Графические api. Почему у другой программной модели могут быть преимущества

Для Symbian 15.04.2019
Для Symbian

API определяет функциональность, которую предоставляет программа (модуль, библиотека), при этом API позволяет абстрагироваться от того, как именно эта функциональность реализована.

Если программу (модуль, библиотеку) рассматривать как чёрный ящик, то API - это множество «ручек», которые доступны пользователю данного ящика, которые он может вертеть и дёргать.

Программные компоненты взаимодействуют друг с другом посредством API. При этом обычно компоненты образуют иерархию - высокоуровневые компоненты используют API низкоуровневых компонентов, а те, в свою очередь, используют API ещё более низкоуровневых компонентов.

По такому принципу построены протоколы передачи данных по . Стандартный протокол Internet (сетевая модель OSI) содержит 7 уровней (от физического уровня передачи пакетов бит до уровня протоколов приложений, подобных протоколам HTTP и IMAP). Каждый уровень пользуется функциональностью предыдущего уровня передачи данных и, в свою очередь, предоставляет нужную функциональность следующему уровню.

Важно заметить, что понятие протокола близко по смыслу к понятию API. И то и другое является абстракцией функциональности, только в первом случае речь идёт о передаче данных, а во втором - о построении компьютерных приложений.

API библиотеки функций и классов включает в себя описание сигнатур и семантики функций .

Application Programming Interface (API) программный интерфейс взаимодействия между системами, позволяющий:

  • Получать доступ к бизнес-сервисам предприятия
  • Обмениваться информацией между системами и приложениями
  • Упростить взаимодействие между компаниями, партнерами, разработчиками и клиентами

Open API стратегия

API стратегия включает в себя:

  • Разработку бизнес-продуктов на основе существующих API
  • Предоставление внутренних сервисов разработчикам
  • Модели монетизации API для построения мультиканального взаимодействия и повышения прибыли

Реализация концепции Open API помогает трансформировать бизнес, встраивать его в гибкую проектную экосистему игроков рынка, создавать условия для постоянной генерации новых идей и формирования дополнительной ценности при управлении массивами корпоративных данных.

Рынок интеграционных решений развивается в контексте эволюции API - от EDI и SOAP до Web 2.0 , с которого началась эра публичных API. Число таких интерфейсов в ближайшие 3 года может вырасти более чем в 50 раза и достичь 1 миллиона. Это связано с мультиканальностью: каналы взаимодействия с клиентами должны меняться вместе с ними. Непрерывный рост количества потребителей и объема данных привел к появлению экономики API, помогающей на основе открытых интерфейсов создавать инновационные бизнес-модели использования корпоративных активов и сервисов.

Сигнатура функции

Сигнатура функции - часть общего объявления функции, позволяющая средствам трансляции идентифицировать функцию среди других. В различных языках программирования существуют разные представления о сигнатуре функции, что также тесно связано с возможностями перегрузки функции в этих языках.

Иногда различают сигнатуру вызова и сигнатуру реализации функции. Сигнатура вызова обычно составляется по синтаксической конструкции вызова функции с учётом сигнатуры области видимости данной функции, имени функции, последовательности фактических типов аргументов в вызове и типе результата. В сигнатуре реализации обычно участвуют некоторые элементы из синтаксической конструкции объявления функции: спецификатор области видимости функции, её имя и последовательность формальных типов аргументов.

Например, в языке программирования Си++ простая функция однозначно опознаётся компилятором по её имени и последовательности типов её аргументов, что составляет сигнатуру функции в этом языке. Если функция является методом некоторого класса, то в сигнатуре будет учаcтвовать и имя класса.

Также необходимо отметить, что в распоряжении программиста часто находится несколько различных API, позволяющих добиться одного и того же результата. При этом каждый API обычно реализован с использованием API программных компонент более низкого уровня абстракции.

Например: для того, чтобы увидеть в браузере строчку «Hello, world!» достаточно лишь создать HTML -документ с минимальным заголовком, и простейшим телом, содержащим данную строку. Что произойдёт, когда браузер откроет этот документ ? Программа-браузер передаст имя файла (или уже открытый дескриптор файла) библиотеке, обрабатывающей HTML-документы, та, в свою очередь, при помощи API операционной системы прочитает этот файл, и разберётся в его устройстве, повызывает через API библиотеки стандартных графических примитивов операции типа «очистить окошко», «написать выбранным шрифтом Hello, world!», при этих операциях библиотека графических примитивов обратится к библиотеке оконного интерфейса с соответствующими запросами, уже эта библиотека обратится к API операционной системы с запросами вида «а положи-ка мне в буфер видеокарты вот это».

При этом практически на каждом из уровней реально существует несколько возможных альтернативных API. Например: мы могли бы писать исходный документ не на HTML , а на LaTeX, для отображения могли бы использовать любой браузер. Различные браузеры, вообще говоря, используют различные HTML-библиотеки, и, кроме того, всё это может быть (вообще говоря) собрано с использованием различных библиотек примитивов и на различных операционных системах.

Основными сложностями существующих многоуровневых систем API, таким образом, являются:

  • Сложность портирования программного кода с одной системы API на другую (например, при смене ОС);
  • Потеря функциональности при переходе с более низкого уровня на более высокий. Грубо говоря, каждый «слой» API создаётся для облегчения выполнения некоторого стандартного набора операций. Но при этом реально затрудняется, либо становится принципиально невозможным выполнение некоторых других операций, которые предоставляет более низкий уровень API.

Основные типы API

Внутренние API

  • Доступ к API предоставляется только внутренним разработчикам
  • Приложения нацелены на сотрудников предприятия

Бизнес-драйверы:

  • Консистентность разработки
  • Снижение затрат
  • Повышение эффективности разработки

Партнерские API

  • API доступны только ограниченному набору бизнес-партнеров
  • Приложения предназначены для конечных потребителей и для бизнес-пользователей

Бизнес-драйверы:

  • Автоматизация процесса разработки
  • Развитие партнерских отношений
  • Оптимизация процесса взаимодействия с партнерами

Публичные API

Доступ предоставляется любому внешнему разработчику Приложения нацелены на конечных пользователей

Бизнес-драйверы:

  • Разработка новых сервисов
  • Развитие экосистемы
  • Мультиканальное взаимодействие

Наиболее известные API

API операционных систем

API графических интерфейсов

  • Direct3D (часть DirectX)
  • DirectDraw (часть DirectX)

, функций , структур и констант , предоставляемых приложением (библиотекой, сервисом) или операционной системой для использования во внешних программных продуктах. Используется программистами при написании всевозможных приложений.

Энциклопедичный YouTube

  • 1 / 5

    API определяет функциональность, которую предоставляет программа (модуль , библиотека), при этом API позволяет абстрагироваться от того, как именно эта функциональность реализована.

    Если программу (модуль, библиотеку) рассматривать как чёрный ящик , то API - это множество «ручек», которые доступны пользователю данного ящика и которые он может вертеть и дёргать.

    Программные компоненты взаимодействуют друг с другом посредством API. При этом обычно компоненты образуют иерархию - высокоуровневые компоненты используют API низкоуровневых компонентов, а те, в свою очередь, используют API ещё более низкоуровневых компонентов.

    По такому принципу построены протоколы передачи данных по Интернет . Стандартный стек протоколов (сетевая модель OSI) содержит 7 уровней (от физического уровня передачи бит до уровня протоколов приложений, подобных протоколам HTTP и IMAP). Каждый уровень пользуется функциональностью предыдущего («нижележащего») уровня передачи данных и, в свою очередь, предоставляет нужную функциональность следующему («вышележащему») уровню.

    Важно заметить, что понятие протокола близко по смыслу к понятию API. И то, и другое является абстракцией функциональности, только в первом случае речь идёт о передаче данных, а во втором - о взаимодействии приложений.

    API библиотеки функций и классов включает в себя описание сигнатур и семантики функций .

    Сигнатура функции

    Иногда различают сигнатуру вызова и сигнатуру реализации функции. Сигнатура вызова обычно составляется по синтаксической конструкции вызова функции с учётом сигнатуры области видимости данной функции, имени функции, последовательности фактических типов аргументов в вызове и типе результата. В сигнатуре реализации обычно участвуют некоторые элементы из синтаксической конструкции объявления функции: спецификатор области видимости функции, её имя и последовательность формальных типов аргументов.

    Например, в языке программирования C++ простая функция однозначно опознаётся компилятором по её имени и последовательности типов её аргументов, что составляет сигнатуру функции в этом языке. Если функция является методом некоторого класса, то в сигнатуре будет участвовать и имя класса.

    В индустрии программного обеспечения общие стандартные API для стандартной функциональности имеют важную роль, так как они гарантируют, что все программы, использующие общий API, будут работать одинаково хорошо или, по крайней мере, типичным привычным образом. В случае API графических интерфейсов это означает, что программы будут иметь похожий пользовательский интерфейс, что облегчает процесс освоения новых программных продуктов.

    С другой стороны, отличия в API различных операционных систем существенно затрудняют перенос приложений между платформами. Существуют различные методы обхода этой сложности - написание «промежуточных» API (API графических интерфейсов wxWidgets , , GTK и т. п.), написание библиотек, которые отображают системные вызовы одной ОС в системные вызовы другой ОС (такие среды исполнения, как Wine , cygwin и т. п.), введение стандартов кодирования в языках программирования (например, стандартная библиотека языка C), написание интерпретируемых языков, реализуемых на разных платформах ( , python , perl , php , tcl , Java и т. д.).

    Также необходимо отметить, что в распоряжении программиста часто находится несколько различных API, позволяющих добиться одного и того же результата. При этом каждый API обычно реализован с использованием API программных компонент более низкого уровня абстракции.

    Например: для того, чтобы увидеть в браузере строчку «Hello, world! », достаточно лишь создать HTML -документ с минимальным заголовком и простейшим телом, содержащим данную строку. Когда браузер откроет этот документ , программа-браузер передаст имя файла (или уже открытый дескриптор файла) библиотеке, обрабатывающей HTML-документы, та, в свою очередь, при помощи API операционной системы прочитает этот файл и разберётся в его устройстве, затем последовательно вызовет через API библиотеки стандартных графических примитивов операции типа «очистить окошко», «написать „Hello, world!“ выбранным шрифтом». Во время выполнения этих операций библиотека графических примитивов обратится к библиотеке оконного интерфейса с соответствующими запросами, уже эта библиотека обратится к API операционной системы, чтобы записать данные в буфер видеокарты .

    При этом практически на каждом из уровней реально существует несколько возможных альтернативных API. Например: мы могли бы писать исходный документ не на HTML, а на LaTeX , для отображения могли бы использовать любой браузер. Различные браузеры, вообще говоря, используют различные HTML-библиотеки, и, кроме того, всё это может быть собрано с использованием различных библиотек примитивов и на различных операционных системах.

    Основными сложностями существующих многоуровневых систем API, таким образом, являются:

    • Сложность портирования программного кода с одной системы API на другую (например, при смене ОС);
    • Потеря функциональности при переходе с более низкого уровня на более высокий. Грубо говоря, каждый «слой» API создаётся для облегчения выполнения некоторого стандартного набора операций. Но при этом реально затрудняется, либо становится принципиально невозможным выполнение некоторых других операций, которые предоставляет более низкий уровень API.

    Наиболее известные API

    Операционных систем

    На минувшей неделе был представлен API Vulkan, о широкой поддержке которого заявили AMD и NVIDIA. Новый графический интерфейс разрабатывал Khronos Group, консорциум, основанный в 2000 году. Khronos Group отвечает за разработку и поддержку открытых стандартов в сфере мультимедийных приложений на разных платформах и устройствах. Консорциум поддерживают AMD и NVIDIA, а также многие другие компании.

    На минувшей неделе была ратифицирована финальная версия 1.0 API Vulkan. AMD и NVIDIA представили соответствующие бета-драйверы. AMD заранее выпустила бета-версию Radeon Software еще 14 февраля. NVIDIA представила драйвер GeForce 356.39, который тоже ориентирован на поддержку API Vulkan.

    Подход API Vulkan очень похож на API Mantle. Суть заключается в том, чтобы разработчики получили более глубокий доступ к «железу», чтобы выжать из него максимум. Такой подход позволяет максимально избежать существующих «узких мест». С другой стороны, разработчики должны точно знать, что они делают – например, при работе с памятью. Интерфейс OpenGL не так популярен, как DirectX, но позволяет выжать больше.

    Интерфейс API Vulkan в версии 1.0 поддерживается под Windows 7, Windows 8.1, Windows 10, Android и Linux. Разработчики игр пока что не объявили о поддержки в конкретных играх, но здесь стоит дождаться Games Developer Conference, которая будет проводиться с 14 по 18 марта в Сан-Франциско. Из игровых движков пока есть информация о Source 2, который уже поддерживает API Vulkan. Процесс отладки облегчается поддержкой Valve, LunarG и Codeplay.

    The Talos Principle

    Хорошо, но какая игра или движок поддерживают API Vulkan? Игра The Talos Principle разрабатывалась компанией Croteam, которая и в прошлом была известна поддержкой многих графических API. И в последней итерации игра The Talos Principle не стала исключением – она поддерживает DirectX 9, DirectX 11, OpenGL и теперь Vulkan. Для студии разработчиков Vulkan является пробным шаром, хотя API Vulkan доступен в версии 1.0, поддержка пока находится в бета-стадии. На добавление поддержки разработчики Croteam затратили порядка трех месяцев. Но универсальный характер API позволяет вскоре представить вариант Linux.

    API Vulkan теоретически совместим с несколькими платформами – но пока что тесты и сравнения можно провести только под Windows, причем здесь имеются свои ограничения. Реализация пока остается на очень раннем этапе. Путь рендеринга DirectX 11 совершенствовался многие годы, поэтому потенциала для оптимизации здесь уже нет. Здесь ситуация больше зависит от разработчиков драйверов, а именно AMD и NVIDIA. Игра The Talos Principle стала первой с поддержкой Vulkan. Поэтому пока нет возможности сделать сравнительный тест для оценки хорошей или плохой реализации поддержки.

    Новые технологии первое время реализуются в примерах, подготовленных производителями. В случае DirectX 12 акцент был выставлен на Draw Calls, тот же тест 3DMark DirectX 12 опирается только на измерение производительности Draw Calls, игры DirectX 12, подобные Star Wars, тоже пытаются задействовать подобную нагрузку. Но The Talos Principle не так сильно зависит от высокой скорости Draw Call, чтобы низкоуровневый API дал большую разницу.

    Поддержка API Vulkan версии 1.0 находится на ранней стадии, то же самое касается драйверов AMD и NVIDIA. Оба драйвера, по сути, относятся к бета-версиям, именно так их рассматривают производители GPU. Здесь обычно нет новых улучшений производительности или поддержки новых технологий, так что мы получаем шаг назад. Но как только определенный уровень разработки будет достигнут, драйверы обоих разработчиков GPU получат поддержку Vulkan в финальной версии. Когда это произойдет – не совсем понятно. Но пока ключевые приложения не используют Vulkan и игры с поддержкой API находятся в состоянии бета-версии, так что разработчики GPU могут спокойно дорабатывать свои драйверы.

    Для тестов мы взяли нашу тестовую систему для видеокарт. Драйверы видеокарт AMD и NVIDIA мы уже описали выше. В настройках мы выставили максимальный уровень графики, но при этом протестировали и низкие разрешения вплоть до 1.280 x 720 пикселей, чтобы увеличить производительность Draw Call.

    Тест The Talos Principle - 1.280 x 720 пикселей

    Тест The Talos Principle - 2.560 x 1.440 пикселей

    Тест The Talos Principle - 3.840 x 2.160 пикселей

    Как можно видеть по результатам, API Vulkan дает существенный прирост по сравнению с OpenGL. Но до производительности DirectX 11 новый API не дотягивает. Тому есть несколько причин. С одной стороны, разработка под Vulkan находится в ранней стадии. Это касается и самого API, и драйвера, и игры The Talos Principle. По сравнению с OpenGL новый интерфейс позволяет освободить часть ресурсов и избежать «узких мест». Но DirectX много лет совершенствовался до текущего уровня. В любом случае, потенциал у API Vulkan очень хороший.

    Если погрузиться в детали, то визуальных отличий между API Vulkan и DirectX 11 мы не обнаружили. Так что путь рендеринга очень хорошо адаптирован. У текущей реализации The Talos Principle видеокарты с 2 Гбайт памяти получают падение производительности, вероятно, из-за не самой эффективной работы с памятью. Как и Mantle и DirectX 12, API Vulkan может обращаться к ресурсам памяти на более глубоком уровне – сей факт можно рассматривать как преимущество, но он может стать и недостатком, если разработчики не смогут эффективно использовать память.

    Несколько разочаровала ошибка в текущем драйвере NVIDIA, из-за которой после каждого теста приходилось перезагружать систему. Без перезагрузки игра «вылетала». Хотя с драйвером AMD мы не обнаруживали подобной ошибки.

    Нынешняя реализация API Vulkan кажется обещающей. Пока что для игр на настольных ПК она будет не такой актуальной, поскольку рынок DirectX 11 и 12 очень велик, и по сравнению с тем же DirectX 12 затраты на реализацию могут быть слишком велики, а отдача слишком мала. Но если игры необходимо запускать на разных платформах с разными аппаратными требованиями, Vulkan может сыграть важную роль. В любом случае, следует дождаться реакции со стороны разработчиков игр, иначе мы получаем проблему курицы и яйца, из которой сложно выйти.

    На WWDC 2014 всех нас ждал сюрприз: анонс нового графического 3D API под названием Metal. Но на этот раз мы имеем дело не с новым высокоуровневым API поверх OpenGL ES (как было в случае с Scene Kit), а с новым низкоуровневым API для рендеринга и вычислений, которое может служить заменой OpenGL в играх. По словам Apple, Metal может быть до 10 раз быстрее, чем OpenGL ES (точнее говоря - может генерировать вызовы отрисовки [draw calls ; передача данных на GPU] в 10 раз быстрее) и доступен только на устройствах с iOS и процессором последнего поколения A7.

    Этот анонс спровоцировал новую волну обсуждения и споров насчет необходимости появления новых графических API, которые должны (или не должны - кто знает) заменить OpenGL. Предлагаемый вашему вниманию пост не намерен участвовать в этой дискуссии – его целью является разъяснение того, чем все-таки Metal отличается от OpenGL ES, чьей заменой он является. Чтобы понять, что такого особенного (или же наоборот, ничего особенного) есть в Metal API, нам придется немного заглянуть под «капот» графических API и GPU.

    Как работают GPU и графические API
    Наивный читатель может предположить, что вызов API напрямую делает что-то на GPU или позволяет чему-то происходить внутри GPU. Еще более наивный читатель предполагает, что GPU заканчивает обработку этого вызова, когда API возвращает результат. Оба этих утверждения далеки от реальности. Если бы драйвер выполнял команды рендеринга в тот же момент, когда они были созданы и ждал бы завершения процесса рендеринга перед возвращением результата в вызов API, то ни CPU, ни GPU не могли бы работать эффективно, поскольку один из процессоров всегда был бы заблокирован в угоду другому.

    Для простого улучшения в работе GPU этот процесс стоит запустить асинхронно; тогда GPU не будет блокировать CPU и вызовы API будут возвращать результат почти мгновенно. В этом случае GPU возможно не будет использоваться на все 100%, поскольку ему возможно придется ждать от CPU новых вызовов рендеринга (= начала кадра), в то время как вызовы остальных команд будут ждать завершения предыдущих. Это становится причиной того, почему большинство графических драйверов собирают все вызовы отрисовки (и другие задачи, которые нужно будет выполнить на GPU - например, изменение состояний) для отрисовки всего кадра перед отправкой его на GPU. Эти буферизованные команды будут затем отосланы обратно после того, как будет получена команда для отрисовки следующего кадра, благодаря чему GPU будет использоваться настолько эффективно, насколько это возможно. Конечно, это добавит один кадр задержки: пока CPU будет создавать задание для текущего фрейма, прошлый фрейм будет рендериться на GPU. На самом деле, можно буферизовать больше одного кадра и таким образом добиваться большей частоты смены кадров - за счет еще большей задержки.

    Другая ошибка в нашем наивном предположении состоит в предположении о том, чем занимаются вызовы изменения состояний.

    Итак, мы узнали как минимум две важные вещи о том, что происходит за сценой совместной работы OpenGL с современными GPU: изменение состояний может быть сложным, если требуется новая комбинация состояний и все операции на GPU будут задержаны на некоторое количество времени.

    В приложении, один поток актуальных команд для одного кадра, которые надо выполнить на GPU, формируется и отправляется на GPU сразу весь за один раз (на самом деле все немного сложнее, но давайте не будет пока углубляться).

    Подробнее прочитать о том, как работает современный пайплайн компьютерной графики вы можете в серии статей Fabian Giesens - “A trip down the Graphics Pipeline “.

    Почему у другой программной модели могут быть преимущества
    Как вы уже увидели, от программиста спрятано огромное количество сложностей и хитрых трюков (их наверняка еще больше, чем я упомянул), которые прячут то, что непосредственно происходит. Одни из них делают жизнь простого разработчика проще, другие - заставляют его искать способы обхитрить драйвер или «копать» в сторону побочных эффектов работы вызовов API.

    Некоторые графические API сегодня пытаются убрать большую часть этих трюков, раскрывая скрываемую ими «запутанность» – и в некоторых случаях оставляя на волю программы решение всех связанных проблем. В этом направлении шли графические API PS3, в нем же идет AMD со своим Mantle, туда же собираются грядущие DirectX 12 и Apple Metal.

    Что же изменилось?
    Буферы команд теперь открыты и приложение должно заполнять эти буферы и отправлять их в очередь команд, которая будет выполнять эти буферы в заданном порядке на GPI - таким образом приложение будет иметь полный контроль над заданием, отправляемым на GPU, и определять, сколько кадров задержки необходимо добавить (добавляя задержку, но при этом увеличивая степень используемости GPU). Буферизация команд на GPU и отправка их асинхронно в следующий фрейм должна быть реализована самим приложением.

    Поскольку становится ясно, что эти буферы не будут выполняться прямо сразу (то есть во время создания) и что множественные буферы могут быть созданы и добавлены в очередь на выполнение в определенном порядке, приложение может позволить себе их построение в нескольких потоках в параллели. Также для программиста становится более очевидным, какие из результатов вычислений уже доступны, а какие - нет.

    Изменения состояний теперь организованы в объекты состояний, которые могут просто переключаться, в то время как создание этих объектов будет обходиться дороже. Например, MTLRenderPipelineState содержит шейдеры и все состояния, которые реализованы их патчингом.

    Другой плюс от нового API в том, что оно не обязано нести груз совместимости с предыдущими версиями и поэтому не будет таким консервативным.

    Есть нюанс и в заточке под A7 - благодаря ему Metal заточен под работу на системах с общей памятью, т.е. CPU и GPU могут получать прямой доступ к одним данным без необходимости перебрасывать их по шине PCI. Metal дает прямой доступ для программы к буферам из CPU, и ответственность за то, что эти данные не используются одновременно и GPU, ложится на плечи программиста. Эта полезная функция позволяет смешивать произведение вычислений на GPU и CPU.

    И как это в 10 раз быстрее?
    Каждый вызов отрисовки стоит сколько-то времени на CPU и сколько-то времени на GPU. Metal API уменьшает время, затрачиваемое CPU, благодаря упрощению контроля за состояниями и благодаря этому уменьшению числу проверок на ошибки от драйвера на правильность комбинаций состояний. Еще помогает предварительное вычисление состояний: можно не просто выполнять проверку на ошибки во время билда, но и само изменения состояния потребует меньшее количество вызовов API. Возможность параллельного построения буферов команд еще больше увеличивает число вызовов отрисовки в том случае, если приложение привязано к CPU.

    А вот рендеринг на GPU с другой стороны быстрее не становится, приложение которое делает совсем немного вызовов отрисовки для больших мешей (меш - часть модели, состоящая из вершин объекта] не получит никакого преимущества от перехода на Metal.

    Может ли то же самое быть сделано на OpenGL?
    На GDC 14 была отличная презентация “Approaching Zero Driver Overhead ” за авторством Cass Everitt, John McDonald, Graham Sellers и Tim Foley. Основной ее идеей было уменьшение работы драйвера в OpenGL при помощи увеличения количества работы, производимым вызовов отрисовки, и использованием новых объектов GL и меньшего количества числа вызовов GL для повышения эффективности.

    Эта и другие идеи потребуют дальнейшего расширения OpenGL и появления новых версий этого API, но многое из этого можно будет перенести в OpenGL ES. Что мы потеряем - так это возможность прямого управления командными буферами, со всеми своими «за» и «против».

    Какова вероятность увидеть это в будущем? Из-за поддержки обратной совместимости, остается надеяться только на появление некоего набора функций, который можно будет назвать «современное ядро», но и его скорее всего придется сделать совместимым со всем вплоть до оригинальной функции glBegin(). Это ограничение будет действовать на протяжении всего потенциального будущего OpenGL и станет пределом его эволюции, делая альтернативы вроде Metal API все более предпочитаемыми…

    Теги:

    • Metal API
    • Apple
    • opengl
    Добавить метки

    Программная оптимизация

    Аппаратное или программное ускорение

    Однопроходная или мультипроходная визуализация

    В различных видеоадаптерах применяются разные технологии визуализации. В настоящее время практически во всех видеоадаптерах фильтрация и основная визуализация выполняются за один проход, что позволяет увеличить частоту кадров. Видеоадаптеры с функцией однопроходной визуализации и фильтрации обычно являются более быстродействующими при работе с трехмерными программами и позволяют избежать искажений, вызванных ошибками в множественных вычислениях значений с плавающей запятой во время визуализации.

    При аппаратно выполняемой визуализации достигается гораздо лучшее качество изображений и скорость анимации, чем при программной. Используя специальные драйверы, новые видеоадаптеры выполняют все нужные вычисления с неслыханной ранее скоростью. Для работы с приложениями трехмерной графики, а также для современных игр это технологическое решение просто неоценимо.

    Следует подчеркнуть, что наличие у видеоадаптера расширенных функций трехмерной визуализации совершенно бесполезно до тех пор, пока разработчики игр и программных приложений не оптимизируют свои продукты для использования всех преимуществ таких функций.

    Для увеличения быстродействия необходимо настроить параметры оптимизации OpenGL, Direct 3D, RAMDAC , тактовые частоты и другие параметры.

    Благодаря API (Application Programming Interface) разработчикам аппаратного и программного обеспечения предоставляются средства создания драйверов и программ, работающих быстрее на большом количестве платформ.

    Программные драйверы разрабатываются для взаимодействия непосредственно с API, а не с операционной системой и программным обеспечением.

    В настоящее время существует два графических API - OpenGL (компания SGI) и Direct 3D (Microsoft) .

    Контрольные вопросы.

    1. Какие основные типы видеосистем применяются в ЭВМ?

    2. Дайте определение видеоадаптер, какие виды видеоадаптеров существуют?

    3. Какие типы масок существуют?

    4. Для чего необходимо размагничивание в мониторах на ЭЛТ?

    5. Какое излучение действует на здоровье в мониторах на ЭЛТ?

    6. Какие ядовитые вещества используются в мониторах на ЭЛТ?

    7. Какие основные технические характеристики применяются для ЖК мониторов?

    8. Перечислите технологии ЖК мониторов?

    9. Какая конструкция плазменных панелей?

    10. Какие преимущества OLED мониторов в сравнении c LCD -дисплеями?

    11. Из каких частей состоит видеокарта?

    12. Какие виды видеопамяти применяются в видеокартах?

    13. Для чего нужен 3D ускоритель?

    14. Какие технологии трехмерной графики существуют?



Рекомендуем почитать

Наверх