Системы и элементы систем. Классификация САУ. Воздействие на систему (переменные системы уравнения). Математические модели непрерывных динамических систем. Метод малых отклонений

Nokia 01.05.2019
Nokia

Система может быть дискретной или непрерывной по входам, по выходам и по времени в зависимости от того, дискретными или непрерывными являются множества U, Y, Т соответственно. Под дискретным понимается конечное или счетное множество. Под непрерывным будем понимать множество объектов, для которого адекватной моделью служит отрезок, луч или прямая линия, т.е. связное числовое множество. Если система имеет несколько входов и выходов, то это значит, что соответствующие множества U, Т лежат в многомерных пространствах, т.е. непрерывность и дискретность понимаются покомпонентно.

Удобство числового множества как модели реальных совокупностей объектов состоит в том, что на нем естественным образом определяются несколько отношений, формализующих реально встречающиеся отношения между реальными объектами. Например, отношения близости, сходимости формализуют понятия похожести, сходства объектов и могут быть заданы посредством функции расстояния (метрики) d(x, у) (например, d(x, у) = |х - у |). Числовые множества являются упорядоченными: отношение порядка следования (х ≤ у ) формализует предпочтение одного объекта другому. Наконец, над элементами числовых множеств определены соответствующие операции, например, линейные: х + у , х*у . Если для реальных объектов на входе и выходе также имеют смысл аналогичные операции, то естественным образом возникают требования к моделям (1) – (3): быть согласованными с этими операциями, сохранять их результаты. Таким образом, приходим, например, к линейным моделям: y = au + b , dy/dt = ay + bu и т.д., являющихся простейшими моделями многих процессов.

Как правило, дискретность множества U влечет за собой дискретность Y . Кроме того, для статических систем исчезает различие между непрерывным и дискретным временем. Поэтому классификация детерминированных систем по признакам «статические-динамические», «дискретные-непрерывные» включает шесть основных групп, представленных в таблице 2 , где для каждой группы указан математический аппарат описания систем, методы численного анализа и оценки их параметров, методы синтеза (оптимизации), а также типичные области применения.

Таблица 2

ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ СИСТЕМ

Типы систем Статические Динамические
Дискретные по U.Y Непрерывные по U.Y Дискретные по Т Непрерывные по Т
Дискретные по U, Y Непрерывные по U,Y Дискретные по U,Y Непрерывные по U, Y
Математический аппарат описания Графы, таблицы соответствий, булева алгебра Функции вещественных переменных Конечные автоматы Разностные уравнения Асинхронные автоматы, сети Петри, модели теории расписаний Обыкновенные дифференциальные уравнения
Методы оценки параметров и анализа Методы математической логики Методы интерполяции и аппроксимации Теория конечных автоматов Идентификация, теория устойчивости Методы идентификации Идентификация, численное интегрирование ОДУ
Методы синтеза Дискретное программирование, метод Куайна, карты Карно Методы оптимизации (линейное и нелинейное программирование) Динамическое программирование, методы синтеза микропрограммных автоматов Динамическое программирование, дискретный принцип максимума Динамическое программирование, теория расписаний Теория управления, методы оптимизации
Области применения Качественные модели исследования операций Количественные модели исследования операций Цифровые САУ, ГАП, логическое управление Импульсные и цифровые САУ Параллельные процессы в ЭВМ и ГАП САУ, механические, тепловые, электронные и др. процессы

Примечание: U - множество входов, Y - множество выходов системы

Модели состояния динамических систем

Модели общего вида

Важнейшую роль при описании динамических систем играет понятие состояния. Состояние - это совокупность величин (вектор) , которые определяют (вместе с входным воздействием) будущее поведение системы.

В общем случае уравнения состояния – это системы дифференциальных или разностных уравнений первого порядка вместе с уравнениями для выходных величин. Начальное состояние представляет, «память» системы о прошлом. Модель состояния непрерывной динамической системы записывается в виде

(4)

(5)

где u 1 , …, u m - входные переменные, y 1 , …, y l - выходные переменные, x 1 , …, x n -переменные состояния. Вводя векторные обозначения, можно записать (5) в более компактном виде:

(6)

где , , .

Для моделей состояния справедлив следующий факт: любая нелинейная динамическая система может быть представлена как соединение линейных динамических и нелинейных статических звеньев.

Еще более общей формой описания динамических систем являются сингулярные дифференциальные (алгебро-дифференциальные) системы

(7)

частным случаем которых являются неявные системы

(8)

Линейные модели

Часто вместо (5) используют упрощенные ММ, основанные на том, что процессы в системе протекают, мало отклоняясь от некоторой так называемой опорной траектории удовлетворяющей уравнениям

Тогда можно записать приближенную линеаризованную модель в отклонениях от этого режима:

(10)

Если расчетный режим является установившимся, т.е. не зависит от времени, то коэффициенты в (10) также не зависят от времени: A(t)=A , B(t)=B и т.д. Такие системы называются стационарными. Особенно часто на практике встречаются стационарные линейные непрерывные системы, описываемые более простыми уравнениями

, у = Сх . (11)

Матрицы А, В, С являются параметрами модели (11).

Если линеаризация приводит к большим погрешностям, то стараются, по возможности, выбрать ММ линейную по параметрам:

где А - матрица параметров порядка n × N , - нелинейная функция. К этому классу относятся, в частности, билинейные объекты.

Сказанное выше относится и к уравнениям дискретных по времени систем. Уравнения дискретной системы в общем случае имеют вид

, . (12)

Дискретным аналогом уравнений линейной стационарной системы (20) являются уравнения:

(13)

Наряду с уравнениями состояния широкое применение находят также модели в переменных «вход-выход» и модели, описываемые передаточными функциями. Для непрерывного времени уравнение «вход-выход» имеет вид

A(p)y(t)=B(p)u(t), (14)

где р = d/dt - символ дифференцирования по времени, , , причем в (14) всегда m < n . Дробно-рациональная функция называется передаточной функцией системы (14), а полином А(λ) - ее характеристическим полиномом . Если уравнение (14) получено из (11), то

(15)

Они справедливы и в случае, когда вход и выход системы (11) являются векторами, при этом - матрица. Пользуясь (15), можно показать, что замена переменных состояния в (11) по формуле , где Т - неособая n×n матрица (det T = 0), не приводит к изменению передаточной функции (15). Это значит, что обратный переход от описания «вход-выход» к уравнениям состояния (11) неоднозначен: при сохранении передаточной функции базис в пространстве состояний можно выбирать по-разному. На практике применяются несколько типовых способов перехода от передаточной функции к уравнениям состояния. Эти способы соответствуют так называемым каноническим представлениям системы. Опишем один из них, приводящий к управляемому каноническому представлению . Вместо (13) вводятся два уравнения.

(1)Системы и элементы систем

САУ - состоит из объекта управления, управления устройства взаимодействующих между собой (САП). Объект управления (ОУ) – устройство требуемое режим работы которого должен поддерживаться системой. Устройство управления – это устройство, осуществляющее воздействие на объект управления с целью поддерживания режима его работы. Система – это совокупность взаимодействующих между собой элементов. Свойство системы отличается от совокупности элементов, которые в нее входят. При анализе, синтезе систем используют математическое описание СУ. Существует 2 способа мат. описания системы уравления:1)классический – в этом случае все элементы системы описываются с помощью отдельных уравнений без учета взаимосвязи между элементами. 2)системный – в этом случае все элементы систем рассматриваются на конечное число подсистем, и рассматриваются с учетом взаимосвязи между элементом. Математическое описать систему можно 3 способами: 1)аналитический – с помощью диф. или линейных; 2)графический – диаграммы, графики; 3)табличный – график в таблице.

(2)Классификация САУ

Линейные системы – системы которые описываются линейным уравнением. Нелинейные системы – описываются нелинейными уравнениями, т.е. дифференциальными. Непрерывные системы – состояние, которое задано на всем непрерывном множестве. Дискретные системы – системы, значения выходной величины, которая существует или определена в конкретный момент времени . Непрерывно-дискретная система, у которой выходная величина на определенном участке представляет собой непрерывную величину, и на промежутке t 1 -t 2 представляет собой дискретную величину. Стационарные системы – системы, которые описываются уравнениями с постоянными параметрами (параметры не изменяются во времени). Нестационарные – описываются уравнениями с переменными параметрами. ССП – системы с сосредоточенными параметрами – системы, которые описываются обыкновенными диф.уравнениями в частных производных. Одномерные – системы, в которых выходная величина одна. Многомерные – имеют несколько выходных величин. Статические – без инерционные системы, т.е. постоянна во времени. Динамические – входная величина изменяется во времени, для таких величин характерен динамический процесс. Детерминированные – системы без внешних воздействий. Стохастические (вероятные или случайные) – для таких систем характерно несколько состояний и все она зависит от внешних воздействий.

(3)Воздействие на систему (переменные системы уравнения).

Задающее воздействие или входное воздействие х(t) – это воздействия которое планируется. Управляющее воздействие (U(t)) – воздействие обусловлено управляющим уравнением и оказывает влияние на субъекты управления. Возмущающие воздействия f(t) – воздействие не планируемое, т.е. случайное (параметры окружающей среды). Выходное у(t) – управляемое переменной, данная величина характеризует параметры объекты управления. Внутреннее x(t) – обусловлено влиянием одних систем на другие.

(4)Математические модели непрерывных динамических систем.

Прежде чем приступать к мат.модели САУ необходимо составить ее функциональную схему. В такой схеме каждому элементу САУ соответствует некоторый прямоугольник с обозначением данного конкретного элемента. Входное воздействие поступает на сумматор с учетом обработки ошибки из входного воздействия получается задающее воздействие g(t). Поступив на устройство управления вырабатывая управляющее воздействие u(t) и поступает на объект управления. В объекте управления с учетом внешнего воздействия j(t) вырабатывает выходная у(t). Ошибка регулирования, которая l(t) поступает на исполнительное устройство, которое предназначено для изменения состояний рассомасования. Данная система является замкнутой. Нижняя часть называется обратной связью, которая может быть и положительной и отрицательной. На следующем этапе составления математической модели функциональная схема преобразуется в структурную схему, которая состоит также из прямоугольников, но вместо обозначения элемента системы в него записывается уравнение состояния или работы данного звена. Структурная схема является математической моделью системы управления. Уравнения, которые описывают изменяющиеся во времени состояния системы или элемента называются уравнениями динамики. Чаще всего системы описываются с помощью диф.уравнений.

(5)Метод малых отклонений.

При исследовании нелинейной системы уравнений решение можно получить лишь в чистом виде, поэтому для получения аналитического решения нелинейных диф.уравнений используют линеализацию. Линеализация – замена нелинейных уравнений приближенными линейными уравнениями (метод малых отклонений). Рассмотрим некоторый элемент . Пусть между входной и выходной величиной осуществляются процессы, которые описываются нелинейным дифференциальным уравнением вида . Обозначим установившееся состояние объекта через х 0 , у 0 и отклонение от данного состояния х’ и у’. тогда входная величина будет представлена: х=х 0 +х’; y+y 0 +y’. В общем случае входная и выходная величины могут являться функциями времени, тогда выходная величина будет представлена: . В окрестностях точки х 0 , у 0 функцию F(x,y,t) разложим в ряд Тейлора: , где R – совокупность членов ряда, порядок производной которой выше первой. В случае, если отклонение от установившегося, значения малы можно получить (*), где . В том случае, если отклонение от установившегося состояния равны 0, уравнение будет выглядеть (**). Вычитая (**) из (*) получаем линейное диф.уравнение , которое называется уравнением в отклонениях. Это уравнение описывает состояние объекта управления при малых отклонениях.

(6)Метод решений диф.уравнений.

1)аналитический, получают решение в явном виде. На основе данного решения можно исследовать реакцию объекта на любые входные воздействия; 2)численный, решением уравнения является числовое решение при заданных начальных условиях; 3)качественный, используется в основном в теории управления и не имея решения в явном виде получают различные качественные оценки?????(время переходного процесса, полоса пропускания). Этапы решения диф.уравнений: 1)по исходному диф.уравнению составляют характеристическое уравнение системы; 2)находят корни характеристического уравнения; 3)записывают общие решения диф.уравнений и используя начальные условия определяют коэффициенты выходной величины; 4)к общему решению диф.уравнения прибавляют частное решение. Однако нахождение корней характеристического уравнения, порядок которого выше третьей степени аналитически не возможно, поэтому для нахождения корней используют численные методы, что усложняет исследование системы в целом.

ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРЕДПРИЯТИЯ

Динамическое моделирование предприятия представляет собой исследование предприятия как информационной системы с обратной связью; оно предусматривает применение моделей для проектирования усовершенствованных форм организации и улучшения общего руководства. Динамическое моделирование предприятия возникло на основе развития следующих четырех прогрессивных направлений: теории управления информационной системой с обратной связью, автоматизации выработки военно-тактических решений, экспериментального проектирования сложных систем с помощью моделирования и применения цифровых вычислительных машин для снижения стоимости вычислений. Своим появлением данная книга обязана этим направлениям, вместе взятым.

В данной книге рассматривается меняющееся во времени динамическое поведение промышленных организаций, то есть динамическое моделирование предприятий. Динамическое моделирование предприятия представляет собой изучение деятельности предприятия как информационной системы с обратной связью. Оно показывает, каким образом взаимодействуют организационная структура предприятия, влияние авторитета (в руководстве) и время запаздывания (в решениях и действиях) в обеспечении успеха предприятия. Обсуждается также взаимодействие потоков информации, денежных средств, заказов, товаров, рабочей силы и оборудования на предприятии, в отрасли промышленности или в народном хозяйстве.

С помощью динамического моделирования предприятия создается единая структурная схема, в которой интегрируются функциональные отрасли управления, а именно - производство, сбыт, бухгалтерский учет, исследования и технические усовершенствования, капиталовложения. Оно воплощает количественный и экспериментальный подход к решению задачи приведения организационной структуры и методов руководства предприятием в соответствии с требованиями промышленного развития и устойчивости. Динамическое моделирование, кроме того, должно стать основой для проектирования более эффективных промышленных и экономических систем. Динамически-моделирующий подход к проектированию предприятия включает несколько этапов:

Определение проблемы.

Обособление факторов, которые, по-видимому, взаимодействуют при возникновении наблюдаемых симптомов.

Выявление причинно-следственной цепи в потоке информации с обратной связью, который соединяет решения и действия с результирующими изменениями в информации и с дальнейшими новыми решениями.

Формулировка приемлемых общих правил, объясняющих, каким образом на основе имеющихся потоков информации возникают те или иные решения.

Построение математической модели, включающей правила принятия решений, источники информации и взаимодействие компонентов системы.

Приведение в действие системы, описываемой моделью (обычно с помощью цифровой вычислительной машины для выполнения трудоемких расчетов).

Сравнение полученных результатов со всеми имеющимися сведениями о реальной системе.

Корректировка модели с тем, чтобы сделать ее достаточно адекватной реальной системе.

Перестройка в рамках модели организационных взаимоотношений и правил принятия решений, которые можно было бы изменить в реальной системе, чтобы проверить, насколько подобные изменения могут улучшить поведение системы.

Совершенствование реальной системы в направлениях, которые по результатам экспериментирования на модели обеспечат улучшение функционирования системы.

Описанный порядок действий основан на следующих положениях:

Решения по вопросам управления и экономики входят в рамки системы, называемой обычно информационной системой с обратной связью.

Наши интуитивные суждения о предстоящих со временем изменениях системы ненадежны, даже если они основаны на достаточно полном знакомстве с отдельными частями системы.

Эксперименты, проведенные на модели, дают возможность восполнить пробел в той области, где наши суждения и знания всего слабее, а именно - в определении способов возможного взаимодействия известных частей системы, которые могут вызвать неожиданные и нежелательные общие нарушения конечных результатов ее деятельности.

Для экспериментального моделирующего подхода имеется, как правило, достаточная информация, и нет надобности в крупных затратах или задержках для дальнейшего накопления сведений.

- «Механистическое» представление о принятии решений, получаемое при экспериментировании на моделях, все же достаточно правильно отражает основную структуру регулирующих правил и потоков решений в моделируемой организации.

Внутренняя структура управления предприятиями является источником многих нарушений (неполадок), которые часто приписываются внешним, независимым причинам.

Изменения в правилах руководства и организационной структуре, как правило, приводят к существенному улучшению промышленной и экономической деятельности. Нередко работа системы настолько ниже возможностей, что изменение первоначальной структуры ведет к улучшению всех существенных элементов системы без обычного компромисса, когда выигрыш на одном участке сопровождается потерями на другом.

Почему эти положения являются в настоящее время надежной основой для лучшего понимания поведения промышленных систем?

Дело в том, что обсуждаемый здесь подход был бы совершенно нереальным десять лет назад, хотя потребность в более глубоком изучении проблем управления и экономики существует уже давно. Лишь в последнее время заложен фундамент для адекватного подхода к решению этих проблем.

Четыре краеугольных камня, на которых основывается методология динамического моделирования социальных систем, были созданы в США после 1940 г. и явились результатом научных исследований в области военных систем. Это:

Теория управления информационной системой с обратной связью;

Исследование процессов принятия решений;

Экспериментальное моделирование сложных систем;

Цифровая вычислительная машина как средство имитации реальных процессов на их математических моделях.

Ниже будет рассмотрен каждый из названных факторов в отдельности.

Из книги Время - деньги. Создание команды разработчиков программного обеспечения автора Салливан Эд

Глава 9 Исследования, оценка технологий и моделирование В начале любого напряжённого проекта велико искушение принять решения о применении новых технологий, компонентов и платформ лишь на основе общих допущений. Производительность, масштабируемость и даже среду

Из книги Инвестиционные проекты: от моделирования до реализации автора Волков Алексей Сергеевич

Моделирование В начале работы над проектом почти всегда возникает ряд важных вопросов, связанных с реализацией той или иной технологии. Моделирование - важная методика, которая поможет получить необходимые ответы.О чём пойдёт речьСоздание прототипа - важный этап,

Из книги Практика и проблематика моделирования бизнес-процессов автора Всяких Е И

2.5. Моделирование рисков Определение, расчет и анализ факторов риска – одна из главных частей инвестиционного проектирования. Созданный проект является, в сущности, прогнозом, который показывает, что при определенных значениях исходных данных могут быть получены

Из книги Основы кибернетики предприятия автора Форрестер Джей

Глава 8 Моделирование бизнес-процессов в среде ARIS – иллюстрация частных решений и подходов В настоящее время существует достаточно большое количество печатных и электронных изданий, в которых с различным уровнем детализации описаны возможности среды ARIS.В данной главе

Из книги Разумное распределение активов. Как построить портфель с максимальной доходностью и минимальным риском автора Бернстайн Уильям

Глава 17 ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПОДГОТОВКА РУКОВОДЯЩИХ КАДРОВ При динамическом моделировании предприятие рассматривается как сложная система. Само по себе моделирование дает ту научную Основу, вокруг которой группируются объекты управления. В математических

Из книги Экономическая теория: учебник автора Маховикова Галина Афанасьевна

Глава 18 ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ И КАДРЫ ИССЛЕДОВАТЕЛЕЙ Изучение динамики предприятия следует начинать как долгосрочную программу, когда деятельность фирмы еще незначительна по размаху, дабы избежать давления с целью получения немедленных результатов. Решающее

Из книги Экономический анализ. Шпаргалки автора Ольшевская Наталья

Динамическое распределение активов Динамическое распределение активов относится к возможности варьирования вашей стратегии распределения из-за изменяющихся условий рынка. Почему, уделив так много места в этой книге попыткам убедить вас в достоинствах фиксированного

Из книги Как работать где хочешь, сколько хочешь и получать стабильный доход автора Фокс Скотт

17.3. Экономический рост и динамическое равновесие в экономике 17.3.1. Неустойчивость динамического равновесия в экономике и инструмент его теоретического анализа Под экономическим ростом понимается увеличение реального объема национального производства в долгосрочном

Из книги Стратегии развития научно-производственных предприятий аэрокосмического комплекса. Инновационный путь автора Баранов Вячеслав Викторович

Занятие 14 Экономический рост и динамическое равновесие в экономике Семинар Учебная лаборатория: обсуждаем, отвечаем, дискутируем… Обсуждаем1. Понятие, цели и факторы экономического роста.2. Динамическое равновесие и его значение для теоретического анализа

Из книги Практика управления человеческими ресурсами автора Армстронг Майкл

68. Моделирование Признанной группой расчетных методов является моделирование. В общем случае модель – это допустимо упрощенный аналог реальной или предполагаемой к созданию системы, используемой в процессе исследования. При проведении анализа используются два класса

Из книги Территориальные кластеры. Семь инструментов управления автора Тарасенко Владислав

Из книги Основы менеджмента автора Мескон Майкл

6.2. Экономико-математическое моделирование процессов увеличения потенциала научно-производственного предприятия на основе обновления производства Обновление производства предполагает использование научно-производственным предприятием совокупности

Из книги автора

Моделирование Моделирование – это метод обучения, сочетающий в себе анализ конкретных ситуаций с ролевыми играми и позволяющий максимально приблизиться к реальности в условиях учебной аудитории. Цель метода заключается в том, чтобы способствовать переносу знаний,

Из книги автора

МОДЕЛИРОВАНИЕ КОМПЕТЕНЦИЙ Моделирование компетенций сводит данные по организационному проектированию и управлению показателями труда, чтобы установить, какие навыки или компетенции требуются для выполнения определенных работ. Оно способствует принятию решений по

Из книги автора

Глава 2 Инструмент: бизнес-моделирование цепочки ценности кластера Краткое описание Цепочка ценности кластера описывает последовательность видов деятельности и функциональную взаимосвязь его предприятий.Моделируя, с одной стороны, очередность выполнения функций

Из книги автора

Моделирование Большинство современных моделей науки управления настолько сложны, что применять их можно только с помощью компьютерной техники. Однако сама концепция модели очень проста. По определению Р. Шеннона «Модель – это представление объекта, системы или идеи в

Непрерывные и дискретные модели

Непрерывные модели отражают непрерывные процессы, протекающие, в частности, во времени. Значения независимой переменной (аргумента) принадлежат континуальному множеству. Континуальное множество обладает свойством, соответственно которому между любыми сколь угодно близкими точками множества всегда можно найти еще более близкие точки. Очень часто такой характер изменения приписывается времени.

Непрерывными моделями достаточно точно описываются такие реальные процессы, как изменение силы тока в определенной точке электрической схемы, изменение угловой скорости на выходе электропривода, набор линейной скорости при разгоне автомобиля, истечение газа или жидкости из резервуара и т.п.

Дискретные модели описывают дискретные, т.е. прерывистые процессы. Такие процессы происходят, например, в дискретных СУ, содержащих импульсный элемент (ключ), периодически замыкающий цепь через постоянный тактовый период Т .

Дискретными моделями достаточно точно описываются такие реальные процессы, как штамповка деталей, продажа мелких товаров с помощью автомата, работа микропроцессора и т.п.

Существуют также комбинированные – дискретно-непрерывные модели, в которых обычно можно отделить непрерывную часть от дискретной.

Статической называется модель объекта, отражающая оригинал в какой-то отдельный момент времени, т.е. «моментальная фотография» объекта. Например, буквально фотография или схема.

С фотографией (рис. 1.11) все ясно, что же касается схемы, то даже если это структурная схема с указанием передаточных функций звеньев, по ней явно не видно, как модель изменяется с течением времени (рис. 1.12).

Рис.1.11. Фотография как пример статической модели

Рис. 1.12. Структурная схема системы

Другой очевидный и знакомый пример статической модели –статическая характеристика, т.е. зависимость выходной переменной объекта (системы) от входной переменной в установившемся режиме , т.е. при t®∞: y(∞)=F (рис. 1.13).

Рис. 1.13. Статическая характеристика системы ”System

Динамическая модель, в отличие от статической, учитывает изменения, происходящие в системе с течением времени. Это может выражаться в зависимости входной, выходной и промежуточных переменных от времени. Примером могут служить переходные функции – реакции систем на единичное ступенчатое входное воздействие (рис. 1.14).

Рис. 1.14. Переходная функция h(t) системы “System

Обычно переходные функции получаются в результате: 1) аналитического решения; 2) численного интегрирования дифференциальных уравнений, описывающих исследуемую систему; 3) обратного преобразования Лапласа от передаточной функции системы, деленной на s . Модельв виде дифференциальных уравнений (ДУ) является широко распространенной динамической моделью.



Пример. Пусть система описывается моделью в виде дифференциального уравнения:

входное воздействие x(t)= 1[t] – единичное ступенчатое (как на рис. 1.14), а начальные условия имеют вид: y(t= 0) = 0, т.е. процесс начинается из начала координат.

Аналитическое решение. Это линейное дифференциальное уравнение первого порядка с постоянными коэффициентами (стационарное). Его решение складывается из двух слагаемых – общего и частного решения:

Общее решение ищется в виде:

где А – неизвестный коэффициент, определяемый из начальных условий;

l – корень характеристического уравнения, которое в данном случае выглядит так:

откуда l=– 2.

В стандартной форме исходное уравнение должно иметь при y(t) коэффициент, равный единице. Для этого исходное уравнение разделим на 4 и получим:

Частное решение зависит от вида правой части ДУ; в данном примере, поскольку x(t)= 1[t] , частное решение будет равно константе:

Суммарное решение будет выглядеть так:

Теперь, подставив в решение y(t) начальное условие (для уравнения 1-го порядка оно одно), можно найти значение коэффициента А :

откуда А = – 1,25. Окончательно решение имеет вид:

Поскольку входным воздействием было единичное ступенчатое, то полученное решение является переходной функцией и обозначается, как обычно, h(t) . График этой функции показан на рис. 1.15.

Рис. 1.15. Переходная функция h(t) – решение ДУ из примера

Подобный h(t) характер (с разной погрешностью) имеют такие процессы, как разгон автомобиля, нагрев жидкости, накопление знаний в некоторой предметной области, увеличение численности популяции животных, рост производства (при определенных условиях) и многие другие. В этом заключается одно из важнейших свойств математическихмоделей – их универсальность.



Рекомендуем почитать

Наверх