Работа в цепи определение физика. Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи

Nokia 11.04.2019
Nokia

Работа и мощность электрической цепи.

Работа является мерой превращения одного вида энергии в другой.

Ватт-секунда – эта работа электрического тока величиной при напряжении в течение .

1 Ватт ∙ час [Вт ∙ ч] = 3600 Вт ∙ ч = 3600 Дж

1 кВт ∙ ч = 1000 Вт ∙ ч = 3600 000 Дж

Работа электрического тока в одну секунду называется мощностью электрического тока , она характеризует интенсивность работы, совершенной током. За единицу мощности принят Ватт [Вт].

; из закона Ома ,

Ватт – мощность, которую развивает при

1 кВт = 1000 Вт 1 МВт = 1000 000 Вт

Полной называется мощность, развиваемая источником тока , а полезной – мощность, расходуемая во внешней цепи потребителем .

Отношение полезной мощности к полной мощности, развиваемой источником тока, называется коэффициентом полезного действия (КПД) , обозначается - «эта».

;

Тепловое действие тока. При прохождении электрического тока по проводнику в результате столкновения электронов с его атомами проводник нагревается.

Закон Джоуля – Ленца. Количество выделенного тепла прямо пропорционально квадрату величины тока, сопротивлению проводника и времени прохождения тока через проводник.

Эта зависимость установлена в 1841 г. Английским физиком Джоулем и несколько позднее (в 1844 г.) русским академиком Ленцем.

Тепловое действие тока применяют: лампы накаливания, нагревательные приборы, электросварка, тепловые реле (биметаллические пластины).

Каждый проводник в зависимости от условий, в которых он находится, может пропустить через себя, не перегреваясь, ток, не превышающий некоторую допустимую величину. Эта величина характеризуется допустимой плотностью тока , т. е. величиной тока I приходящегося на 1 мм площади поперечного сечения s проводника.

- допускаемая плотность тока I на площади поперечного сечения.

- обмотка электрических машин

- нить электрической лампочки

При неплотном электрическом контакте и плохом соединении проводников R вместе их соединения (так называемое переходное сопротивление электрического контакта) сильно возрастает, и здесь происходит усиленное выделение тепла. В итоге это может привести к перегоранию контакта и разрыву электрической цепи.

Вопросы для самоконтроля:

1. Как осуществляется последовательное соединение проводников? Какие действуют законы в данной цепи?

2. Как осуществляется параллельное соединение проводников? Какие действуют законы в данной цепи?

3. Как осуществляется смешанное соединение потребителей?

4. Как определить работу и мощность электрического тока? В каких единицах измеряется мощность и работа?

5. Что такое коэффициент полезного действия?

6. Сформулируйте закон Джоуля-Ленца.

7. Что такое плотность тока и переходное сопротивление?

8. Что такое электрическое поле? Чем характеризуется электрическое поле?

9.Что называется электрическим потенциалом? Разностью потенциалов? В каких единицах измеряется?

10. Что такое ЭДС, и в каких единицах она измеряется?

11. Что такое электрический ток, и в каких единицах он измеряется?

12. Что называется электрическим сопротивлением? От чего зависит сопротивление проводников?

13. Как устроен атом вещества?

14.Что называется проводником и диэлектриком?

15. Как взаимодействуют электрические заряды? Закон Кулона.

16. Что такое электрическое поле? Чем характеризуется электрическое поле?

17. Что такое электрический ток, и в каких единицах он измеряется?

18. Что называется электрическим сопротивлением? От чего зависит сопротивление проводников?

19.Как можно увеличить сопротивление проводника?

20. Как образуется электрическая цепь, и из каких частей она состоит?

21. Сформулируйте закон Ома для электрической цепи и отдельного участка?

22. Что такое падение напряжения и как оно определяется?

23. Охарактеризуйте режимы работы генератора постоянного тока?

24. Что называется коротким замыканием, каковы его последствия?

25.Как формулируется первый закон Кирхгофа?

26. Как формулируется второй закон Кирхгофа?

Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника;

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

В системе СИ:

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

[Q] = 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

Отношение работы тока за время t к этому интервалу времени.

В системе СИ:




Электростатика и законы постоянного тока - Класс!ная физика


Любознательным

Следы на песке

Если вам приходилось, гулять по пляжу во время отлива, то, вероятно, вы заметили, что, как только нога ступает на мокрый твердый песок, он немедленно подсыхает и белеет вокруг вашего следа. Обычно это объясняют тем, что под тяжестью тела вода «выжимается» из песка. Однако это не так, потому что песок не ведет себя подобно мочалке. Почему же белеет песок? Будет ли песок оставаться белым все время, пока вы стоите на месте?

Оказывается...
Побеление песка на пляже впервые объяснил Рейнольде в 1885 г. Он показал, что объем песка увеличивается, когда на него наступают. До этого песчинки были «упакованы» самым плотным образом. Под действием деформации сдвига, которая возникает под подошвой ботинка, объем, занимаемый песчинками, может лишь увеличиться. В то время как уровень песка поднимается резко, уровень воды может подняться лишь в результате капиллярных явлений, а на это требуется время. Поэтому на дне следа ноги песок некоторое время оказывается выше уровня воды - он сухой и белый.

На участке цепи, не содержащей ЭДС, силы электрического поля совершают работу по перемещению электрического заряда

A 12 =IU 12 t=Irt=

которая выделяется в проводнике в виде тепла.

Если в цепи имеется ЭДС, то работа по перемещению электрического заряда совершается сторонними и электрическими силами, численно равная энергии, выделяющейся в этой цепи.

В замкнутой цепи энергия, выделяющаяся в проводнике численно равна работе

A=IU 12 t+IEt=IEt,

Мощность-работа, совершаемая в единицу времени:

На участке цепи, в котором отсутствует ЭДС, мощность

При наличии ЭДС:

В замкнутой цепи:

P=I×E=I 2 (R+r).

Мощность во внешней цепи является полезной мощностью:

Отношение полезной мощности (мощности во внешней цепи) к мощности развиваемой источником тока (полной мощности) называют коэффициентом полезного действия (КПД):

Мощность во внешней цепи максимальна в том случае, когда сопротивление внешнего участка цепи равно внутреннему сопротивлению источника тока (R=r). При этом максимальное значение мощности во внешней цепи оказывается равным:

Зависимость КПД источника:

а) от тока во внешней цепи:

б) от сопротивления внешнего участка цепи:

1.4.1. Примеры решения задач

1.4.1.1. Задача. Определить работу электрических сил и количество теплоты, выделяемое ежесекундно, в следующих случаях: 1) в резисторе, по которому идет ток силой I=1 А; разность потенциалов между концами резистора j 1 -j 2 =2 В; 2) в аккумуляторе, который заряжается током силой I=1 А; разность потенциалов на его зажимах j 1 -j 2 =2 В, э.д.с. аккумулятора E=1,3 В; 3) в батарее аккумуляторов, которая дает ток силой I=1 А на внешнюю нагрузку; разность потенциалов на зажимах батареи j 1 -j 2 =2 В, ее э.д.с.E=2,6 В.

Решение. 1. Так как рассматриваемый участок не содержит ЭДС, то по закону Ома для участка однородной цепи, имеем

Из этого следует, что формулы A=(j 1 -j 2)IR и Q=I 2 Rt в данном случае совпадают. Значит, вся работа электрических сил идет на нагревание резистора:

A=Q=(j 1 -j 2)IR=2 (Дж).

2. При зарядке аккумулятора его зажимы присоединяют к источнику, разность потенциалов на полюсах которого постоянна. При этом ток внутри аккумулятора идет от его положительного полюса к отрицательному, т.е. в направлении, обратном току разряда.

Работу электрических сил снова вычислим по формуле

A=(j 1 -j 2)IR=2 (Дж).

Чтобы по формуле Q=I 2 Rt определить количество выделенной теплоты, необходимо найти сопротивление участка цепи, в котором находится аккумулятор. Поскольку этот участок содержит э.д.с., применим закон Ома для участка неоднородной цепи. Учитывая направления тока и э.д.с., запишем в соответствии с правилом знаков

. (1)

(2)

Подставив значение R из (2) в формулу закона Джоуля-Ленца, получим

Q=I 2 Rt=(j 1 – j 2 - E) It=0,7 (Дж).

В данном случае лишь часть работы электрических сил идет на нагревание аккумулятора, остальная же часть (A-Q) превращается в химическую энергию заряжаемого аккумулятора.

3. Работу электрических сил найдем по формуле

A=(j 1 -j 2) IR.

При этом обратим внимание на отличие данного случая от предыдущего. Если положительный знак разности потенциалов (j 1 – j 2) сохранился, то направление силы тока на рассматриваемом участке изменилось на противоположное. Следовательно,

A=(j 1 -j 2) (-I)t=-2 (Дж). (3)

Отрицательный знак ответа выражает то обстоятельство, что положительные заряды движутся внутри каждого аккумулятора от его низшего потенциала к высшему, т.е. против электрических сил. При этом положительную работу совершают сторонние силы, перемещая заряды внутри аккумуляторов.

Количество теплоты, выделенное в батарее, снова определим по формуле закона Джоуля-Ленца в интегральной форме

При этом сопротивление r батареи, как и в предыдущем случае, можно вычислить по закону Ома для неоднородного участка цепи

. (4)

Сопротивление батареи можно найти также как разность между сопротивлением всей цепи и сопротивлением внешнего участка цепи

что совпадает с формулой (4). Подставив найденное значение r в формулу закона Джоуля-Ленца, получим

Q=I 2 Rt=It=0,6 (Дж). (5)

Этот вариант задачи можно решить еще и по-другому. По данным условиям найдем работу электрических сил на внешнем участке цепи:

A=(j 1 -j 2)It=2 (Дж).

Однако работа электрических, т.е. кулоновских (но не сторонних), сил по перемещению зарядов на замкнутом пути всегда равна нулю

A внутр +A внеш =0,

A внутр =-A внеш =-2 (Дж),

что совпадает с результатом (3).

Вся энергия, расходуемая батареей, превращается (посредством работы электрических сил) в тепло Q общ, выделяющееся во всей цепи.

Эту энергию можно вычислить по формуле

A б =Q общ =EIt=2,6 (Дж).

Так как на внешнем участке выделяется количество теплоты

Q внеш =A внеш= 2 (Дж),

то для батареи

Q=Q общ -Q внеш =0,6 (Дж),

что совпадает с результатом (5).

1.4.1.2. Задача. Э.д.с. батареи E=12 В. Наибольшая сила тока, которую может дать батарея, I макс =5 А. Какая наибольшая мощность P макс может выделиться на подключенном к батарее резисторе с переменным сопротивлением.

Решение. Мощность P тока измеряется работой, совершенной электрическими силами в единицу времени. Поскольку вся работа на внешнем участке цепи идет на нагревание резистора (A=Q), то в данном случае мощность измеряется количеством теплоты, выделяемым в резисторе в единицу времени. Поэтому на основании формулы закона Джоуля-Ленца в интегральной форме для внешнего участка цепи Q==I 2 Rt, а также закона Ома для замкнутой цепи, получим

P=I 2 R=E 2 R/(R+r) 2 , (1)

где R, r-сопротивления внешнего и внутреннего участков цепи соответственно.

Из (1) видно, что при постоянных значениях E, r мощность P во внешней цепи является функцией одной переменной R. Известно, что эту функция имеет максимум при условии r=R (в этом можно убедиться, применив общий метод исследования функций на экстремум с помощью производной). Следовательно,

. (2)

Таким образом, задача сводится к отысканию сопротивления r внутреннего участка (батареи). Если учесть, что согласно закону Ома для замкнутой цепи наибольшая сила тока I макс будет при внешнем сопротивлении R=0 (ток короткого замыкания), то

I макс =E/r,

Подставив найденное значение внутреннего сопротивления r в формулу (2), получим

P макс= EI макс /4=15 (Вт).

1.4.1.3. Задача. Обмотка электрического кипятильника имеет две секции. Если включена одна секция, вода закипает через t 1 =10 мин, если другая, то через t 2 =20 мин. Через сколько минут закипит вода, если обе секции включить: а) последовательно? б) параллельно? Напряжение на зажимах кипятильника и к.п.д. установки считать во всех случаях одинаковыми.

Решение. При различных включениях секций кипятильника сопротивление цепи различно. Очевидно, искомое время нагревания воды есть некоторая функция сопротивления цепи. Чтобы найти эту функцию, воспользуемся законом Джоуля-Ленца

Поскольку речь идет об участке цепи, не содержащем э.д.с., к которому применим закон Ома I=(j 1 -j 2)/R, запишем в виде

Отсюда легко определить вид функции t=f(R).

Во всех случаях для нагревания воды требуется одно и то же количество теплоты, определяемое формулой

где c, m-удельная теплоемкость и масса воды;

Dt-разность температур.

В силу постоянства к.п.д. установки h одним и тем же будет также полное количество теплоты выделенное током, т.е.

Учитывая также постоянство напряжения на зажимах цепи, из формулы (1), получим

R=U 2 t/Q=kt, (2)

где k=U 2 /Q-постоянная величина.

Таким образом, зависимость времени от сопротивления является пропорциональной. Теперь легко найти ответы в обоих случаях.

При последовательном соединении секций общее сопротивление

R посл =R 1 +R 2 .

Подставив сюда значения R по формуле (2), получим

kt посл= kt 1 +kt 2 ,

t посл =t 1 +t 2 =15 (мин).

При параллельном соединении секций сопротивление соединения

R пар =R 1 R 2 /(R 1 +R 2).

Отсюда, применив соотношение (2), найдем

t пар =t 1 t 2 /(t 1 +t 2)=7 (мин).

1.4.1.4. Задача. Две медные проволоки одинаковой длины ℓ=1 м и диаметрами d 1 =0,1 мм и d 2 =0,2 мм, подключенные (поочередно) к зажимам гальванического элемента, нагреваются до одинаковой температуры. Определить внутреннее сопротивление гальванического элемента. Считать отдачу теплоты проволокой в окружающее пространство при постоянной температуре пропорциональной площади ее поверхности.

Решение. При установившемся тепловом режиме, когда температура проволоки перестает повышаться, количество теплоты, выделенное током в 1 с, согласно закону сохранения энергии, должно быть равно количеству теплоты, рассеянному за то же время проволокой в окружающее пространство, т.е. должно выполняться равенство

P тока =P расс. (1)

Мощность тока P тока =I 2 R выразим через внутреннее сопротивление источника и диаметр проволоки, воспользовавшись законом Ома для замкнутой цепи и формулой сопротивления проводника:

С другой стороны, согласно условию задачи, имеем

P расс =kS"=kpdℓ, (3)

где S"-площадь поверхности проволоки, вычисленная как площадь боковой поверхности цилиндра;

k-коэффициент пропорциональности, зависящий от температуры проволоки.

Подставив в уравнение (1) значения P тока и P расс по формулам (2), (3) и произведя сокращения, получим

(4)

Поскольку при постоянной температуре все величины, стоящие в правой части формулы (4), постоянны, должно выполняться равенство

(5)

так как диаметрам проволоки d 1 , d 2 соответствует по условию одинаковая температура. Чтобы решить уравнение (5) относительно неизвестного r, извлечем из обеих частей уравнения квадратный корень:

Все слагаемые, стоящие в левой части этого уравнения – заведомо положительные величины, отрицательный знак перед корнем отбрасываем. Решив уравнение относительно r, найдем

Взяв из таблиц значение удельного сопротивления меди, выразив входящие в формулу величины в единицах СИ, выполнив вычисление, получим

Кристаллическая решётка

Электрический ток. Все металлы являются проводниками электрического тока. Они состоят из пространственной кристаллической решетки, узлы которой совпадают с центрами положительных ионов. Вокруг ионов хаотически движутся свободные электроны.

В металлах электронная проводимость

Электрическим током в металлах называется упорядоченное движение свободных электронов. За направление тока принимают направление движения положительно заряженных частиц.

Электрические заряды могут двигаться упорядоченно под действием электрического поля, поэтому условием для существования эл. тока является наличие электрического поля и свободных носителей эл.заряда .

Сила тока численно равна заряду, протекающему через данное поперечное сечение проводника в единицу времени. Ток называется постоянным, если сила тока и его направление не изменяется с течением времени.

1 ампер (А) равен силе постоянного тока, при котором через любое поперечное сечение проводника за 1 с протекает 1 Кл электричества. I = q 0 nvS Силу тока в цепи измеряют . Условное обозначение в цепи

Работа и мощность тока. Электрический ток снабжает нас энергией. Она возникает за счёт работы электрического поля по передвижению свободных зарядов в проводнике. Рассмотрим участок цепи, по которому течёт ток I. Напряжение на участке обозначим U , сопротивление участка равно R. При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δ t по цепи протекает заряд Δq = I Δt . Электрическое поле на выделенном участке совершает работу. ΔA = U I Δ t эту работу называют работой электрического тока . За счёт работы на рассматриваемом участке может совершаться механическая работа; могут также протекать химические реакции. Если этого нет, то работа эл.поля приводит только к нагреванию проводника. Работа тока равна количеству теплоты, выделяемому проводником с током: закон Джоуля - Ленца

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt , за которое эта работа была совершена на данном участке : P = IU или . Работа электрического тока в СИ выражается в джоулях (Дж ), мощность – в ваттах (Вт ).

Закон Ома для замкнутой цепи. Источник тока имеет ЭДС () и сопротивление (r ), которое называют внутренним . Электродвижущей силой (ЭДС) называется отношение работы сторонних сил по перемещению заряда q вдоль цепи, к значению этого заряда (1В=1Дж/1Кл ). Рассмотрим теперь замкнутую (полную) цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R . (R+r ) — полное сопротивление цепи. Закон Ома для полной цепи записывается в виде или

Способность тела производить работу называется энергией тела . Таким образом, мерой количества энергии является работа. Энергия тела тем больше, чем большую работу может произвести это тело при своем движении. Энергия не исчезает, а переходит из одной формы в другую. Например, в генераторе механическая энергия преобразуется в электрическую энергию, а в двигателе – электрическая в механическую. Однако не вся энергия является полезной, т.е. часть ее расходуется на преодоление внутреннего сопротивления источника и проводов.

Работа электрического тока численно равна произведению напряжения, силы тока в цепи и времени его прохождения. Единица измерения – Джоуль.

Для измерения работы или энергии электрического тока используется электроизмерительный прибор − счетчик электрической энергии.

Электрическая энергия помимо джоулей измеряется в ватт-часах или киловатт-часах :

1 Вт·ч = 3 600 Дж, 1 кВт·ч = 1 000 Вт·ч.

Мощность электрического тока – это работа, производимая (или потребляемая) в единицу времени. Единица измерения – Ватт.

Для измерения мощности электрического тока используется электроизмерительный прибор − ваттметр.

Кратными единицами измерения мощности являются киловатт или мегаватт:

1 кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.

В табл. 1 приведена мощность ряда устройств.

Таблица 1

Название устройства

Мощность устройства, кВт

Лампа карманного фонаря

Холодильник домашний

Лампы осветительные (бытовые)

Электрический утюг

Стиральная машина

Электрическая плита

0,6; 0,8; 1; 1,25

Электропылесос

Лампы в звездах башен Кремля

Двигатель электровоза ВЛ10

Электродвигатель прокатного стана

Гидрогенератор Братской ГЭС

Турбогенератор

50 000 − 1 200 000

Соотношения между мощностью, током, напряжением и сопротивлением приведены на рис. 1.

P U

I R

R·I

Рис. 1

Скорость, с которой механическая или другая энергия преобразуется в источнике в электрическую называется мощностью источника :

где W и – электрическая энергия источника.

Скорость, с которой электрическая энергия преобразуется в приемнике в другие виды энергии, в частности в тепловую, называется мощностью приемника :

Мощность, определяющая непроизвольный расход энергии, например, на тепловые потери в источнике или в проводниках, называют мощностью потерь:

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь:

Это выражение представляет собой баланс мощностей .

Эффективность передачи энергии от источника к приемнику характеризует коэффициент полезного действия (КПД) источника:

где Р 1 или Р ист – мощность, отдаваемая источником энергии во внешнюю цепь;

Р 2 – мощность, получаемая извне или потребляемая мощность;

P или Р 0 вн ) – мощность, расходуемая на преодоление потерь в источник или приемнике энергии.

Электрический ток представляет собой направленное движение электрически заряженных частиц. При столкновении движущихся частиц с молекулами и ионами вещества кинетическая энергия движущихся частиц передается ионам и молекулам, вследствие чего происходит нагревание проводника. Таким образом, электрическая энергия преобразуется в тепловую.

В 1844 г. русским академиком Э.Х. Ленцем и английским ученым Джоулем одновременно и независимо друг от друга был открыт закон, описывающий тепловое действие тока.

Закон Джоуля-Ленца : при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого электрический ток протекает по проводнику:

где Q – количество теплоты, Дж, I – сила тока, А; R – сопротивление проводника, Ом; t – время, в течение которого электрический ток протекал по проводнику, с.

Закон Джоуля-Ленца используют при расчетах тепловых режимов источников электроэнергии, линий электропередачи, потребителей и других элементов электрической цепи. Преобразование электроэнергии в тепловую имеет очень большое практическое значение. Вместе с тем тепловое действие во многих случаях оказывается вредным (рис. 2).



Рекомендуем почитать

Наверх