполнения сложных пиксельных шейдеров с циклами при большом количестве текстурных выборок называется Steep Parallax Mapping. При низких настройках он использует от 10 до 50 текстурных выборок из карты высот и три выборки из основных текстур. При включении тяжелого режима с самозатенением, число выборок возрастает в два раза, а суперсэмплинг увеличивает это число в четыре раза. Наиболее сложный тестовый режим с суперсэмплингом и самозатенением выбирает от 80 до 400 текстурных значений, то есть в восемь раз больше, по сравнению с простым режимом. Проверяем сначала простые варианты без суперсэмплинга:

Этот тест интереснее с практической точки зрения, ведь разновидности parallax mapping давно применяются в играх, а тяжелые варианты, вроде нашего steep parallax mapping используются в некоторых проектах, например, в Crysis и Lost Planet. Кроме того, в нашем тесте, помимо суперсэмплинга, можно включить самозатенение, увеличивающее нагрузку на видеочип примерно в два раза, такой режим называется «High».

Повторяется взаимное расположение карт из предыдущего теста. Хотя решения AMD были сильны в Direct3D 9 тестах parallax mapping, в обновленном D3D10 варианте без суперсэмплинга они не могут справиться с нашей задачей на уровне видеокарт Geforce, ещё и включение самозатенения вызывает на продукции AMD слишком большое падение производительности. Рассматриваемый нами сегодня RADEON HD 4870 отстаёт от обеих видеокарт Geforce и очень близок к двухчиповому HD 3870 X2. Посмотрим, что изменит включение суперсэмплинга, в прошлом тесте он вызывал большее падение скорости на картах Nvidia.

При включении суперсэмплинга и самозатенения задача получается более тяжёлой, совместное включение сразу двух опций увеличивает нагрузку на карты почти в восемь раз, вызывая большое падение производительности. Разница между скоростью разных видеокарт уже другая, включение суперсэмплинга сказывается как и в предыдущем случае — карты производства AMD улучшают свои показатели относительно решений Nvidia. И новые HD 4800 хотя и продолжают отставать от Geforce, но HD 4870 близок к HD 3870 X2 и почти догнал хотя бы Geforce 9800 GTX. До прямого конкурента GTX 260 ему далеко, конечно же.

Direct3D 10: Тесты пиксельных шейдеров PS 4.0 (вычисления)

Следующая пара тестов пиксельных шейдеров содержит минимальное количество текстурных выборок для снижения влияния производительности блоков TMU. В них используется большое количество арифметических операций, и измеряют они именно математическую производительность видеочипов, скорость выполнения арифметических инструкций в пиксельном шейдере.

Первый математический тест — Mineral. Это тест сложного процедурного текстурирования, в котором используются лишь две выборки из текстурных данных и 65 инструкций типа sin и cos.

При анализе результатов наших синтетических тестов, мы всегда отмечаем, что в вычислительно сложных задачах современные архитектуры AMD показывают себя лучше конкурирующих от Nvidia. Вот и сейчас в Mineral HD 4870 просто разорвал конкурентов. Топовая видеокарта на основе одного чипа RV770 обгоняет карту прошлого поколения на двух RV670, что близко к разнице в количестве и частоте потоковых процессоров. Также новая видеокарта почти в два раза опережает и прямого конкурента Geforce GTX 260, не говоря про Geforce 9800 GTX.

Второй тест шейдерных вычислений носит название Fire, и он ещё более тяжёл для ALU. В нём текстурная выборка только одна, а количество инструкций типа sin и cos увеличено вдвое, до 130. Посмотрим, что изменилось при увеличении нагрузки:

В данном тесте скорость рендеринга ограничена исключительно производительностью шейдерных блоков, и тест очень хорошо подходит архитектурам AMD, что хорошо заметно после исправления ошибки в драйверах AMD. Что тут можно сказать… Полный разгром решений Nvidia. Вдумайтесь, RADEON HD 4870 более чем в два раза быстрее Geforce GTX 260 и быстрее двухчипового HD 3870 X2. Потрясающий результат, в вычислениях RV770 явно сильнейший GPU вообще. Кстати, соотношение скоростей между HD 4870 и HD 4850 точно соответствует разнице в частотах.

Direct3D 10: Тесты геометрических шейдеров

В пакете RightMark3D 2.0 есть два теста скорости геометрических шейдеров, первый вариант носит название «Galaxy», техника аналогична «point sprites» из предыдущих версий Direct3D. В нем анимируется система частиц на GPU, геометрический шейдер из каждой точки создает четыре вершины, образующих частицу. Аналогичные алгоритмы должны получить широкое использование в будущих DirectX 10 играх.

Изменение балансировки в тестах геометрических шейдеров не влияет на конечный результат рендеринга, итоговая картинка всегда абсолютно одинакова, изменяются лишь способы обработки сцены. Параметр «GS load» определяет, в каком из шейдеров производятся вычисления — в вершинном или геометрическом. Количество вычислений всегда одинаково.

Рассмотрим первый вариант теста «Galaxy», с вычислениями в вершинном шейдере, для трёх уровней геометрической сложности:

Соотношение скоростей при разной геометрической сложности сцен примерно одинаковое, производительность соответствует количеству точек, с каждым шагом падение FPS составляет около двух раз. Задача для современных видеокарт не очень сложная и ограничение скорости мощностью потоковых процессоров в тесте не явное, задача ограничена также и ПСП и филлрейтом.

Ну очень интересно получилось, крайне плотные результаты у двухчиповой HD 3870 X2, новой HD 4870 и конкурента GTX 260. Да и в паре HD 4850 с Geforce 9800 GTX очень тесно. Интересно… Возможно, при переносе части вычислений в геометрический шейдер ситуация будет ещё интереснее, посмотрим:

Но нет, разница между рассмотренными вариантами теста невелика, существенных изменений не произошло. Разве что двухчиповый HD 3870 X2 вышел в явные лидеры по достигнутой частоте кадров. Ему проще, алгоритм многочипового рендеринга AFR прощает многое. Видеокарты Nvidia показывают идентичные результаты при изменении параметра GS load, отвечающем за перенос части вычислений в геометрический шейдер, а результаты некоторых видеоплат AMD немного выросли. Посмотрим, что изменится в следующем тесте, который предполагает большую нагрузку именно на геометрические шейдеры…

«Hyperlight» — это второй тест геометрических шейдеров, демонстрирующий использование сразу нескольких техник: instancing, stream output, buffer load. В нем используется динамическое создание геометрии при помощи отрисовки в два буфера, а также новая возможность Direct3D 10 — stream output. Первый шейдер генерирует направление лучей, скорость и направление их роста, эти данные помещаются в буфер, который используется вторым шейдером для отрисовки. По каждой точке луча строятся 14 вершин по кругу, всего до миллиона выходных точек.

Новый тип шейдерных программ используется для генерации «лучей», а с параметром «GS load», выставленном в «Heavy» — ещё и для их отрисовки. То есть, в режиме «Balanced» геометрические шейдеры используются только для создания и «роста» лучей, вывод осуществляется при помощи «instancing», а в режиме «Heavy» выводом также занимается геометрический шейдер. Сначала рассматриваем лёгкий режим:

Относительные результаты в разных режимах соответствуют нагрузке: во всех случаях производительность неплохо масштабируется и близка к теоретическим параметрам, по которым каждый следующий уровень «Polygon count» должен быть в два раза медленней. В этот раз скорость RADEON 4850 и HD 4870 больше, чем у двухчипового решения на GPU предыдущей архитектуры, но все карты производства AMD отстают от всех решений Nvidia, хотя HD 4870 близок к ним.

Похоже, что на результаты новых карт повлияли улучшенные возможности текстурирования. Впрочем, цифры должны измениться на следующей диаграмме, в тесте с более активным использованием геометрических шейдеров. Также будет интересно сравнить друг с другом результаты, полученные в «Balanced» и «Heavy» режимах.

В этот раз «провалился» только Geforce 9800 GTX, все остальные архитектуры выдержали удар. И в RV770, и в GT200 были сделаны некоторые оптимизации, направленные на улучшение исполнения геометрических шейдеров. И RADEON HD 4870 теперь догнал Geforce GTX 260, кроме самого простого режима. Предыдущее поколение чипов AMD значительно хуже показывает себя в этом тесте, даже двухчиповая видеокарта отстаёт.

Что касается сравнения результатов в разных режимах, тут всё как всегда, видеоплаты AMD при переходе от использования «instancing» к геометрическому шейдеру при выводе, улучшают свои показатели, а старые видеокарты Nvidia теряют в производительности. Карта Geforce на основе чипа G92 может конкурировать только за счёт скорости в «Balanced» режиме, которая почти равна скорости в «Heavy» у RADEON HD 4850. При этом, получаемая в разных режимах картинка не отличается визуально.

Direct3D 10: Скорость выборки текстур из вершинных шейдеров

В тестах «Vertex Texture Fetch» измеряется скорость большого количества текстурных выборок из вершинного шейдера. Тесты схожи по сути и соотношение между результатами карт в тестах «Earth» и «Waves» должно быть примерно одинаковым. В обоих тестах используется на основании данных текстурных выборок, единственное существенное отличие состоит в том, что в тесте «Waves» используются условные переходы, а в «Earth» — нет.

Рассмотрим первый тест «Earth», сначала в режиме «Effect detail Low»:

Судя по предыдущим исследованиям, на результаты этого теста влияет не только скорость текстурирования, но и производительность ROP и пропускная способность памяти, и чем проще режим, тем большее влияние на скорость они оказывают. Во всех режимах, кроме простого, лидером является топовая модель серии HD 4800, которую мы сегодня рассматриваем. В простом влияет ПСП, да и многочиповый рендеринг показывает себя неплохо. GTX 260 показывает результат лишь на уровне HD 4850. Посмотрим на результаты этого же теста с увеличенным количеством текстурных выборок:

Ситуация изменилась не слишком сильно, но текстурирование влияет на скорость уже сильнее, что видно по паре Geforce. HD 4870 сдала позиции и не является лидером, хотя отстаёт в сложных режимах от Geforce 9800 GTX совсем чуть-чуть. В простом же лидирует GTX 260 с большой ПСП. Интересно, что с ростом сложности геометрии и разница между HD 4870 и HD 3870 X2 изменяется.

Рассмотрим результаты второго теста текстурных выборок из вершинных шейдеров. Тест «Waves» отличается меньшим количеством выборок, зато в нём используются условные переходы. Количество билинейных текстурных выборок в данном случае до 14 («Effect detail Low») или до 24 («Effect detail High») на каждую вершину. Сложность геометрии изменяется аналогично предыдущему тесту.

Второй тест этого раздела под названием «Waves» благосклоннее к продукции AMD, новая модель семейства RADEON HD 4800 смотрится очень хорошо, на уровне двухчипового предшественника. И также обгоняет видеокарты Nvidia, кроме самого простого, где GTX 260 чуть-чуть впереди. Похоже, что в таких условиях эффективность TMU у RV770 выше, чем у GPU производства Nvidia. Рассмотрим второй вариант этого же теста:

И снова видим совсем мало нового, хотя с увеличением сложности теста результаты видеоплат AMD относительно скорости карт Nvidia улучшились, последние потеряли несколько больше от изменения условий тестирования. В самом лёгком режиме впереди HD 3870 X2 и HD 4870, в остальных двухчиповому HD 3870 X2 нет равных. Ну а среди одночиповых карт лучшим является герой обзора, он опережает своего младшего брата HD 4850 соответственно разнице в частотах. Карты Nvidia остались в этот раз позади.

3DMark Vantage: Feature тесты

В обзор RADEON HD 4870 мы решили включить и синтетические тесты из 3DMark Vantage. Пакет новый, его feature тесты довольно интересны и отличаются от наших. Вероятно, при анализе результатов карт в этом пакете мы сделаем для себя какие-то новые и полезные выводы.

Feature Test 1: Texture Fill

Первый тест — тест скорости текстурных выборок. Используется заполнение прямоугольника значениями, считываемыми из маленькой текстуры с использованием многочисленных текстурных координат, которые изменяются каждый кадр.

Соотношение результатов в целом схоже с тем, что показывают наши тесты, используются условия, в которых карты Nvidia не получают дополнительного преимущества от большого количества TMU. Старая одночиповая карта AMD сильно отстаёт от всех, зато и двухчиповый HD 3870 X2 и новая модель HD 4870 значительно обгоняют оба решения производства Nvidia. Geforce GTX 260 отстаёт от Geforce 9800 GTX, как и должно быть по теории. Но вот почему карта на основе RV770 обгоняет и G92 и GT200? Видимо, дело в той самой эффективности текстурных модулей, которая выше у карт AMD.

Feature Test 2: Color Fill

Тест скорости заполнения. Используется очень простой пиксельный шейдер, не ограничивающий производительность. Интерполированное значение цвета записывается во внеэкранный буфер (render target) с использованием альфа-блендинга. Используется 16-битный внеэкранный буфер формата FP16, наиболее часто используемый в играх, применяющих HDR рендеринг, поэтому такой тест очень своевременен.

Показания этого теста соответствуют тому, что мы получаем в своих синтетических тестах, с учетом того, что у нас используется целочисленный буфер с 8-бит на компоненту, а в тесте Vantage — 16-бит с плавающей точкой. Поэтому все цифры в два раза меньше наших.

Эти цифры скорее показывают не только производительность ROP, но и величину пропускной способности памяти (в случае мультичипов — умноженную на число чипов для AFR). Цифры соответствуют теоретическим и зависят, прежде всего, от ширины шины памяти и её частоты. В данном тесте новая модель HD 4870, пользуясь улучшенными возможностями блоков ROP и большой ПСП GDDR5 памяти, показывает лучший результат, выше, чем у двухчиповой HD 3870 X2 и GTX 260 с 448-битной шиной памяти.

Feature Test 3: Parallax Occlusion Mapping

Один из самых интересных feature тестов, так как подобная техника уже используется в играх. В нём рисуется один четырехугольник (точнее, два треугольника), с применением специальной техники Parallax Occlusion Mapping, имитирующей сложную геометрию. Используются довольно ресурсоёмкие операции по трассировке лучей и карта глубины большого разрешения. Также эта поверхность затеняется при помощи тяжёлого алгоритма Strauss. Это тест очень сложного и тяжелого для видеочипа пиксельного шейдера, содержащего многочисленные текстурные выборки при трассировке лучей, динамические ветвления и сложные расчёты освещения по Strauss.

Тест интересен тем, что он не зависит только от шейдерной мощности, эффективности исполнения ветвлений и скорости текстурных выборок, а от всего сразу. То есть, для достижения высокой скорости важен баланс чипа и карты. И больше всего важна эффективность выполнения ветвлений в шейдерах, так называемая гранулярность исполнения.

Старые карты от обоих производителей далеко позади, даже двухчиповый HD 3870 X2 не смог догнать HD 4870, хотя двухчиповый рендеринг этого теста весьма эффективен. И вот тут мы видим интересное расположение RADEON HD 4870 и Geforce GTX 260. Несмотря на то, что в тестах текстурных выборок и математических вычислений решение AMD обычно выигрывало, в тесте POM Geforce сильнее RADEON. И виновата в этом именно лучшая эффективность обработки ветвлений в шейдерах у GT200.

Feature Test 4: GPU Cloth

Тест интересен тем, что рассчитывает физические взаимодействия (имитация ткани) при помощи видеочипа. Используется вершинная симуляция, при помощи комбинированной работы вершинного и геометрического шейдеров, с несколькими проходами. Используется stream out для переноса вершин из одного прохода симуляции к другому. Таким образом, тестируется производительность исполнения вершинных и геометрических шейдеров, и скорость stream out.

В данном тесте традиционно получаются странные результаты у двухчиповых карт, HD 3870 X2 не получает ускорения от своего второго GPU. В остальном, снова видим отставание решений AMD, даже относительно быстрая HD 4870 не дотягивается до Geforce 9800 GTX, не говоря про GTX260. Похоже, что скорость не зависит от шейдерной производительности, а зависит от скорости stream out…

Feature Test 5: GPU Particles

Тест физической симуляции эффектов на базе систем частиц, рассчитываемых при помощи видеочипа. Также используется вершинная симуляция, каждая вершина представляет одиночную частицу. Stream out используется с той же целью, что и в предыдущем тесте. Рассчитывается несколько сотен тысяч частиц, все анимируются отдельно, также рассчитываются их столкновения с картой высот. Аналогично одному из тестов нашего RightMark3D 2.0, частицы отрисовываются при помощи геометрического шейдера, который из каждой точки создает четыре вершины, образующих частицу. Но тест больше всего загружает шейдерные блоки вершинными расчётами, также тестируется stream out.

Тут мы видим почти то же самое, что и в предыдущем случае, только отстал Geforce 9800 GTX, а карты AMD подтянулись повыше. Но всё равно, лидером остаётся Geforce GTX 260, близко к нему следует сегодняшний герой HD 4870. Двухчиповая карта AMD снова не ушла далеко от старой одночиповой и обе расположились в конце списка. И снова предположим, что на скорость влияет производительность stream out, ПСП и текстурная производительность одновременно.

Feature Test 6: Perlin Noise

Этот feature тест можно считать математически-интенсивным тестом видеочипа, он рассчитывает несколько октав алгоритма Perlin noise в пиксельном шейдере. Каждый цветовой канал использует собственную функцию шума для большей нагрузки на видеочип. Perlin noise — это стандартный алгоритм, часто используемый в процедурном текстурировании, он очень сложен математически.

Последний feature тест в Vantage показывает чистую математическую производительность видеочипов. Показанная в нём производительность вполне соответствует тому, что мы видим в наших математических тестах из RightMark 2.0. Видеокарты AMD закономерно выигрывают у своих конкурентов от Nvidia, даже двухчиповый HD 3870 X2 опережает GTX 260. Ну а RADEON HD 4870 является лидером и опережает своего главного конкурента более чем на 25%.

Выводы по синтетическим тестам

На основе результатов проведённых синтетических тестов, мы подтверждаем выводы, сделанные в предыдущей статье. Новые решения компании AMD получились весьма удачными, в чипе RV770 было сделано много изменений, почти во всех синтетических тестах оно в разы опережает по скорости видеокарты предыдущего поколения. Благодаря улучшенной архитектуре RV770, в которой исправили главные недостатки, во многих тестах RADEON HD 4870 обгоняет своего основного конкурента Geforce GTX 260. RV770 стал более эффективным и сбалансированным, что важно для современных и будущих 3D приложений с большим количеством сложных шейдеров.

Чип RV770 обладает большим количеством исполнительных блоков, поддерживает новую память GDDR5, которая позволила выпустить RADEON HD 4870 с высокой ПСП на основе лишь 256-битной шины обмена с памятью. Небольшие вопросы возникают разве что по поводу меньшей эффективности исполнения ветвлений в шейдерных программах, что сказывается на производительности наиболее сложных алгоритмов parallax mapping. Ну и по скорости stream out новые решения AMD уступают конкурирующим от Nvidia. Всё остальное у новой линейки HD 4800 просто отлично! Особенно вычислительная производительность, по которой они далеко впереди.

Следующая часть статьи содержит тесты нового решения компании AMD и других видеокарт в современных игровых приложениях. Игровые результаты должны подтвердить наши выводы. Можно предположить, что в среднем скорость HD 4870 в играх будет примерно на одном уровне с Geforce GTX 260.

Блок питания для тестового стенда предоставлен компанией TAGAN
Монитор Dell 3007WFP для тестовых стендов предоставлен компанией

Лидерство в Hi-End классе графических ускорителей для компаний, их выпускающих, является вопросом престижа. Несмотря на сравнительно низкий спрос самые быстрые видеокарты, стоимость которых в последние два-три года практически всегда выше отметки в 600, а то и в 700 долларов США, именно они являются своеобразным ориентиром для большинства пользователей, в той или иной степени интересующихся играми. Именно видеокарты данного класса демонстрируют своего рода эталонную производительность в современных играх. И если продукты на графических процессорах от ATi или от NVIDIA занимают этот "трон", то и сама компания считается лидером в определённый период времени, что безусловно сказывается на росте продаж видеокарт всех ценовых сегментов и повышении рейтинга производителя.

На мой взгляд, с момента появления на рынке NVIDIA GeForce 8800 GTX/Ultra и включительно до выхода линейки GeForce GTX 260/280, лидерство в топовом классе видеокарт принадлежало как раз компании NVIDIA. Со своей стороны, компания ATi (а в последствии и AMD) предпринимала попытку вернуть себе первое место, выпустив двухчиповую Radeon HD 3870 X2. Однако, в полной мере сделать этого так и не удалось: проблемы с драйверами, уже порядком набивший оскомину безальтернативный для ATi AFR-режим рендеринга, присутствие на рынке GeForce 9800 GX2, да и новый GPU от NVIDIA G200, подоспевший очень быстро, не позволили HD 3870 X2 завоевать себе славу самой быстрой видеокарты.

Тем не менее, выпустив безусловно удачные видеокарты среднего класса Radeon HD 4850 и HD 4870, графическое подразделение ATi, теперь принадлежащее компании AMD, 12 августа 2008 года анонсирует двухчиповую видеокарту класса Hi-EndRadeon HD 4870 X2 с рекомендованной стоимостью в 549 долларов США и с явными претензиями на абсолютное лидерство. Немногим позже на рынке должна появиться и её младшая сестра – Radeon HD 4850 X2 с рекомендованной стоимостью до 400 долларов США, которую мы в последствии также изучим и протестируем. Ну а сегодня представляем вашему вниманию обзор и "проверку на скорость" Radeon HD 4870 X2, выпущенной под лейблом компании Hightech Information System Limited (HIS).

1. Обзор HIS Radeon HD 4870 X2 2х1 Гбайт

Стиль оформления и размеры коробки, в которой поставляется HIS Radeon HD 4870 X2, не изменился в сравнении с ранее рассмотренными нами Radeon HD 4850 и HD 4870 от этого же производителя. Разве что цветовая гамма теперь преимущественно зелёная:

На лицевой стороне коробки можно обнаружить информацию о модели видеокарты, её интерфейсе, объёме и типе установленной видеопамяти. Оборотная же сторона пестрит строками спецификаций платы, описанием системных требований, а также сведениями об особенностях графических технологий, заложенных в GPU. Здесь же приведены награды печатных и электронных изданий (коих уже более 600), полученных продуктами HIS. Производится видеокарта в Китае.

Внутри красочной картонной коробки находится ещё одна, теперь уже из толстого белого картона, а в ней пластиковая оболочка с отсеками под видеокарту и аксессуары комплекта поставки. В числе последних можно обнаружить следующие компоненты:

Перечислю их слева направо и сверху вниз:

  • переходник с S-Video выхода на компонентный кабель;
  • один переходник с DVI на HDTV;
  • один переходник 15 pin DVI / D-Sub;
  • адаптер-разветвитель DVI-to-HDMI;
  • гибкий соединительный мостик для CrossFire;
  • компакт-диск с драйверами видеокарты и фирменной утилитой для разгона;
  • инструкция пользователя;
  • голографическая наклейка HIS;
  • купон на бесплатное скачивание игр серии Half-Life 2.

В отдельной коробочке находится фирменная универсальная отвёртка-уровень-фонарик от HIS – незаменимая для оверклокера вещь ;) .

Размеры видеокарты составляют 269 х 109 х 37 мм, но в принципе они уже вряд ли кого смущают, так как линейка GeForce GTX 260/280, да и Radeon HD 3870 X2 ничуть не меньше. Удивление вызывает вес видеокарты (более полутора килограмм). Пожалуй, это самый тяжёлый графический ускоритель в истории. Если так пойдёт и дальше, то скоро с использованием backplate мы с вами будем крепить не только процессорные кулеры, но и видеокарты ;) .

Практически вся лицевая сторона HIS Radeon HD 4870 X2 закрыта системой охлаждения:

Конечно же, перед нами референсный дизайн видеокарты и PCB и вряд ли в ближайшей перспективе мы с вами увидим нереференсные Radeon HD 4870 X2. О принадлежности продукта к компании HIS можно судить разве что по наклейке на турбине системы охлаждения, да по идентификационным стикерам на оборотной стороне видеокарты:

Как вы видите, на задней части PCB также установлена алюминиевая пластина, являющаяся своеобразным радиатором для микросхем памяти видеокарты, расположенным на оборотной стороне платы.

HIS Radeon HD 4870 X2 оснащена PCI-Express x16 интерфейсом версии 2.0, двумя портами DVI-I (dual-link) с поддержкой высоких разрешений, а также S-Video выходом, совмещёнными с решёткой для выброса нагретого воздуха из корпуса системного блока:

В верхней части платы можно обнаружить два разъёма для подключения дополнительного питания – шести- и восьмипиновый, интерфейс для CrossFireX, а также игольчатый радиатор на микросхемах видеопамяти с лицевой стороны PCB:

Силовая часть платы выглядит следующим образом:

Требования по питанию Radeon HD 4870 X2 могут отпугнуть владельцев не слишком мощных блоков питания, так как пиковая потребляемая мощность данной видеокарты может достигать 260 Ватт, для чего требуется блок питания мощностью не менее 550 Ватт. Если подключить к видеокарте два шестипиновых разъёма, то она не стартует, ругаясь на неправильно поданное питание. Для системы с двумя видеокартами Radeon HD 4870 X2 необходимо блок питания мощностью не менее 750~800 Ватт.

Посмотрим на Radeon HD 4870 X2 без системы охлаждения:

Особо интересна центральная часть лицевой стороны платы, где уместились два графических процессора и чип-коммутатор:

Хорошо видно, что оба GPU повернуты по направлению к чипу, а микросхемы памяти установлены по двум сторонам от процессоров с оборотной и с лицевой сторон PCB.

На Radeon HD 4870 X2 установлены два графических процессора RV770, идентичных по функциональности тем, что устанавливаются на обычные Radeon HD 4870:

Оба GPU выпущены на Тайване на 27 неделе 2008 года и не имеют защитных крышек. Площадь каждого из кристаллов составляет 256 кв.мм., а число транзисторов около 956 млн. Каждый из графических процессоров оснащён 800 унифицированными шейдерными процессорами, 40 текстурными блоками и 16 блоками растеризации. Частоты работы обоих GPU в 3D-режиме одинаковы и составляют 750 МГц. Что интересно, по данным мониторинга, полученным с помощью утилиты GPU-Z и последней версии RivaTuner, в 2D-режиме до 500 МГц снижается частота только одного графического процессора из двух, а второй продолжает функционировать на полных 750 МГц. Возможно, в новых драйверах Catalyst или и вовсе в "свежих" версиях BIOS для Radeon HD 4870 X2 эта довольно странная особенность будет исправлена.

В отличие от Radeon HD 3870 X2, новая видеокарта оснащена чипом-коммутатором PEX8647 от компании PLX Technology :

Данная микросхема, второго поколения, обладает возможностью организации прямого обмена данными между двумя графическими процессорами и теперь с поддержкой вдвое большей пропускной способности, нежели микросхема, устанавливаемая на Radeon HD 3870 X2 (PEX85 47). Кроме того, в Radeon HD 4870 X2 появился канал передачи данных, именуемый как "Sideport", с пропускной способностью в 5 Гбайт в секунду. Однако, в настоящее время он отключён в драйверах Catalyst (либо ещё и вовсе не реализован разработчиками драйверов).

На каждый из графических процессоров приходится по восемь микросхем памяти стандарта GDDR5 суммарным объемом в 1 Гбайт. Таким образом, хоть и общий, но разделяемый, объём памяти видеокарты составляет 2 Гбайта. На HIS Radeon HD 4870 X2 установлены микросхемы производства компании Hynix:

Маркировка чипов - H5GQ1H24MJR-T0C, а их номинальное время доступа равно 1.0 нс при теоретической эффективной пропускной способности для стандарта GDDR5 равной 4000 МГц. Между тем, видеопамять HIS Radeon HD 4870 X2 функционирует на частоте в 3600 МГц, что полностью соответствует спецификациям Radeon HD 4870 X2 и HD 4870.

Вот что показывает утилита GPU-Z по первому и второму графическому процессору видеокарты:

Теперь о системе охлаждения видеокарты. Референсный кулер Radeon HD 4870 X2 фактически состоит из двух половинок: алюминиевой пластины с термопрокладками с оборотной стороны платы, и, собственно, основной системы охлаждения с лицевой стороны PCB:

Последняя состоит из металлического радиатора (судя по весу это не алюминий), выкрашенного в чёрный цвет, с установленной на нём турбиной, и двух медный радиаторов, предназначенных для охлаждения графических процессоров:

Сверху вся конструкция закрыта пластиковым кожухом, который служит своеобразным воздуховодом.

Радиаторы графических процессоров не блещут техническими изысками и представляют собой донельзя простой прямоугольник с толстым медным основанием в ~5 мм, и тонких медных рёбер высотой в ~25 мм:

Ровное и хорошо отполированное основание радиаторов контактирует с поверхностью кристалла GPU посредством густой серой термопасты.

Оба радиатора охлаждаются одной выпущенной в Китае турбиной, производства компании NTK Technologies Inc :

Модель турбины CF1275-B30H-C005, и, судя по данным на наклейке, потребляет она до 12 Ватт электроэнергии. Скорость вращения турбины регулируется автоматически в зависимости от температуры графического чипа в диапазоне от ~1150 до ~2900 об/мин (по данным мониторинга). Турбину не слышно только на её минимальной скорости вращения (примерно до ~1300 об/мин включительно). Жаль, конечно, но это плата за высокую скорость видеокарты.

Проверим температурный режим видеокарты. Методика тестирования заключалась в десятикратном прогоне бенчмарка Firefly Forest из синтетического графического бенчмарка 3DMark 2006 в разрешении 1920 х 1200 с активированным полноэкранным сглаживанием степени 4х и анизотропной фильтрацией уровня 16х. Все тесты проводились в закрытом корпусе ASUS Ascot 6AR2-B системного блока (конфигурацию вентиляторов в нём вы можете найти ниже в разделе с методикой тестирования):

Комнатная температура во время тестирования была равна 22 градусам Цельсия. Мониторинг частоты и температуры видеокарты осуществлялся с помощью RivaTuner v2.10 (автор - Алексей Николайчук AKA ). В связи с тем, что видеокарта разбиралась до проведения тестов, то стандартный термоинтерфейс на GPU был заменён на высокоэффективную термопасту Arctic Silver 5, нанесённую тончайшим слоем на оба графических процессора.

Посмотрим на температурный режим Radeon HD 4870 X2 при автоматической работе турбины системы охлаждения:

На графиках мониторинга приведена температура самого горячего GPU видеокарты. Второй процессор, по всей видимости расположенный ближе к турбине, прогревается только до 67 градусов Цельсия. Такая разница между температурами объясняется довольно просто, так как второму медному радиатору достается уже порядком нагретый воздух от ближнего к турбине радиатора GPU. Тем не менее, на мой взгляд, для топовой видеокарты температура в 91 градус Цельсия в пике нагрузки не является чем-то экстраординарным. А вот элементы цепей питания видеокарты прогреваются до 110 градусов Цельсия, что хоть и укладывается в допустимый предел, но, субъективно, с психологической точки зрения несколько настораживает.

Теперь о разгоне видеокарты. Так как альтернативной системой охлаждения для Radeon HD 4870 X2 мы пока не располагаем, то проверка оверклокерского потенциала видеокарты проводилась с использованием референсного кулера в его автоматическом режиме работы (на момент подготовки материала программного обеспечения для ручного управления скоростью вращения турбины видеокарты не было). Разгон видеокарты осуществлялся с помощью утилиты AMD GPU Clock Tool версии . Нам на тестирование было предоставлено сразу же две таких видеокарты от HIS. Первая из них без потери в стабильности и в качестве картинки смогла стабильно функционировать на частотах в 800/3800 МГц, а на второй удалось достичь частот в 820/3800 МГц (+9.3/+5.6 %):

Что интересно, температура самого горячего ядра видеокарты возросла только на 1 градус Цельсия, но произошло это, скорее всего, ввиду того, что турбина системы охлаждения раскрутилась на ~150 об/мин сильнее, чем в номинальном режиме работы видеокарты:

Об уровне шума турбины мы поговорим в разделе с результатами его измерения.

BIOS видеокарты HIS Radeon HD 4870 X2 2х1 Гбайт вы можете скачать из файлового архива (WinRAR архив, 46.2 Кбайт). Рекомендованная стоимость на новинку составляет 549 долларов США.

Для геймерского компьютера исключительную роль играет хорошая видеокарта. Однако этот компонент компьютера важен и для обычного ПК. Именно эта часть системного блока отвечает за вывод изображения на экран монитора. От качества видеокарты напрямую зависит качество изображения. И от этого факта никуда не деться. Поэтому выбор видеокарты - весьма важный этап сборки компьютера. В категории бюджетных видеоадаптеров интерес представляет изделие под названием Radeon HD 4870. Этот продукт интересен, в первую очередь, низкой ценой. Теперь стоит рассмотреть параметры данной видеокарты, чтобы понять, стоит ли она затраченных средств.

Стоит отметить, что компания AMD (разработчик данной видеокарты) уже давно радует пользователей своими производительными и в меру дорогими решениями. Сейчас многие знают эту компанию, как заклятого врага Intel. Но так было далеко не всегда. Было время, когда за АМД никакому Интелу было не угнаться. И теперь производитель вовсю старается вернуть себе майку лидера. Но сделать это с каждым годом все труднее. Тем не менее в АМД смотрят на вещи оптимистично и просто радуют своих преданных фанатов новыми "плюшками". И рассматриваемая видеокарта - одна из них.

Позиционирование

Чип 4870 был выпущен компанией AMD уже довольно давно. После этого кто только не занимался модификацией этой видеокарты. Выдающихся успехов на этом поприще не добился практически никто. Только у ASUS получилось хоть что-то адекватное. ATI Radeon HD 4870 на момент выхода позиционировалась как недорогая видеокарта для геймеров. Однако с того момента уже много воды утекло и сейчас эта карта не является особо мощной. В ней нет ничего интересного. Поэтому и стоит она копейки.

Потенциальными покупателями этой видеокарты являются те пользователи, которым совершенно не нужны современные игры. Для всех остальных задач Radeon HD 4870 вполне сгодится. При этом не придется особо переплачивать. За разумные деньги пользователь получает неплохую видеокарту и несколько фирменных "плюшек" в комплекте. Аксессуары, идущие в комплекте с ускорителем, могут отличаться в зависимости от того, какая компания выпустила видеокарту. Некоторые модифицированные модели выпускались такими гигантами, как ASUS, Palit и Gigabyte.

Комплект поставки

Здесь все зависит от конкретного производителя. Но есть некоторые компоненты, которые остаются неизменными. Это непременное условие компании AMD. Так, наличие коннектора CrossFire и полного набора переходников для различных интерфейсов строго регламентировано. Комплектность этих составляющих обязан предоставить любой производитель. Radeon HD 4870 поставляется в обязательной фирменной упаковке. А вот содержимое комплекта может меняться. Однако производители все-таки не решились особо расстраивать фанатов марки, поэтому кладут в комплект почти все то же самое, что и в оригинальном комплекте поставки видеокарты.

К примеру, ASUS снабжает свои видеокарты брелоком-флешкой на 2 гигабайта, фирменным кожаным ковриком и полным набором инструкций (включая электронные). Комплект поставки от Palit схож с тайванским, но налицо отсутствие USB-брелока. В комплекте есть всевозможные переходники и разъемы. Так что проблем с подключением не возникнет. Некоторые производители снабжают свои карты специальными разъемами HDMI, DVI и так далее. Естественно, в этом случае количество переходников в комплекте увеличивается.

Основные характеристики

Основные характеристики видеокарты Radeon HD 4870 почти никак не меняются от модификации до модификации. Просто некоторые производители снабжают ее несколько иными компонентами, меняющими в ту или другую сторону ее незначительные характеристики. Поэтому характеристики оригинальной ATI Radeon HD 4870 можно считать эталонными. Оригинальный ускоритель имеет на своем борту 512 мегабайт видеопамяти GDDR5, шину на 256 бит и рабочую частоту ядра в 750 МГц.

Модификации от ASUS и Palit похожи на оригинал. Только памяти в них 1028 мегабайт. Также в них установлены микросхемы от Hinyx, которые отличаются большим объемом памяти и лучшей производительностью. Система охлаждения также немного изменена. В продуктах сторонних производителей также предусмотрена возможность разгона видеокарты, чего нет в оригинале. Однако в обеих модификациях есть возможность осуществить вариант Radeon HD 4870 X2 при помощи SLI CrossFire, который идет в комплекте с видеокартой.

Немаловажным фактором является и то, что процессор видеокарты выполнен по техпроцессу 55 мкм. Это означает, что производительность была улучшена при наличии меньшего количества ядер. Такие видеокарты обычно в разы мощнее обычных, которые могут обладать куда более "вкусными" характеристиками. Кроме того, этот видеоускоритель имеет поддержку Shaders Model 4.1 и запросто справляется практически с любыми играми. Хоть и не с самыми высокими настройками графики.

Модификации от ASUS

ASUS Radeon HD 4870 1GB отличается от оригинала увеличенным объемом памяти, несколько другим набором микросхем и совершенно иной системой охлаждения. Если ноутбуки от этого производителя греются как сковородки, то о видеокартах такого сказать нельзя. Благодаря мощной системе охлаждения ускоритель от ASUS отличается гигантскими размерами. Но безопасность чипа того стоит. Система охлаждения делает свое дело.

Также в этом продукте есть возможность разгона. В отличие от стандартного ATIRadeon HD 4870 драйвер которого лишен этой весьма приятной функции. За разгон отвечает специальная утилита, которая идет в комплекте программ к видеокарте. Бояться перегрева не стоит, так как выше определенных частот ускоритель разогнать все равно не получится. А с теми перегрузками, которые "запрограммированы" система охлаждения справится без проблем.

Производитель из Тайваня искусственно ограничил возможности разгона данной видеокарты, но это никоим образом не смогло остановить энтузиастов. При помощи специализированных программ они добились неплохого прироста производительности. Однако некоторые "неумельцы" напрочь забыли о системе охлаждения. И в итоге получили "жареную" видеокарту. Не повторяйте их ошибок. И помните, что видеокарта стабильно работает только на частотах, предусмотренных производителем. Все остальное вы делаете на свой страх и риск. И да. Разгон - негарантийный случай.

Модификации от Palit

Эта компания хорошо известна своими видеокартами. Они всегда производительны и красивы. Sapphire Radeon HD 4870 от Palit отличается набором микросхем от Hinyx, увеличенным объемом памяти и обновленной системой охлаждения. При этом набор разъемов для подключения к мониторам и телевизорам также был несколько изменен. Теперь здесь есть весь комплект, включая устаревший VGA-разъем. Тем не менее на производительность чипа это никак не повлияло.

Возможности разгона здесь не такие широкие, как у ускорителя от ASUS, но зато есть специальный переключатель режимов работы: турбо и обычный. Он находится там же, где и разъемы подключения к монитору. В турбо режиме резко возрастает частота памяти и ядра. Это плодотворно влияет на производительность графической подсистемы в целом. Видеокарта Radeon HD 4870 в исполнении Palit получила "второе дыхание".

Теперь несколько слов о режиме "Турбо". Хоть он и увеличивает частоты ядра и памяти, но особого прироста производительности вы от него не дождетесь. А вот сократить срок жизни видеокарты при постоянно включенном режиме турбо можно очень легко. А если не видно разницы, то зачем убивать видеоускоритель раньше времени. При просмотре фильмов этот режим рекомендуется отключить. Да и в играх он не особо полезен.

Модификации от Gigabyte

Этот производитель также хорошо известен своими качественными комплектующими для компьютера. Нет ничего удивительного в том, что сия компания решила выпустить модификацию успешной видеокарты AMD Radeon HD 4870. Правда, здесь получился тандем из двух таких ускорителей, соединенных при помощи CrossFire. Это позволило в два раза увеличить память и производительность графической подсистемы.

Плюсом изделия от Gigabyte является то, что выглядит оно гораздо элегантнее детищ ASUS и Palit. Сразу чувствуется рука мастера, ибо все комплектующие этого производителя обращают на себя внимание броским и красивым внешним видом. Причем это никак не влияет на производительность. К примеру, прототип Radeon HD 4870 от этой фирмы в несколько раз мощнее своих "коллег", основанных на том же чипе.

Графический ускоритель от этого производителя на базе АТИ "Радеон" на сегодняшний день является самым адекватным на рынке. У него есть все, что нужно: производительность, качество, адекватная цена. При этом он напрочь лишен возможностей разгона. И это хорошо, ибо "очумелые ручки" некоторых особо любопытных пользователей будут иметь меньшие возможности для того, чтобы сломать сей видеоускоритель. Да и приобретение именно этой видеокарты выглядит наиболее приемлемым решением, если исходить из почтенного соотношения "цена-качество".

Особенности использования

Почти все модификации Radeon HD 4870, характеристики которых описаны чуть выше, не требуют почти никакого особого подхода в процессе использования. Однако некоторые особенности полезно будет знать. К примеру, если у вас ускоритель от Palit, то не злоупотребляйте турбо-режимом. Видеокарта, конечно, не сгорит. Однако такие перегрузки негативно влияют на срок ее службы. Поэтому, если вы хотите, чтобы ваш ускоритель "жил долго и счастливо", не стоит нагружать его без надобности.

В случае с видеокартами от ASUS не экспериментируйте сильно с разгоном. Система охлаждения в этих ускорителях, конечно, хорошая, но и она может сбоить. А повышенные частоты изрядно увеличивают температуру. Если система охлаждения даст сбой, то видеокарта сгорит за доли секунды. Рисковать не стоит. Тем более что Radeon HD 4870, характеристики которой были разобраны в этом материале, может вполне хорошо работать и на стандартных частотах.

Если вы используете тандем видеокарт с помощью коннектора CrossFire, то следует скачать с сайта производителя соответствующие драйвера, которые будут полностью поддерживать эту технологию. В противном случае работать сможет только одна видеокарта. Мощности второй будут не задействованы. Поэтому всегда обновляйте программное обеспечение для оборудования. Так будет гораздо лучше.

Правила эксплуатации

Даже у самой надежной техники есть определенные правила эксплуатации, которые нужно соблюдать для того, чтобы не убить свою технику раньше времени. Это касается и видеокарт от Radeon. Во-превых, тщательно следите за состоянием кулера системы охлаждения. Поскольку видеокарта довольно мощная, она постоянно нуждается в качественном отводе тепла. Минимальная задержка - и вы получите горелую видеокарту. Регулярно чистите кулер от пыли и грязи. Во-вторых, в случае с Radeon HD 4870 драйвера должны быть самой последней версии, ибо именно в них устранены все недочеты. малейший сбой может уничтожить ускоритель. И никто здесь не будет виноват.

В-третьих, никогда не используйте данную видеокарту в старых компьютерах, оснащенных устаревшими комплектующими. Поскольку ускоритель довольно мощный, вы рискуете потерять все остальные компоненты. Не поможет даже блок питания повышенной мощности. Этой видеокарте нужны соответствующие условия для нормальной работы. В-четвертых, Radeon HD 4870 512MB не предназначен для работы с постоянными перегрузками. Это чревато потерей не только видеоускорителя, но и многих других компонентов системы.

И снова «Crysis», но уже при использовании DirectX 10. Как видим, только в низком разрешении Radeon HD 4870 может соперничать с конкурентом GeForce, а вот в 1600х1200 уже заметно уступает. Игра на максимальных настройках в DirectX 10 потребляет большой объём видеопамяти, и, похоже, GeForce GTX 260 выигрывает за счёт своих «дополнительных» мегабайтов.

Вывод

В данной статье мы познакомились с современным флагманом от AMD и сравнили его с младшей моделью на этом же графическом чипе и с конкурентом от NVIDIA. Хотя GeForce GTX 260 прямым конкурентом можно назвать с натяжкой, ведь цена этой видеокарты всё же немного выше. Изначально, когда новые модели начали появляться на рынке, различие в цене было ещё больше. Но ценовая политика AMD заставила NVIDIA снижать стоимость своих новинок. И не случайно, ведь во многих тестах Radeon HD 4870 лишь незначительно уступает GeForce GTX 260, а иногда и обгоняет. Но больший объём памяти и хороший разгонный потенциал помогают GeForce GTX 260 уверенно удерживать место лидера во многих приложениях. К дополнительным преимуществам Radeon HD 4870 можно отнести более низкое энергопотребление.

Что же касается соотношения между Radeon HD 4850 и Radeon HD 4870, то иногда мы наблюдаем значительный отрыв старшей модели от младшей. И если разница в частоте чипа у них не столь велика, то, без сомнения, более быстрая память помогает достичь таких показателей. С другой стороны, при разнице в производительности 20-30% младшая карта намного дешевле. Такая ситуация была в своё время и с Radeon HD 3850 и Radeon HD 3870, а потом постепенно разница в цене между этими картами уменьшилась до совсем незначительной суммы. Так что Radeon HD 4850, без сомнения, довольно удачная модель в своей ценовой категории.

Radeon HD 4870 также выигрывает у ближайшего конкурента за счёт цены. Хотя если на смену GeForce GTX 260 придёт новая, чуть более дешёвая и экономичная плата, то все минимальные преимущества Radeon отойдут на второй план. Но пока таких вариантов нет, и Radeon HD 4870 занимает именно свою ценовую нишу. А ответом на сверхбыстрые и горячие видеокарты NVIDIA по заоблачной цене станет Radeon HD 4870 X2 на базе двух RV770. И эта карта, вероятно, по праву займёт место лидера, ведь потенциал у RV770 есть, как мы уже убедились.

Чтобы понять, чем новый графический чип RV770 качественно отличается от представителей двух предыдущих поколений, достаточно взглянуть на его схематическое представление.

Если сравнить новую схему с той, что была применена в чипе R600/RV670 , то отличия очевидны. Текстурные блоки в новом чипе привязаны к потоковым процессорам, компания AMD серьёзно переработала схему работы встроенной в GPU кэш-памяти L1 и L2, были улучшены блоки ROP и увеличено количество потоковых процессоров до 800 штук.

Система сглаживания претерпела серьёзные изменения, в результате которых значительно повысилась его скорость, а сглаживание 2x/4x MSAA теперь и вовсе стало практически бесплатным! В следующих статьях мы планируем остановиться на этом моменте более подробно, а также сравнить качество сглаживания у видеокарт AMD и NVIDIA. Для справки, приведём таблицу с техническими характеристиками новых видеокарт и сравним их с предыдущим поколением:

ATI Radeon™ HD4870 ATI Radeon™ HD4850 ATI Radeon™ HD3870
Количество транзисторов, млн 965 965 666
Тех. процесс, нм 55 55 55
Количество потоковых процессоров 800 800 320
Количество текстурных модулей 40 40 16
Количество блоков растеризации 16 16 16
Тактовая частота GPU, МГц 750 625 775
Тип и эффективная частота видеопамяти GDDR5, 3600 МГц GDDR3, 2000 МГц GDDR4, 2250 МГц
Вычислительная мощность GPU, ТФлопс 1,2 1,0 0,497
Тип шины PCI Express 2.0, x16 PCI Express 2.0, x16 PCI Express 2.0, x16
Поддержка DirectX 10.1 10.1 10.1
Блок тесселяции да да да
Встроенный видеодекодер ver. 2.0 ver. 2.0 ver. 1.0
Поддержка ATI PowerPlayTM да да да

Изучать Radeon HD4870 мы будем на примере видеокарты, предоставленной нам на тесты компанией HIS.

HIS Radeon HD4870

Упаковка от видеокарты HIS Radeon HD4870 небольшого размера, выполнена в синих тонах. На обеих сторонах коробки размещена ключевая информация о видеокарте. Комплектация видеокарты содержит:
  • переходник DVI > D-sub;
  • переходник DVI > HDMI;
  • переходник S-video > тюльпан;
  • переходник S-video > component out;
  • мостик CrossFire;
  • CD с драйверами;
  • инструкция пользователя, памятка о доступных играх Steam;
  • наклейка на корпус;
  • фирменная отвёртка-фонарик-уровень;
В комплекте с видеокартой отсутствуют переходники для питания видеокарты, зато есть фирменная отвёртка с фонариком и уровнемером. Давайте посмотрим: В комплект с отвёрткой входит две насадки, каждая из которых оснащена двумя головками. Первая насадка служит для работы с плоскими шляпками, вторая - с крестообразными. В корпус отвёртки также вмонтирован уровень. Возле гнезда для установки насадок вмонтирован фонарик, основанный на сверх-ярком светодиоде. Выключатель расположен рядом с уровнемером, причем нет необходимости его удерживать, так как это именно выключатель, а не кнопка. Сама главная обитательница коробки практически не отличается от той, что показала всему миру компания AMD, разве что наклейка на вентиляторе всё же фирменная, HIS. Для подключения питания видеокарты Radeon HD4870 служат два 6-контактных разъёма в хвосте видеокарты, в отличие от младшей Radeon HD4850, у которой всего один разъём. Усиленная система питания потребовалась для стабильной работы видеокарты на повышенных частотах. Так, по сравнению с видеокартой Radeon HD4850, у Radeon HD4870 частота графического процессора выше на 125 МГц и равна 750 МГц, а эффективная частота видеопамяти GDDR5 равна 3600 МГц, что значительно выше 1986 МГц, на которых работает видеопамять у видеокарты Radeon HD4850. Правда, тут стоит оговориться, реальная частота новой памяти GDDR5 равна 900 МГц, просто за один такт у неё передаётся не вдвое, а вчетверо больше информации по сравнению с «обычной» не-DDR памятью. Система охлаждения у видеокарты очень сильно напоминает ту, что применялась в видеокартах Radeon HD2900XT . Медная вставка с двумя тепловыми трубками и алюминиевыми листами служит для охлаждения графического процессора, каркас из крашенного алюминиевого сплава охлаждает чипы памяти и чипы подсистемы питания, а также придаёт жесткость всей конструкции. Для предотвращения перекоса медной вставки и, как следствие этого, повреждения графического чипа, она сделана независимой от металлического каркаса. Из внешних отличий, по сравнению с видеокартой Radeon HD4850 , в Radeon HD4870 изменилась подсистема питания, и появился логотип AMD над слотом PCI-express x16. Хотя новинка и оборудована новейшей видеопамятью GDDR5, её расположение на печатной плате ничем не отличается от расположения видеопамяти GDDR3 на видеокарте Radeon HD4850.

На видеокарте Radeon HD4870 установлен тот же графический чип RV770, что и в Radeon HD4850.

Чипы видеопамяти GDDR5 произведены компанией Qimonda. Номинальная эффективная тактовая частота по паспорту для данной памяти равна 4,0 ГГц, штатная же, на которой данная память функционирует на видеокарте Radeon HD4870, как мы уже говорили, равна 3,6 ГГц.

Под нагрузкой в 3D-режиме графический чип видеокарты Radeon HD4870 работает на частоте 750 МГц, а во время простоя его частота снижается до 500 МГц.

Эффективность системы охлаждения и разгон

Поскольку ни Riva Tuner, ни какая-либо другая программа, осуществляющая разгон видеокарт ATI/AMD, до сих пор не поддерживают новое семейство Radeon HD4000, об измерении температурных и прочих показателей мы расскажем на словах. Во время простоя температура графического процессора колеблется в районе 78 градусов, при этом вентилятор вращается со скоростью 1075 оборотов в минуту, что составляет 22% от его максимально возможной скорости. Под нагрузкой, то есть во время прогона 9-ти тестов Firefly Forest из тестового пакета 3DMark’06 в разрешении 1600х1200 с 4-кратным сглаживанием и 16-кратной анизотропной фильтрацией, графический чип нагрелся до 84 градусов. Скорость вентилятора при этом возросла до 1886 оборотов в минуту, что составляет 30% от максимально возможной скорости. Заметим, что на такой скорости шум от системы охлаждения становился заметен. Что касается разгона, то единственно доступным средством для его осуществления на данный момент является встроенная в панель управления видеокарты утилита ATI Overdrive. Увы, но эта утилита не предоставляет практически никакой свободы действий, позволяя увеличить частоту графического чипа всего на 40 МГц, а памяти на 200 «реальных» МГц. В результате видеокарту Radeon HD4870 удалось разогнать до 790/4400 МГц, что несерьёзно. Однако мы всё же протестировали разогнанную Radeon HD4870 в игре Crysis, и с результатами этого небольшого эксперимента вы сможете ознакомиться в конце данной статьи.

Тестирование

Тестирование мы будем проводить на тестовом стенде следующей конфигурации:

Конкуренты новой видеокарте Radeon HD4870 от компании HIS и драйверы для них будут следующие:

  • GeForce GTX280, драйверы ForceWare 177.34;
  • GeForce GTX260, драйверы ForceWare 177.39;
  • Radeon HD4850, драйверы Catalyst 8.6;
Для нашей новинки, как и для Radeon HD4850, мы использовали драйверы Catalyst 8.6. Наше тестирование мы будем проводить как в «обычных» разрешениях, так и в повышенных. Начнём с тестов 3DMark и «стандартных» разрешений экрана.

Рекомендуем почитать

Наверх