Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений. Устройство защиты от импульсных перенапряжений: применение и схема монтажа

Для Андроид 23.07.2019
Для Андроид

Скачки напряжения пагубно влияют не только на электронику, но и на любую электротехнику в целом. Поэтому для защиты бытовых электроприборов требуется установка различных защитных устройств: ведь перепады напряжения могут вызвать различные неисправности. Одним из самых опасных видов считается импульсное перенапряжение, которое возникает по следующим причинам:

Для защиты от данного вида перенапряжений в быту и на производстве широко применяется специальное устройство УЗИП или ограничитель импульсных перенапряжений (ОПС).

Общая информация

Такое устройство защиты предназначено для установки в низковольтные (до 1000 В) силовые сети бытового и промышленного назначения. УЗИП обладает следующими достоинствами:

  • Техническая совершенность;
  • Эффективность и надежность защиты;
  • Невысокая стоимость.

Эти факторы позволяют установить устройство в каждом доме или квартире, и обеспечить надежную защиту всего электрооборудования от импульсных скачков напряжения.

Принцип работы

Основным элементом УЗИП является варистор, который выполнен из специального проводника. Уникальность разработки заключается в способности варистора пропускать электроток при многократно возросшем напряжении. При возникновении импульса сопротивление варистора падает до сотых долей Ома. В результате этого происходит шунтирование нагрузки, преобразование и рассеивание поглощенного импульса в виде тепловой энергии (нагревание корпуса).

Важно! Проводящий элемент варистора теряет свои характеристики после двух-трех разрядов молнии.

В большинстве моделей предусмотрено индикаторное окно, через которое можно визуально определить, является ли варистор работоспособным. Также в устройство защиты установлен предохранитель от сверхтоков.

Классификация

Нормативные акты предписывают установку трехуровневой защиты от импульсных перенапряжений. Для этого выпускаются и применяются УЗИП трех видов:

  1. Класс B. Устройство этого типа устанавливается на ВРУ или ГРЩ и предназначено для выравнивания входящего потенциала при прямом попадании молнии или возникновении коммутационных перенапряжений. При воздушном вводе и наличии громоотвода установка этого типа УЗИП обязательна;
  2. Класс C устанавливается на вводе в местах, где отсутствует вероятность прямого грозового разряда и при подземном вводном кабеле. Также такое устройство рекомендуется для подключения в качестве второго уровня защиты в жилых помещениях. В этом случае УЗИП обеспечивает защиту внутренней проводки, коммутационных соединений и розеточных групп от остаточного перенапряжения;
  3. Класс D предназначен для монтажа во внутренних электрощитах или непосредственно перед потребителем (электроприбором). Выполняет функцию защиты потребителей от остаточного перенапряжения, прошедшего предыдущие ограничители.

Ограничители перенапряжения D класса отличаются компактными размерами и могут быть выполнены в различном исполнении. Часто их устанавливают в распределительных коробках или на отдельную розеточную группу, к которой подключены электронные приборы.

Наиболее популярными считаются ограничители серии ОПС1, которым отдают предпочтение профессиональные электромонтажники. Рассмотрим эти устройства более подробно.

Серия ОПС1

Ограничительное устройство ОПС1 производится всех трех классов защиты: B, C, и D.

Для чего нужны защитные устройства?

ОПС1 способно защитить любое электрооборудование. Благодаря компактным размерам такое устройство подходит для установки и подключения в обычном электрощите квартиры, коттеджа или офиса. Установка УЗИП в таких помещениях поможет спасти дорогостоящую технику и компьютерное оборудование. В загородных коттеджах, оборудованных системой «умный дом» монтаж ОПС1 предписывается инструкцией производителя, поскольку электронная начинка очень чувствительна к импульсным перенапряжениям. Также подобная защита требуется любым автономным системам жизнеобеспечения, наблюдения и безопасности.

Поэтому такое устройство устанавливается не только в частном секторе и городских квартирах, но и в административных, офисных, коммерческих и других зданиях.

Особенности конструкции и характеристики

ОСП1 имеет стандартные размеры и модульное исполнение: это позволяет без проблем установить устройство на DIN-рейку. При этом прибор может иметь от 1 до 4 сменных модулей (в зависимости от класса). Сменный модуль (отработанный варисторный разрядник) легко заменяется новым: для этого в центре корпуса предусмотрены направляющие, в которые и вставляется новый модуль. Это позволяет быстро произвести замену без отключения проводов и демонтажа всего устройства.

Применяемый в модуле варистор изготавливается из керамической смеси и окиси цинка, с добавлением специальных примесей для получения уникальных запирающих свойств. Также в каждом блоке предусмотрена защита от повышенной токовой нагрузки.

Для контроля работоспособности сменного блока предусмотрено окно с цветным указателем состояния. Для обеспечения надежного контакта на зажимах (клеммах) выполнены насечки, обеспечивающие большую площадь соприкосновения. Это автоматически уменьшает сопротивление самого контакта.

В зависимости от класса защиты и производителя, ограничители перенапряжения имеют такие характеристики:

  • Класс защиты – IP;
  • Разрядный ток имеет форму 8/20 мкс;
  • Номинальное напряжение составляет 230–400 В;
  • Время срабатывания составляет не более 25 нс;
  • Напряжение защищаемой линии: от 1 до 2 кВ;
  • Максимальный разряд, который способно выдержать устройство: 10 – 60 кА.

Чтобы подключить устройство защиты, используются медные или алюминиевые провода сечением от 4 до 25 мм 2

Обратите внимание! При подключении ОПС1 важно соблюдать полярность. Для этого все клеммные зажимы на корпусе прибора имеют маркировку, какой провод следует подключить в этот разъем.

Схема подключения

Теперь давайте рассмотрим, что представляет собой схема подключения УЗИП в энергосеть на примере частного дома.

На примере показано, как правильно выполнить подключение ограничителей перенапряжения зонально: такая схема признана наиболее эффективной. Именно концепция трехступенчатой защиты с размещением УЗИП внутри помещения нашла наибольшее применение на практике. При этом важно для каждой зоны устанавливать соответствующий класс ограничителя.

Обратите внимание! При монтаже ОСП1 важно выдерживать правильное расстояние между приборами: между ними должно быть минимум 10 метров.

Зональная концепция защиты

Согласно принятым МЭК стандартам, любой объект, оборудованный электропроводкой, подразделяется на условные зоны. Деление (или классификация зон) осуществляется на основании теоретического воздействия грозового разряда: прямого или непрямого. С этой точки зрения выделяют несколько зон:

  • 0A: все точки электролиний в этой зоне подвержены прямому контакту с каналом молнии или грозовым разрядом, а также электромагнитным полем, возникающим вследствие этого природного явления;
  • 0B: эта зона относится к внешней среде дома или другого объекта, не попадающая под непосредственный контакт с молнией. Обычно эта зона надежно защищена правильно установленным молниеотводом. Стоит учитывать, что эта область подвержена воздействию сильнейшего электромагнитного поля;
  • Зона 1 относится к внутренней области здания. В этой области все точки электролинии не подвержены прямому удару молнии. Вследствие этого значение разрядного тока, проходящего через эту зону значительно ниже, чем во внешних областях. За счет экранирования стенами здания электромагнитного поля, его воздействие также снижено.

Деление на последующие внутренние области (зона 2, 3 и так далее), происходит в случае необходимости дальнейшего рассеивания импульсных токов или электромагнитного поля. Такое проектирование практикуется при необходимости размещения в этих зонах чувствительного электрооборудования или электронных устройств. Для каждой последующей области характерно уменьшение разрядного тока и влияния (мощности) электромагнитного поля.

Подводим итоги

Из этой статьи мы узнали назначение и конструктивные особенности ограничителей перенапряжений, важность их правильной установки. Также рассмотрели их классификацию, принцип работы и ознакомились с зональной концепцией защиты зданий и объектов.

В современном доме находится немалое количество бытовой техники, приборов и электроники. При этом большинство частных домов получают энергию с помощью воздушной линии электропередачи (ЛЭП). В такой ситуации имеет смысл устройство защиты от импульсных перенапряжений, возникающих в сети при ударах молнии.

Ужасно выглядит удар молнии в дом

Причины возникновения и характер импульсов перенапряжения

Многие пожилые люди, покидая свое жилище на продолжительный срок, по старинке вынимают из розеток шнуры всех электроприборов, опасаясь молнии. В настоящее время линии электропередач относительно защищены от атмосферных воздействий, а в бытовой электронике имеется элементарная защита от импульсов напряжением до нескольких тысяч вольт.

Таким образом, в многоквартирном доме, к которому электроснабжение подается подземным кабелем, проблема защиты от грозы в значительной степени решена.

В случае энергоснабжения по воздуху необходимо принимать комплексные меры по защите от удара молнии.

Негативное воздействие атмосферного электричества может возникать:

  • при ударе молнии непосредственно в линию электропередачи рядом с домом, что приводит к возникновению импульса 10/350мкс (первое значение – время роста импульса, второе – время спада);
  • при попадании молнии в ЛЭП на дальнем расстоянии и образовании волны с характеристикой 8/20мкс;
  • при грозовом разряде в непосредственной близости и наведении на линию электропередачи электромагнитного импульса.

Варианты схем удара молнии

Классификация защиты от импульсов перенапряжения


Знакомые всем искровые разрядники

Заметим, что высоковольтные импульсы в сети могут также возникать в результате аварии на электрической подстанции или обрыва нулевого провода в трехфазной сети. В результате перечисленных воздействий отказывает бытовая техника, а также электрические коммутационные приборы. Если изоляция проводки в доме будет пробита, произойдет короткое замыкание, возгорание и пожар.


Вентильные разрядники на электрической подстанции

Основу ограничителя перенапряжения составляет варистор, то есть резистор, сопротивление которого меняется в зависимости от приложенного напряжения. ОПН более надежны, имеют меньшие размеры. В конкретной ситуации имеется возможность установить ограничители импульсного перенапряжения с наиболее подходящей характеристикой.

В низковольтных сетях, которые обеспечивают питание жилых домов, используют устройства защиты от импульсных перенапряжений (УЗИП). Эти малогабаритные приборы модульного типа делятся на три класса и могут быть применены владельцами жилья в собственных домах и квартирах.


Модульные УЗИП для монтажа в электрощите

Устройства I класса устанавливаются на вводном щите жилого дома. Они предназначены для защиты от близких ударов молнии (до 1,5км) и пропускают через себя токи от 25 до 100 тысяч ампер с характеристикой импульса 10/350мкс. УЗИП II класса монтируются в распределительном щите в качестве второй ступени защиты от удара молнии и пропускают через себя токи 10-40 тысяч ампер с характеристикой импульса 8/20мкс.

Устройства III класса гасят импульсы с характеристикой 8/20мкс и рассчитаны на токи до 10 кА. Они устанавливаются непосредственно у электроприборов. По конструктивному исполнению УЗИП III класса могут изготавливаться в виде модулей и монтироваться на din-рейку, а также встраиваться в розетку или в вилку потребителя энергии.

Нужна ли установка УЗИП в Вашем случае?


Стандартная электрическая схема подключения УЗИП в трехфазной сети

Классическая схема подключения УЗИП предусматривает последовательную установку устройств всех трех классов. Если ограничиться только устройством класса I, то оно может не сработать при относительно слабых импульсах. Наоборот, самое чувствительное УЗИП класса III не выполнит свою задачу при мощном воздействии.

Существуют стандарты и методики для расчета степени риска удара молнии и оценки последствий. В общем виде УЗИП класса I можно не устанавливать, если опоры линии электропередачи имеют заземление, заземлен нулевой провод, установлен громоотвод, и реализована система выравнивания потенциалов.

Однако, не обладая специальными знаниями в области электроснабжения, куда проще обеспечить стандартную схему защиты от импульсных скачков напряжения.

При этом в любом случае отрицательное воздействие грозового разряда сильно снижается при установке громоотвода. Если Вы этого еще не сделали, читайте статью

Как работают различные виды УЗИП

Устройства защиты от импульсных перенапряжений используют в своей конструкции разрядники или полупроводниковые приборы – варисторы. Последние нагреваются при срабатывании и плохо работают при повторении высоковольтных воздействий. Варистор должен остыть, чтобы вернуться в рабочее состояние. УЗИП модульного типа часто имеют индикаторы работоспособности и могут быть заменены при выходе из строя.


Электрическая схема работы УЗИП

При нормальном напряжении в сети ток проходит по проводникам к нагрузке. Во время скачка напряжения разрядник открывается и пропускает ток на землю. После возвращения напряжения в сети к рабочим значениям, элементы УЗИП снова закрываются, и электроснабжение протекает в обычном режиме.

Во время срабатывания устройства защиты через него протекает ток до десятков тысяч ампер. При этом выделяется большое количество энергии, то есть тепла.

Устройство защиты от импульсных скачков напряжения своими руками


Пример монтажа УЗИП в электрощите

Защита от грозовых перенапряжений может быть выполнена своими руками. УЗИП модульного типа устанавливают в вводном щите с корпусом из металла. При этом следует применять устройство, номинальный рабочий ток которого не меньше величины, ограниченной входным автоматом. Также напряжение ограничения УЗИП не должно быть ниже допустимого в Вашей сети.

УЗИП класса I подключается после входного автомата в однофазной или трехфазной сети. Сверху к устройству подводятся защищаемые линии электроснабжения, снизу – заземление. Ниже приводится вариант электромонтажной схемы подключения УЗИП класса I в однофазной сети.


Электромонтажная схема подключения УЗИП в однофазной сети

УЗИП класса II монтируется в распределительном щите внутри дома. Устройство защиты третьего класса устанавливается непосредственно у потребителей. Если ступени устройства защиты находятся рядом, между ними необходимо включать дроссели для согласования. В противном случае УЗИП с большей чувствительностью примет весь ток нагрузки на себя. Если расстояние между приборами защиты более 10м, роль дросселей выполнит электропроводка.

Тема выбора и подключения устройств защиты от грозовых перенапряжений не является простой для неспециалистов. В любом случае оставшиеся вопросы можно разрешить при помощи видеоролика.

Классификация и применение УЗИП

Для защиты домашней электрики и электроники существует специальный класс приборов. Устройства такого типа называют двояко: устройства защиты от импульсных перенапряжений (УЗИП) или ограничитель импульсных перенапряжений (ОПС) .

Как защищаться?

Для надежной защиты домашней электропроводки необходимо построить многоуровневую (по крайней мере, трехступенчатую) систему защиты из УЗИП разных классов. Их применение регламентирует ГОСТ Р 51992-2002 (МЭК 61643-1-98). Согласно этому ГОСТУ существуют три класса таких устройств.

УЗИП класса I(B)

Предназначены для защиты от прямых ударов молнии в или . Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Нормируются импульсным током I imp с формой волны 10/350 мкс. Номинальный разрядный ток 30-60 кА.

УЗИП класса II(C)

Такие устройства защиты от импульсных перенапряжений п редназначены для защиты токораспределительной сети объекта от коммутационных помех или как вторая ступень защиты при ударе молнии. Устанавливаются в распределительные щиты. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток 20-40 кА.

УЗИП класса III(D)

Такие устройства защиты от имупльсных перенапряжений п редназначены для защиты потребителей от остаточных бросков напряжений, защиты от дифференциальных (несимметричных) перенапряжений (например, между фазой и нулевым рабочим проводником в системе TN-S), фильтрации высокочастотных помех.

Устанавливаются непосредственно возле потребителя. Могут иметь самую разнообразную конструкцию (в виде розеток, сетевых вилок, отдельных модулей для установки на DIN-рейку или навесным монтажом). Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток 5-10 кА.

Устройство УЗИП

) построены на базе разрядников или варисторов и часто имеют индикаторные устройства, сигнализирующие о выходе УЗИП из строя. Недостатком УЗИП на базе варисторов является то, что сработав один раз им необходимо остыть, чтобы снова прийти в рабочее состояние. Это ухудшает защиту при многократном ударе молний.

Обычно УЗИП на базе варисторов изготавливаются с креплением на DIN рейку. Сгоревший варистор можно заменить простым извлечением модуля из корпуса УЗИП и установкой нового.

Практика применения

Для надежной защиты объекта от воздействия перенапряжений, в первую очередь необходимо создать эффективную систему заземления и уравнивания потенциалов. При этом нужно перейти на системы заземления TN-S или TN-CS с разделёнными нулевым и защитным проводниками.

Следующим шагом должна стать установка защитных устройств. При установке УЗИП необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 метров по кабелю электропитания. Выполнение этого требования очень важно для правильной последовательности срабатывания защитных устройств.

Если для подключения применяется воздушная линия, во входном щите на столбе лучше использовать УЗИП на основе разрядников и плавкие вставки. В главном щите здания ставятся варисторные УЗИП класса I или II, а в щитках на этажах ставятся УЗИП III класса. Если необходимо дополнительно защитить оборудование, то в розетки включаются УЗИП в виде вставок и удлинителей.

Выводы

В заключении следует сказать, что все перечисленные меры, конечно, снижают вероятность поражения РЭА и людей повышенным напряжением, но не являются панацеей. Поэтому в случае грозы лучше отключать наиболее ответственные узлы, если это конечно возможно.

УЗИП (Устройства защиты от импульсных перенапряжений), или как их еще называют, ограничители импульсных перенапряжений применяются для защиты сетей от грозовых, коммутационных и электростатических импульсных перенапряжений.

Попадание грозового разряда в сеть способно вызвать пробой изоляции даже на значительных расстояниях от места разряда, что соответственно повлечет за собой выход из строя электробытовых приборов (компьютеров, телевизоров, стиральных машин и т.д.). Чтобы уберечь технику от таких фатальных последствий и применяют УЗИП, который благодаря своему устройству гасит импульсы перенапряжений до безопасной величины. Конечно, помимо УЗИП, для полной защиты в доме должно быть выполнено защитное заземление по системе TN-C-S, TN-S или ТТ с разделёнными нулевым и защитным проводниками, система молниезащиты, .

  • Ограничители класса В – предназначены для защиты объектов от непосредственного удара молнии, атмосферных и коммутационных перенапряжений. Устанавливают на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Номинальный разрядный ток 30-60 кА.
  • Ограничители класса С – предназначены для защиты электрооборудования объектов от остатков атмосферных и коммутационных перенапряжений, прошедших через ограничители класса В. Устанавливают в распределительных щитах. Защищают внутреннюю проводку, автоматику и т.д. Номинальный разрядный ток 20-40 кА.
  • Ограничители класса D – предназначены для защиты потребителей от остатков атмосферных перенапряжений, фильтрации высокочастотных помех, защиты от дифференциальных (несимметричных) перенапряжений.Устанавливаются непосредственно возле потребителя. Номинальный разрядный ток 5-10 кА.

Конструктивно большинство УЗИП класса C и D выполнены на базе варисторов, УЗИП класса B на основе разрядников.

Варисторы обычно выполнены в виде сменного модуля. Помимо этого, УЗИП оснащен механическим предохранителем, который является по сути тепловой защитой и цветовым индикатором состояния. Зеленый цвет индикатора сигнализирует об исправности элемента, оранжевый — о необходимости замены элемента.

Рис.1 1 - Корпус 2 - Варисторный модуль 3 - Индикатор работы устройства 4 - Предохранитель в виде металлической пластины

Принцип действия УЗИП

При отсутствии импульсных напряжений ток через варистор пренебрежимо мал и поэтому варистор в этих условиях представляет собой изолятор. При возникновении импульса перенапряжения варистор в силу нелинейности своей характеристики резко уменьшает свое сопротивление и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. Тепловой излишек сбрасывается в землю, через защитный проводник РЕ (заземление). Через варистор кратковременно может протекать ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после прохождения импульса тока он вновь приобретает очень большое сопротивление.

При выборе защитных устройств обращайте внимание на следующие параметры:

  1. Номинальное рабочее напряжение. (Un) Это номинальное действующее напряжение сети, для работы в которой предназначено защитное устройство.
  2. Максимальное рабочее напряжение. (Uc) Это наибольшее действующее значение напряжения переменного тока, которое может быть длительно приложено к выводам защитного устройства.
  3. Классификационное напряжение. Это действующее значение напряжения промышленной частоты, которое прикладывается к варисторному ограничителю для получения классификационного тока (обычно значение классификационного тока принимается равным 1,0 мА).
  4. Номинальный разрядный ток. (In) Это пиковое значение испытательного импульса тока формы 8/20 мкс, проходящего через защитное устройство. Ток данной величины защитное устройство может выдерживать многократно. Используется для испытания УЗИП класса II. При воздействии данного импульса определяется уровень защиты устройства.
  5. Максимальный разрядный ток. (Imax) Это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.
  6. Уровень напряжения защиты. (Up) Это максимальное значение падения напряжения на защитном устройстве при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального разрядного тока (In).
  7. Время срабатывания. Для оксидно-цинковых варисторов его значение обычно не превышает 25 нс. Для разрядников разной конструкции время срабатывания может находиться в пределах от 100 наносекунд до нескольких микросекунд.

Существуют различные причины, по которым появляются перепады напряжения. Среди них такие, как грозы, появление перехлестов провода, работы сварочного характера, помехи в сети электропитания и различные ситуации аварийного характера.

С целью защиты электрической проводки дома и работающих в нем приборов-потребителей созданы специализированные устройства. Именно эти устройства и имеют название «устройства защиты от импульсных перенапряжений» (сокращенно УЗИП).

Наиболее надежным образом домовая сеть защищается при помощи использования сразу нескольких уровней защитной системы, собранной из устройств разных классов.

В большинстве случаев такая защита состоит из трех ступеней. Существует специальный ГОСТ (Р 51992-2002 (МЭК 61643-1-98)), который и регламентирует деление таких устройств на три класса.

Классы УЗИП

Класс I (В). Устройства, принадлежащие к этому классу, защищают от прямых попаданий разряда молнии в строения, либо воздушные электросети. Монтаж этих устройств выполняют прямо в ВРУ, либо ГРЩ там, где кабель входит в здание. Эти устройства рассчитаны на разрядный ток порядка 30-60 килоАмпер.

Второй класс (С). Эти приборы предназначены для защиты сетей токораспределения объектов от появления помех коммутации. Они способны работать в качестве второй защитной ступени от попадания молнии. Их устанавливают в распредщите, а их ток разряда по номиналу 20-40 килоАмпер.

Класс III (D). Блоки, представляющие из себя защитные устройства этого класса, устанавливают прямо перед прибором-потребителем. По конструкции такие устройства могут быть самыми разными (розетка, вилка, отдельно монтируемый модуль, либо устройство навесного монтажа). Ток их разряда не превышает 5-10 кА.

Главным элементом построения таких устройств явился варистор или разрядник. Кроме того, в состав этих устройств входит устройство-индикатор, способное сообщить о том, что УЗИП вышел из строя.

Из отрицательных показателей этих «защитников» следует отметить тот, что они нагреваются при сработке, что стало причиной того, что им необходимо время для остывания, а это сильно уменьшает селективность работы устройства.

Монтируют такой прибор на , варистор же, вышедший из строя, легко меняется методом удаления последнего из корпуса.

Чтобы добиться защиты потребителя от ненужных воздействий в хорошем качестве, требуется обеспечение строений эффективными системами заземлений и уравниванием потенциалов. С этой целью используется заземляющая система типа либо TN-CS, имеющие разделение проводников нуля и защиты.

Затем монтируют устройства защиты, расстояние между которыми (от одного класса до другого) не должно быть менее 10 метров по питающему кабелю. Только при выполнении таких условий можно обеспечить правильную сработку защитных устройств.

На воздушных линиях, в щите ввода на столбах наилучшим образом срабатывают системы, основанные на разрядниках и плавких вставках.

Главные щиты зданий хорошо защищают УЗИП первого и второго класса, основанные на варисторах, а этажные щиты – снабжаются системами третьего класса. В качестве защиты дополнительного характера, розетки снабжаются системами в виде вставок и разных удлинителей.

Наконец, хочу заметить, что устройства подобного типа значительным образом уменьшают процент выхода из строя потребителей и поражения человека высоким напряжением, хотя и не способны полностью обеспечить защиту на все сто процентов. Поэтому, во время грозы следует, по возможности, производить отключение наиболее важных потребителей от сети питания.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.



Рекомендуем почитать

Наверх