Отечественный драйвер полного моста на транзисторах. Современные высоковольтные драйверы MOSFET- и IGBT-транзисторов

Вайбер на компьютер 23.06.2019
Вайбер на компьютер

Статья посвящена разработкам ООО «Электрум АВ » для промышленного применения, по своим характеристикам аналогичным модульным приборам производства Semikron и CT Concept.

Современные концепции развития силовой электроники, уровень технологического базиса современной микроэлектроники обуславливают активное развитие систем, построенных на IGBT-приборах различной конфигурации и мощности. В государственной программе «Национальная технологическая база » этому направлению посвящены две работы по освоению серии IGBT-модулей средней мощности на предприятии «Контур » (г.Чебоксары) и серии IGBT-модулей большой мощности на предприятии «Кремний » (г.Брянск). В то же время применение и развитие систем на IGBT-модулях ограничивается отсутствием отечественных драйверных устройств для управления затворами IGBT. Эта проблема также актуальна для мощных полевых транзисторов, используемых в преобразовательных системах с напряжением до 200 В.

В настоящее время на российском «электронном» рынке устройства управления мощными полевыми и IGBT-транзисторами представлены фирмами Agilent Technologies, IR, Powerex, Semikron, CT Concept. Изделия IR и Agilent содержат только устройство формирования сигналов управления за вором транзистора и защитные схемы и требуют в случае работы с транзисторами большой мощности или на больших частотах для своего применения дополнительные элементы: DC/DC-преобразователь необходимой мощности для формирования питающих напряжений выходных каскадов, мощных внешних выходных каскадов для формирования сигналов управления затворами с необходимой крутизной фронтов, защитных элементов (стабилитронов, диодов и т.д.), элементов сопряжения системы управления (входная логика, формирование диаграммы управления полумостовыми приборами, оптически развязанные статусные сигналы состояния управляемого транзистора, питающих напряжений и т.д.). Изделия фирмы Powerex также требуют DC/DC-преобразователь, а для согласования с ТТЛ, КМОП и ВОЛС требуются дополнительные внешние элементы. Также отсутствуют необходимые статусные сигналы с гальванической развязкой.

Наиболее функционально полными являются драйверы фирм Semikron (серии SKHI) и CT Concept (типов Standart или SCALE). Драйверы CT Concept серии Standart и драйверы SKHI выполнены в видепечатных плат с разъемами для подключения к системе управления и управляемым транзисторам с установленными на них необходимыми элементами и с возможностью установки настроечных элементов потребителем. По своим функциональным и параметрическим особенностям изделия близки.

Номенклатура драйверов SKHI приведена в таблице 1.

Таблица 1. Номенклатура драйверов SKHI

Тип драйвера фирмы Semikron Коли-чество кана-лов Мах напря-жение на управл. транзис-торе,В Изме-нение напря-жения на затворе,В Мах имп. вых. ток,А Max заряд затвора,мкКл Частота, кГц Напря-жение изоля-ции,кВ DU/dt, кВ/мкс
SKHI 10/12 1 1200 +15/–8 8 9,6 100 2,5 75
SKHI 10/17 1 1700 +15/–8 8 9,6 100 4 75
SKHI 21A 1 1200 +15/–0 8 4 50 2,5 50
SKHI 22A/22В 2 1200 +15/–7 8 4 50 2,5 50
SKHI 22A/H4 2 1700 +15/–7 8 4 50 4 50
SKHI 22В/H4 2 1700 +15/–7 8 4 50 4 50
SKHI 23/12 2 1200 +15/–8 8 4,8 100 2,5 75
SKHI 23/17 2 1700 +15/–8 8 4,8 100 4 75
SKHI 24 2 1700 +15/–8 8 5 50 4 50
SKHI 26W 2 1600 +15/–8 8 10 100 4 75
SKHI 26F 2 1600 +15/–8 8 10 100 4 75
SKHI 27W 2 1700 +15/–8 30 30 10 4 75
SKHI 27F 2 1700 +15/–8 30 30 10 4 75
SKHI 61 6 900 +15/–6,5 2 1 50 2,5 15
SKHI 71 7 900 +15/–6,5 2 1 50 2,5 15
SKHIВS 01 7 1200 +15/–8 1,5 0,75 20 2,5 15

Драйверы SCALE фирмы CT Concept выполнены на основе базовой гибридной сборки и включают основные элементы для управления мощными полевыми или IGBTтранзисторами, которые смонтированы на печатной плате, с возможностью установки необходимых настроечных элементов. Плата оснащена также необходимыми разъемами и гнездами.

Номенклатура базовых гибридных сборок драйверов SCALE фирмы CT Concept приведена в таблице 2.

Драйверные устройства производства «Электрум АВ »являются полностью законченными, функциональнополными устройствами,содержащими все необходимые элементы для управления затворами мощных транзисторов, обеспечивая необходимые уровни согласования токовых и потенциальных сигналов, длительностей фронтов и задержек, а также необходимые уровни защиты управляемых транзисторов при опасных уровнях напряжения насыщения (токовая перегрузка или КЗ) и недостаточном напряжении на затворе. Применяемые DC/DC-преобразователи и транзисторные выходные каскады обладают необходимыми мощностями для обеспечения переключения управляемых транзисторов любой мощности с достаточной скоростью, обеспечивающей минимальные потери коммутации. Преобразователи DC/DC и оптронные развязки имеют достаточные уровни гальванической изоляции для применения в высоковольтных системах.

Таблица 2. Номенклатура базовых гибридных сборок драйверов SCALE фирмы CT Concept

Тип драйвера фирмы CT Concept Коли-чество кана-лов Напря-жение пита-ния драй-вера,В Мах имп. выход-ной ток, А Мах напряже-ние на упр. транзис-торе,В Выход-ная мощ-ность, Вт Задержка, нс Напря-жение изол., В du/dt, кВ/мкс Вход
IGD 508E 1 ±15 ±8 3300 5 225 5000 Волс
IGD 515E 1 ±15 ±15 3300 5 225 5000 Волс
IGD 608E 1 ±15 ±8 1200 6 60 4000 >50 Транс
IGD608А1 17 1 ±15 ±8 1700 6 60 4000 >50 Транс
IGD 615А 1 ±15 ±15 1200 6 60 4000 >50 Транс
IGD615А1 17 1 ±15 ±15 1700 6 60 4000 >50 Транс
IHD 215А 2 ±15 ±1,5 1200 1 60 4000 >50 Транс
IHD 280А 2 ±15 ±8 1200 1 60 4000 >50 Транс
IHD280А1 17 2 ±15 ±8 1700 1 60 4000 >50 Транс
IHD 680А 2 ±15 ±8 1200 3 60 4000 >50 Транс
IHD680A1 17 2 ±15 ±8 1700 3 60 4000 >50 Транс
IHD 580 F 2 ±15 ±8 2500 2,5 200 5000 Волс

В настоящей статье будут представлены приборы МД115, МД150, МД180 (МД115П, МД150П, МД180П) для управления одиночными транзисторами, а также МД215, МД250, МД280 (МД215П, МД250П, МД280П) для управления полумостовыми приборами.

Модуль драйвера одноканального IGBT и мощных полевых транзисторов: МД115, МД150, МД180, МД115П, МД150П, ИД180П

Модуль драйвера МД115, МД150, МД180, МД115П, МД150П, МД180П - гибридная интегральная схема для управления IGBT и мощными полевыми транзисторами, в том числе и в случае их параллельного включения. Модуль обеспечивает согласование по уровням токов и напряжений с большинством IGBT и мощных полевых транзисторов с предельно допустимым напряжением до 1700 В, защиту от перегрузки или КЗ, от недостаточного уровня напряжения на затворе транзистора. Драйвер формирует сигнал «авария » при нарушении режима работы транзистора. С помощью внешних элементов режим работы драйвера настраивается для оптимального управления разными типами транзисторов. Драйвер может использоваться для управления транзисторами с «кельвиновскими » выходами или для контроля тока с помощью токочувствительного резистора. Приборы МД115П, МД150П, МД180П содержат встроенный DC/DC-преобразователь для питания выходных каскадов драйвера. Для приборов МД115, МД150, МД180 требуется внешний изолированный источник питания.

Назначение выводов

1 - «авария +» 2 - «авария –» 3 - «вход +» 4 - «вход –» 5 - «U пит +» (только для моделей с индексом «П ») 6 - «U пит –» (только для моделей с индексом «П ») 7 - «Общий» 8 - «+Е пит» 9 - «выход» - управление затвором транзистора 10 - «–Е пит» 11 - «напр» - вход контроля напряжения насыщения управляемого транзистора 12 - «ток» - вход контроля тока протекающего через управляемый транзистор

Модули драйвера двухканального IGBT и мощных полевых транзисторов IA215, IA250, IA280, IA215I, IA250I, IA280I

Модули драйвера МД215, МД250, МД280, МД215П, МД250П, МД280П - гибридная интегральная схема для управления IGBT и мощными полевыми транзисторами по двум каналам, как независимо, так и в полумостовом включении, в том числе при параллельном включении транзисторов. Драйвер обеспечивает согласование по уровням токов и напряжений с большинством IGBT и мощных полевых транзисторов с предельно допустимыми напряжениями до 1700 В, защиту от перегрузок или КЗ, недостаточного уровня напряжения на затворе транзистора. Входы драйвера имеют гальваническую развязку от силовой части с напряжением изоляции 4 кВ. Драйвер содержит внутренние DC/DC-преобразователи, формирующие необходимые уровни для управления затворами транзисторов. Прибор формирует необходимые статусные сигналы, характеризующие режим работы транзисто ров, а также наличие питания. С помощью внешних элементов режим работы драйвера настраивается для оптимального управления разными типами транзисторов.

Таблица 4. Обозначение выводов модуля драйвера двухканального IGBT и мощных полевых транзисторов

№ выв. Обозначение Функция № выв. Обозначение Функция
14 ВХ1 «+» Прямой управляющий вход первого канала 15 ИК Измерительный коллектор для контроля напряжения насыщения на управляемом транзисторе первого канала
13 ВХ1 «–» Инверсный управляющий вход первого канала 16 ИК1 Вход контроля напряжения насыщения с настройкой порога и времени блокировки первого канала
12 СТ «+Е пит » Статус питающего напряжения выходного каскада первогоканала 17 Вых2 Выход управления затвором транзистора с регулировкой времени включения управляемого транзистора первого канала
11 Сз Вход для подключения дополнительного конденсатора (настройка времени задержки включения)первого канала 18 Вых1 Выход управления затвором транзистора с регулировкой времени выклчения управляемого транзистора первого канала
10 СТ Статусный выход аварии на управляемом транзисторе первого канала 19 –Е пит
9 БЛОК Вход блокировки 20 Общ Выходы напряжений питания силовой части драйвера первого канала
8 Не задействован 21 +Е пит Выходы напряжений питания силовой части драйвера первого канала
7 +5В 22 +Е пит "
6 Вход для подключения питания входной схемы 23 Общ" Выходы напряжений питания силовой части драйвера второго канала
5 ВХ2 «+» Прямой управляющий вход второго канала 24 –Е пит " Выходы напряжений питания силовой части драйвера второго канала
4 ВХ2 «–» Инверсный управляющий вход второго канала 25 Вых1" Выход управления затвором транзистора с регулировкой времени включения управляемого транзистора второго канала
3 СТ «+Е пит »9 Статус питающего напряжения выходного каскада второго канала 26 Вых2" Выход управления затвором транзистора с регулировкой времени выключения управляемого транзистора второго канала
2 Сз9 Вход для подключения дополнительного конденсатора (настройка времени задержки переключения)второго канала 27 ИК1" Вход контроля напряжения насыщения с настройкой порога и времени блокировки второго канала
1 СТ9 Статусный выход аварии на управляемом транзисторе второго канала 28 ИК" Измерительный коллектор для контроля напряжения насыщения на управляемом транзисторе второго канала

Приборы обоих типов МД1ХХХ и МД2ХХХ обеспечивают формирование сигналов управления затворами транзисторов с регулируемой раздельно величиной зарядного и разрядного токов, с требуемыми динамическими параметрами, обеспечивают контроль напряжений и защиту затворов транзисторов в случае недостаточного или избыточного напряжения на них. Оба типа приборов контролируют напряжение насыщения управляемого транзистора и производят плавное аварийное отключение нагрузки в критических ситуациях, формируя сигнал с оптронной развязкой, сигнализирующий об этом. В дополнение к этим функциям приборы серии МД1ХХХ обладают возможностью контроля тока через управляемый транзистор с помощью внешнего токоизмерительного резистора - «шунта». Такие резисторы, обладающие сопротивлениями от 0,1 до нескольких мОм и мощностями в десятки и сотни Вт, выполненные на керамических основаниях в виде полос нихрома или манганина точной геометрии с подгонкой номинала, также разработаны ООО «Электрум АВ ». Более подробную информацию о них можно найти на сайте www.orel.ru/voloshin .

Таблица 5. Основные электрические параметры

Входная схема
мин. тип. макс.
Напряжение питания,В 4,5 5 18
Ток потребления,мА не более 80 без нагрузки не более 300мА с нагрузкой
Входная логика КМОП 3 –15 В,ТТЛ
Ток по входам управления,мА не более 0,5
Напряжение на выходе ст,В не более 15
Выходной ток по выходу ст,мА не менее 10
Выходная схема
Пиковый выходной ток,А
МД215 не более 1,5
МД250 не более 5,0
МД280 не более 8,0
Выходной средний ток,мА не более 40
Максимальная частота переключения,кГц не менее 100
Скорость изменения напряжения,кВ/мкс не менее 50
Максимальное напряжение на управляемом транзисторе,В не менее 1200
DC/DC преобразователь
Выходные напряжения,В не менее 15
Мощность,Вт не менее 1 не менее 6 (для моделей с индексом М)
КПД не менее 80%
Динамические характеристики
Задержка вход выход t вкл,мкс не более 1
Задержка защитного отключения t выкл,мкс не более 0,5
Задержка включения статуса,мкс не более 1
Время восстановления после срабатывания защиты,мкс не более 10
не менее 1 (задается емкостями Сt,Сt")
Время срабатывания схемы защиты по напряжению насыщения при включении транзистора tблок,мкс не менее 1
Пороговые напряжения
мин. тип. макс.
Порог срабатывания защиты по недостаточному E питания,В 10,4 11 11,7
Схема защиты по напряжению насыщения управляемого транзистора обеспечивает отключение выхода и формиро вание сигнала СТ при напряжении на входе «ИК »,В 6 6,5 7
Изоляция
Напряжение изоляции сигналов управления относительно силовых сигналов,В не менее 4000 переменного напряжения
Напряжение изоляции DC/DC преобразователя,В не менее 3000 постоянного напряжения

Предлагаемые драйверы позволяют управлять транзисторами с высокой частотой (до 100 кГц), что позволяет добиваться очень высоких эффективностей преобразовательных процессов.

Приборы серии МД2ХХХ имеют встроенный блок входной логики, позволяющий управлять сигналами с различной величиной от 3 до 15 В (КМОП)и стандартными ТТЛ-уровнями, обеспечивая при этом идентичный уровень сигналов управления затворами транзисторов и формируя настраиваемую с помощью внешних конденсаторов длительность задержки переключения верхнего и нижнего плеча полумоста, что позволяет обеспечить отсутствие сквозных токов.

Особенности применения драйверов на примере устройства МД2ХХХ

Краткий обзор

Модули драйвера МД215, МД250, МД280, МД215П, МД250П, МД280П - универсальные модули управления, предназначенные для переключения IGBT и мощных полевых транзисторов.

Все типы МД2ХХХ имеют взаимно совместимые контакты и отличаются только уровнем максимального импульсного тока.

Типы МД с более высокими мощностями - МД250, МД280, МД250П, МД280П хорошо подходят для большинства модулей или нескольких параллельно соединенных транзисторов, используемых на высоких частотах.

Модули драйвера ряда МД2ХХХ представляют собой полное решение проблем управления и защиты для IGBT и мощных полевых транзисторов. Фактически никакие дополнительные компоненты не требуются ни во входной, ни в выходной части.

Действие

Модули драйвера МД215, МД250, МД280, МД215П, МД250П, МД280П для каждого из двух каналов содержат:

  • входную схему, обеспечивающую согласование уровней сигналов и защитную задержку переключения;
  • электрическую изоляцию между входной схемой и силовой (выходной) частью;
  • схему управления затвором транзистора; на открытом транзисторе;
  • схему контроля уровня напряжения питания силовой части драйвера;
  • усилитель мощности;
  • защиту от выбросов напряжения в выходной части драйвера;
  • электрически изолированный источник напряжения - конвертер DC//DC (только для модулей с индексом П)

Оба канала драйвера работают независимо друг от друга.

Благодаря электрической изоляции, осуществляемой с помощью трансформаторов и оптронов (подвергаемых испытательному напряжению 2650 В переменного напряжения частотой 50 Гц в течении 1 мин.) между входной схемой и силовой частью, а также чрезвычайно высокой скоростью нарастания напряжения - 30 кВ/мкс, модули драйверов применяются в схемах с большими потенциальными напряжениями и большими потенциальными скачками, происходящими между силовой частью и схемой контроля (управления).

Очень короткие времена задержки драйверов ряда МД2ХХХ позволяют использовать их в высокочастотных источниках питания, высокочастотных конвертерах и конвертерах резонанса. Благодаря чрезвычайно коротким временам задержки они гарантируют безаварийную работу при управлении мостом.

Одна из основных функций драйверов ряда МД2ХХХ - гарантия надежной защиты управляемых силовых транзисторов от короткого замыкания и перегрузки. Аварийное состояние транзистора определяется с помощью напряжения на коллекторе силового транзистора в открытом состоянии. Если превышен порог, определенный пользователем, силовой транзистор выключается и остается заблокированным до окончания активного уровня сигнала на управляющем входе. После этого транзистор может быть снова включен подачей активного уровня на управляющий вход. Эта концепция защиты широко используется для надежной защиты IGBT-транзисторов.

Функциональное назначение выводов

Выводы 14 (ВХ1 «+»),13 (ВХ1 «–»)

Выводы 13 и 14 являются управляющими входами драйвера. Управление осуществляется подачей на них логических уровней ТТЛ. Вход Вх1 «+» является прямым, то есть при подаче на него логической 1 происходит открытие силового транзистора, а при подаче 0 - его закрытие. Вход Вх1 «–» является инверсным, то есть при подаче на него логической 1 происходит закрытие силового транзистора, а при подаче 1 - его открытие. Обычно Вх1 «–» подключается к общему проводнику входной части драйвера, а по входу Вх1 «+» производится управление им. Инвертирующее и неинвертирующее включение драйвера представлено на рис.10.

В таблице 6 приведена диаграмма состояния одного канала драйвера.

Электрическая изоляция между входной и выходной частью драйвера на этих выводах осуществляется с помощью оптронов. Благодаря их применению исключается возможность воздействия переходных процессов, возникающих на силовом транзисторе, в схему управления.

Таблица 6. Диаграмма состояний одного канала драйвера

Вх1+ Вх1– Напряжение на затворе транзистора Напряжение насыщения транзистора >нормы Ст Ст «+Е пит » Вых
Х Х + Х Х L L
x x x + l Н l
l x x x x Н l
x H x x x H l
H l - - H H H

Входная схема имеет встроенную защиту, исключающую открытие обоих силовых транзисторов полумоста одновременно. Если на управляющие входы обоих каналов подать активный управляющий сигнал, то произойдет блокирование схемы, и оба силовых транзистора будут закрыты.

Модули драйвера должны располагаться как можно ближе к силовым транзисторам и соединяться с ними максимально короткими проводниками. Входы Вх1 «+» и Вх1 «–» могут быть соединены со схемой управления и контроля проводниками длиной до 25 см.

Причем проводники должны идти параллельно. Кроме того, входы Вх1 «+» и Вх1 «–» можно соединить со схемой управления и контроля с помощью витой пары. Общий проводник к входной схеме должен всегда подводиться отдельно для обоих каналов для обеспечения надежной передачи управляющих импульсов.

Принимая во внимание, что надежная передача управляющих импульсов происходит в случае очень длинного импульса, то полная конфигурация должна быть проверена в случае минимально короткого управляющего импульса.

Вывод 12 (СТ «+Е пит »)

Вывод 12 является статусным выходом, подтверждающим наличие питания (+18 В) на выходной (силовой) части драйвера. Он собран по схеме с открытым коллектором. При нормальной работе драйвера (наличии питания и достаточном его уровне) статусный вывод соединяется с общим выводом управляющей схемы с помощью открытого транзистора. Если этот статусный вывод подключить по схеме, представленной на рис.11, то аварийной ситуации будет соответствовать высокий уровень напряжения на нем (+5 В). Нормальной работе драйвера будет соответствовать низкий уровень напряжения на этом статусном выводе. Типовое значение протекающего тока через статусный вывод соответствует 10 мА, следовательно, номинал резистора R рассчитывается по формуле R =U/0,01,

где U - питающее напряжение. При снижении напряжения питания ниже 12 В происходит выключение силового транзистора и блокировка работы драйвера.

Вывод 11 (Сз)

К выводу 11 подключается дополнительный конденсатор, увеличивающий время задержки между входным и выходным импульсом tвкл на драйвере. По умолчанию (без дополнительного конденсатора) это время ровно 1 мкс, благодаря чему на импульсы короче 1 мкс драйвер не реагирует (защита от импульсных помех). Основным назначением этой задержки является исключение возникновения сквозных токов, возникающих в полумостах. Сквозные токи вызывают разогрев силовых транзисторов, срабатывание аварийной защиты, увеличивают потребляемый ток, ухудшают КПД схемы. Благодаря введению этой задержки обоими каналами драйвера, нагруженного на полумост, можно управлять одним сигналом в форме меандра.

К примеру, модуль 2MBI 150 имеет задержку по выключению 3 мкс, следовательно, чтобы исключить возникновение сквозных токов в модуле при совместном управлении каналами, нужно поставить дополнительную емкость не менее 1200 пФ на оба канала.

Для снижения влияния окружающей температуры на время задержки необходимо выбирать конденсаторы с малым ТКЕ.

Вывод 10 (СТ)

Вывод 10 является статусным выходом аварии на силовом транзисторе первого канала. Высокому логическому уровню на выходе соответствует нормальная работа драйвера, а низкому уровню - авария. Авария возникает в случае превышения напряжения насыщения на силовом транзисторе порогового уровня. Максимальный ток, протекающий по выходу, составляет 8 мА.

Вывод 9 (БЛОК)

Вывод 6 является управляющим входом драйвера. При подаче на него логической единицы происходит блокировка работы драйвера и подача запирающего напряжения на силовые транзисторы. Вход блокировки является общим для обоих каналов. Для нормальной работы драйвера надо подать на этот вход логический ноль.

Вывод 8 не используется.

Выводы 7 (+5 В) и 6 (общий)

Выводы 6 и 7 являются входами для подключения питания к драйверу. Питание осуществляется от источника мощностью 8 Вт и выходным напряжением 5 ± 0,5 В. Питание необходимо подключить к драйверу проводниками небольшой длины (для уменьшения потерь и увеличения помехозащищенности). В случае, если соединяющие проводники имеют длину более 25 см, необходимо между ними как можно ближе к драйверу ставить помехоподавляющие емкости (керамический конденсатор емкостью 0,1 мкФ).

Вывод 15 (ИК)

Вывод 15 (измерительный коллектор) подключается к коллектору силового транзистора. Через него осуществляется контроль напряжения на открытом транзисторе. В случае КЗ или перегрузки напряжение на открытом транзисторе резко возрастает. При превышении на коллекторе транзистора порогового значения напряжения происходит запирание силового транзистора и срабатывает статус аварии СТ. Временные диаграммы процессов, протекающих в драйвере при срабатывании защиты, приведены на рис.7. Порог срабатывания защиты можно снизить подключением последовательно соединенных между собой диодов, причем пороговая величина напряжения насыщения U нас. пор.=7 –n U пр.VD , где n - количество диодов, U пр.VD - падение напряжения на открытом диоде. В случае, если питание силового транзистора осуществляется от источника 1700 В, необходимо установить дополнительный диод напряжением пробоя не ниже 1000 В. Катод диода подключается к коллектору силового транзистора. Время срабатывания защиты можно регулировать с помощью вывода 16-ИК1.

Вывод 16 (ИК1)

Вывод 16 (измерительный коллектор) в отличие от вывода 15 не имеет встроенного диода и ограничительного резистора. Он необходим для подключения конденсатора, который определяет время срабатывания защиты по напряжению насыщения на открытом транзисторе. Эта задержка необходима для того, чтобы исключить влияние на схему помехи. Благодаря подключению конденсатора время срабатывания защиты увеличивается пропорционально емкости t блокировки =4 С U нас. пор., где C - емкость конденсатора, пФ. Это время суммируется со временем внутренней задержки драйвера t выкл(10%)=3 мкс. По умолчанию в драйвере стоит емкость С =100 пФ, следовательно, задержка срабатывания защиты составляет t =4 100 6,3+t выкл (10%)=5,5 мкс. В случае необходимости это время можно увеличивать, подключая емкость между 16 выводом и общим проводом питания силовой части.

Выводы 17 (вых.2)и 18 (вых.1)

Выводы 17 и 18 являются выходами драйвера. Они предназначены для подключения силовых транзисторов и регулировки времени их включения. По выводу 17 (вых.2) происходит подача положительного потенциала (+18 В) на затвор управляемого модуля, а по выводу 18 (вых.1)- отрицательного потенциала (–5 В). В случае необходимости обеспечения крутых фронтов управления (порядка 1 мкс) и не очень большой мощности нагрузки (два модуля 2MBI 150, включенных параллельно) допустимо прямое соединение этих выходов с управляющими выводами модулей. Если нужно затянуть фронты или ограничить ток управления (в случае большой нагрузки), то модули необходимо подключать к выводам 17 и 18 через ограничивающие резисторы.

В случае превышения напряжения насыщения порогового уровня происходит защитное плавное снижение напряжения на затворе управляющего транзистора. Время снижения напряжения на затворе транзистора до уровня 90%t выкл (90%)=0,5мкс, до уровня 10%t выкл(10%)=3 мкс. Плавное снижение выходного напряжения необходимо для того, чтобы исключить возможность возникновения скачка напряжения.

Выводы 19 (–E пит), 20 (Общ.) и 21 (+E пит)

Выводы 19, 20 и 21 являются выходами питания силовой части драйвера. На эти выводы поступает напряжение с DC/DC-преобразователя драйвера. В случае использования драйверов типа МД215, МД250, МД280 без встроенных DC/DC-конверторов сюда подключаются внешние источники питания: 19 вывод –5 В, 20 вывод - общий, 21 вывод +18 В на ток до 0,2 А.

Расчёт и выбор драйвера

Исходными данными для расчета является входная емкость модуля С вх или эквивалентный заряд Q вх, входное сопротивление модуля R вх, размах напряжения на входе модуля.U =30 В (приводятся в справочной информации по модулю), максимальная рабочая частота, на которой работает модуль f max.

Необходимо найти импульсный ток, протекающий через управляющий вход модуля Imax, максимальную мощность DC/DC-преобразователя P.

На рис.16 приведена эквивалентная схема входа модуля, которая состоит из емкости затвора и ограничивающего резистора.

Если в исходных данных задан заряд Q вх, то необходимо пересчитать его в эквивалентную входную емкость C вх =Q вх /D U.

Реактивная мощность, выделяемая на входной емкости модуля, рассчитывается по формуле Рс =f Q вх D U. Общая мощность DC/DC-преобразователя драйвера Р складывается из мощности, потребляемой выходным каскадом драйвера Рвых, и реактивной мощности, выделяемой на входной емкости модуля Рс: Р =Р вых +Рс.

Рабочая частота и размах напряжения на входе модуля при расчетах взяты максимальными, следовательно, получена максимально возможная при нормальной работе драйвера мощность DC/DC-преобразователя.

Зная сопротивление ограничивающего резистора R, можно найти импульсный ток, протекающий через драйвер: I max =D U/R.

По результатам расчетов можно произвести выбор наиболее оптимального драйвера, необходимого для управления силовым модулем.

Драйверы полевых транзисторов

Драйверы MOSFET- и IGBT-транзисторов - устройства для управления мощными полупроводниковыми приборами в выходных каскадах преобразователей электрической энергии. Они используются в качестве промежуточного звена между управляющей схемой (контроллером или цифровым сигнальным процессором) и мощными исполнительными элементами.

Этапы развития энергетической (силовой) электроники определяются достижениями в технологиях силовых ключей и их схем управления. Доминирующим направлением в энергетической электронике является повышение рабочих частот конверторов, входящих в состав импульсных источников питания. Преобразование электроэнергии на более высоких частотах позволяет улучшить удельные массогабаритные характеристики импульсных трансформаторов, конденсаторов и дросселей фильтров. Динамические и статические параметры силовых приборов постоянно улучшаются, но мощными ключами надо еще и эффективно управлять. Для сбалансированного взаимодействия между управляющей схемой и выходными каскадами и предназначены мощные высокоскоростные драйверы MOSFET- и IGBT-транзисторов. Драйверы имеют высокие выходные токи (до 9 А), малые длительности фронта, спада, задержки и другие интересные отличительные особенности. Классификация драйверов приведена на рисунке 2.15.

Рисунок 2.15 -Классификация драйверов

Драйвер должен иметь, по крайней мере, один внешний вывод (в двухтактных схемах два), который относится к обязательным. Он может служить как предварительным импульсным усилителем, так непосредственно ключевым элементом в составе импульсного источника питания.

В качестве управляемого прибора в силовых схемах различного назначения могут применяться биполярные транзисторы, МОП – транзисторы и приборы триггерного типа (тиристоры, симисторы). Требования, предъявляемые к драйверу, осуществляющему оптимальное управление в каждом из этих случаев различны. Драйвер биполярного транзистора должен управлять током базы при включении и обеспечивать рассасывание неосновных носителей в базе на этапе выключения. Максимальные значения тока управления при этом мало отличаются от усредненных на соответствующем интервале. МОП – транзистор управляется напряжением, однако в начале интервалов включения и выключения драйвер должен пропускать большие импульсные токи заряда и разряда емкостей прибора. Приборы же триггерного типа требуют формирования короткого импульса тока только в начале интервала включения, поскольку выключение (коммутация) у наиболее распространенных приборов происходит по основным, а не управляющим электродам. Всем этим требованиям в той или иной степени должны удовлетворять соответствующие драйверы.

На рисунках 2.16…2.18 представлены типовые схемы включения биполярного и полевого МОП – транзисторов с использованием одного транзистора в драйвере. Это так называемые схемы с пассивным выключением силового транзистора. Как видно из рисунка, по структуре драйвера схемы эти вполне идентичны, что позволяет использовать одни и те же схемы для управления транзисторами обоих типов. В этом случае рассасывание носителей, накопленных в структуре транзистора, происходит через пассивный элемент – внешний резистор. Сопротивление его, шунтирующее управляющий переход не только при выключении, но и на интервале включения, не может быть выбрано слишком малым, что ограничивает скорость рассасывания заряда.

Для увеличения быстродействия транзистора и создания высокочастотных ключей необходимо снизить сопротивление цепи сброса заряда. Это осуществляется с помощью транзистора сброса, включаемого только на интервале паузы. Соответствующие схемы управления биполярным и МОП – транзисторами представлены на рисунке 2.17.

Драйвер представляет собой усилитель мощности и предназначается для непосредственного управления силовым ключом (иногда ключами) преобразователя. Он должен усилить управляющий сигнал по мощности и напряжению и, в случае необходимости, обеспечить его потенциальный сдвиг.

Выходной узел драйвера, управляющего изолированным затвором (транзисторы MOSFET, IGBT), должен соответствовать следующим требованиям:

    МДП-транзисторы и IGBT – это приборы, управляемые напряжением, однако для увеличения входного напряжения до оптимального уровня (12-15 В) необходимо обеспечить в цепи затвора соответствующий заряд.

    Для ограничения скорости нарастания тока и уменьшения динамических помех необходимо использовать последовательные сопротивления в цепи затвора.

Драйверы для управления сложными преобразовательными схемами содержат большое количество элементов, поэтому их выпускают в виде интегральных схем. Эти микросхемы, помимо усилителей мощности, содержат также цепи преобразования уровня, вспомогательную логику, цепи задержки для формирования «мёртвого» времени, а также ряд защит, например, – от перегрузки по току и короткого замыкания, снижения напряжения питания и ряд других. Многие фирмы выпускают многочисленный функциональный ряд: драйверы нижнего ключа мостовой схемы, драйверы верхнего ключа мостовой схемы, драйверы верхнего и нижнего ключей с независимым управлением каждого из них, полумостовые драйверы, которые часто имеют только один управляющий вход и могут использоваться для симметричного закона управления, драйверы для управления всеми транзисторами мостовой схемы.

Типовая схема включения драйвера верхнего и нижнего ключей фирмы International Rectifier IR2110 с бутстрепным принципом питания приведена на рис.3.1, а. Управление обоими ключами независимое. Отличие данного драйвера от других заключается в том, что в IR2110 введена дополнительная схема преобразования уровня как в нижнем, так и верхнем каналах, позволяющая разделить по уровню питание логики микросхемы от напряжения питания драйвера. Содержится также защита от пониженного напряжения питания драйвера и высоковольтного «плавающего» источника.

Конденсаторы С D , С С предназначены для подавления высокочастотных помех по цепям питания логики и драйвера соответственно. Высоковольтный плавающий источник образован конденсатором С1 и диодом VD1 (бутстрепный источник питания).

Подключение выходов драйвера к силовым транзисторам осуществляется при помощи затворных резисторов R G1 и R G2 .

Поскольку драйвер построен на полевых элементах и суммарная мощность, расходуемая на управление, незначительна, то в качестве источника питания выходного каскада может использован конденсатор С1, подзаряжаемый от источника питания U ПИТ через высокочастотный диод VD1. Конденсатор С1 и диод VD1 в совокупности образуют высоковольтный «плавающий» источник питания, предназначенный для управления верхним транзистором VT1 стойки моста. Когда нижний транзистор VT2 проводит ток, то исток верхнего транзистора VT1 подключается к общему проводу питания, диод VD1 открывается и конденсатор С1 заряжается до напряжения U C1 =U ПИТ – U VD1 . Наоборот, когда нижний транзистор переходит в закрытое состояние и начинает открываться верхний транзистор VT2, диод VD1 оказывается подпертым обратным напряжением силового источника питания. В результате этого выходной каскад драйвера начинает питаться исключительно разрядным током конденсатора С1. Таким образом, конденсатор С1 постоянно «гуляет» между общим проводом схемы и проводом силового источника питания (точка 1).

При использовании драйвера IR2110 с бутстрепным питанием особое внимание следует обратить на выбор элементов высоковольтного «плавающего» источника. Диод VD1 должен выдерживать большое обратное напряжение (в зависимости от силового источника питания схемы), допустимый прямой ток примерно 1 А, время восстановления t rr =10-100 нс, т.е быть быстродействующим. В литературе рекомендуется диод SF28 (600 В, 2 А, 35 нс), а также диоды UF 4004…UF 4007, UF 5404…UF 5408, HER 105… HER 108, HER 205…HER 208 и другие классы “ultra - fast” .

Схема драйвера выполнена таким образом, что высокому логическому уровню сигнала на любом входе HIN и LIN соответствует такой же уровень на его выходе HO и LO (см. рис. 3.1 б, драйвер синфазный). Появление высокого уровня логического сигнала на входе SD приводит к запиранию транзисторов стойки моста.

Данную микросхему целесообразно использовать для управления ключами инвертора с ШИМ–регулированием выходного напряжения. При этом необходимо помнить, что в СУ необходимо обязательно предусмотреть временные задержки («мертвое» время) с целью предотвращения сквозных токов при коммутации транзисторов стойки моста (VT1, VT2 и VT3,VT4, рис 1.1).

Емкость С1 – это бутстрепная емкость, минимальная величина которой может рассчитываться по формуле :

где Q 3 – величина заряда затвора мощного ключа (справочная величина);

I пит – ток потребления драйвера в статическом режиме (справочная величина, обычно I пит I G c т мощного ключа);

Q 1 – циклическое изменение заряда драйвера (для 500-600 - вольтных драйверов 5 нК);

V п – напряжение питания схемы драйвера;

– падение напряжения на бутстрепном диоде VD1;

Т – период коммутации мощных ключей.

Рис.3.1. Типовая схема включения драйвера IR2110 (а) и временные диаграммы его сигналов на входах и выходах (б)

V DD – питание логики микросхемы;

V SS – общая точка логической части драйвера;

HIN, LIN – логические входные сигналы, управляющие верхним и нижним транзисторами соответственно;

SD – логический вход отключения драйвера;

V CC – напряжение питания драйвера;

COM – отрицательный полюс источника питания V CC ;

HO, LO – выходные сигналы драйвера, управляющие верхним и нижним транзисторами соответственно;

V B –напряжение питания высоковольтного «плавающего» источника;

V S – общая точка отрицательного полюса высоковольтного «плавающего» источника.

Полученное значение бутстрепной емкости необходимо увеличить в 10-15 раз (обычно С в пределах 0,1-1 мкФ). Это должна быть высокочастотная емкость с малым током утечки (в идеале – танталовая).

Резисторы R G 1 , R G 2 определяют время включения мощных транзисторов, а диоды VD G 1 и VD G 2 , шунтируя эти резисторы, уменьшают время выключения до минимальных величин. Резисторы R 1 , R 2 имеют небольшую величину (до 0,5 Ом) и выравнивают разброс омических сопротивлений вдоль общей шины управления (обязательны, если мощный ключ – параллельное соединение менее мощных транзисторов).

При выборе драйвера для мощных транзисторов необходимо учитывать:

    Закон управления мощными транзисторами:

Для симметричного закона подходят драйверы верхнего и нижнего ключа и драйверы полумостов;

Для несимметричного закона необходимы драйверы верхнего и нижнего ключа с независимым управлением каждого мощного ключа. Для несимметричного закона не подходят драйверы с трансформаторной гальванической развязкой.

    Параметры мощного ключа (I к или I стока).

Обычно применяют приближенный подход:

I вых др max =2 А может управлять мощным VT с током до 50 А;

I вых др max =3 А – управлять мощным VT с током до 150 А (иначе время включения и выключения значительно возрастает и увеличиваются мощностные потери на переключение), т.е. высококачественный транзистор при ошибочном выборе драйвера теряет свои основные достоинства.

    Учет дополнительных функций.

Фирмы выпускают драйверы с многочисленными сервисными функциями:

Различные защиты мощного ключа;

Защита от понижения напряжения питания драйвера;

С встроенными бутстрепными диодами;

С регулируемым и нерегулируемым временем задержки включения мощного VT по отношению к моменту выключения другого (борьба со сквозными токами в полумосте);

Со встроенной или отсутствующей гальванической развязкой. В последнем случае на входе драйвера необходимо подключить микросхему гальванической развязки (чаще всего – высокочастотная диодная оптопара);

Синфазные или противофазные;

Питание драйверов (бутстрепный вид питания или необходимы три гальванически развязанных источника питания).

При равноценности нескольких типов драйверов следует отдать предпочтение тем, которые коммутируют ток затвора мощных транзисторов с помощью биполярных VT. Если эту функцию выполняют полевые транзисторы, то могут быть отказы в работе драйвера при определенных обстоятельствах (перегрузках) за счет триггерного эффекта «защелкивания».

После выбора типа драйвера (и его данных) необходимы мероприятия по борьбе со сквозными токами в полумосте. Стандартный способ – выключение мощного ключа мгновенно, а включение запертого – с задержкой. Для этой цели применяют диоды VD G 1 и VD G 2 , которые при закрывании VT шунтируют затворные резисторы, и процесс выключения будет быстрее, чем отпирание.

Кроме шунтирования затворных резисторов R G 1 и R G 2 с помощью диодов (VD G 1 , VD G 2 , рис.3.1) для борьбы со сквозными токами в П-схеме мощного каскада фирмы выпускают интегральные драйверы, ассиметричные по выходному току включения VT I др вых m ах вкл и выключения I др вых m ах выкл (например I др вых m ах вкл =2А, I др вых m ах выкл =3А). Этим задаются ассиметричные выходные сопротивления микросхемы, которые включены последовательно с затворными резисторами R G 1 и R G 2 .

,
.

где все величины в формулах – справочные данные конкретного драйвера.

Для симметричного (по токам) драйвера справедливо равенство

.

Итак, для предотвращения возникновения сквозных токов необходимо подобрать суммарную величину сопротивлений в цепи затвора (за счет
, и, соответственно, регулируя ток заряда затворной емкости VT), задержку включения
транзистора больше или равным времени, затрачиваемое на закрывание VT

где
– время спада тока стока (справочная величина);

– время запаздывания начала выключения VT по отношению к моменту подачи на затвор запирающего напряжения, зависящее от величины разрядного тока затвора (соответственно он зависит от суммарного сопротивления в цепи затвора). При шунтирующих затворных диодах (VD G 1 , VD G 2 , рис.3.1) ток разряда однозначно определяется сопротивлением
. Поэтому для определения
решают следующую пропорцию

(соответствует) –

(соответствует) –

Если скорректированная величина
будет на порядок больше
, то это свидетельствует некорректному выбору типа драйвера по мощности (большое
) и этим корректируется в худшую сторону быстродействие мощных ключей. Для окончательного определения величины
можно воспользоваться техническими справочными данными мощного VT. Для этого составляется пропорция

(соответствует) –

(соответствует) –

(Если решение дает значение R G 1 с отрицательным знаком, то задержку на включение будет с запасом обеспечивать выходное сопротивление драйвера).

Для облегчения борьбы со сквозными токами некоторые производители уже на стадии изготовления добиваются того, чтобы t выкл < t вкл (например, сборка – полумост СМ35084-5F фирмы Mitsubishi Elektric с динамическими параметрами: t з вкл =1,1 мс, t вкл =2,4 мс, t з выкл =0,9 мс, t выкл =0,5 мс).

Диоды VD G 1 и VD G 2 должны быть высокочастотными и выдерживать с запасом напряжение питания драйвера.

Можно для борьбы со сквозными токами (для симметричного закона управления) выбрать нужный полумостовой драйвер (если он подходит по другим параметрам), у которого время задержки регулируется в диапазоне 0,4…5 мкс (например, драйверы фирмы IR типа IR2184 или IR21844), если их задержка больше или равна величине t выкл.

В заключение стоит заметить, что фирмы вместо старых модификаций драйверов выпускают новые типы, которые совместимы со старыми, но могут иметь дополнительные сервисные функции (обычно встроенные бутстрепные диоды, вернее, бутстрепные транзисторы, выполняющие функцию диодов, которые раньше отсутствовали). Например, драйвер IR2011 снят с производства и взамен его введен новый IRS2011 или IR2011S (в разных пособиях неоднозначная запись).

В настоящее время в качестве силовых ключей большой и средней мощности применяются в основном MOSFET и IGBT транзисторы. Если рассматривать эти транзисторы как нагрузку для схемы их управления, то они представляют собой конденсаторы с ёмкостью в тысячи пикофарад. Для открытия транзистора, эту ёмкость необходимо зарядить, а при закрывании – разрядить, и как можно быстрее. Сделать это нужно не только для того, чтобы ваш транзистор успевал работать на высоких частотах. Чем выше напряжение на затворе транзистора, тем меньше сопротивления канала у MOSFET или меньше напряжение насыщения коллектор-эмиттер у IGBT транзисторов. Пороговое значение напряжения открытия транзисторов обычно составляет 2 – 4 вольта, а максимальное при котором транзистор полностью открыт 10-15 вольт. Поэтому следует подавать напряжение 10-15 вольт. Но даже в таком случае ёмкость затвора заряжается не сразу и какое-то время транзистор работает на нелинейном участке своей характеристики с большим сопротивлением канала, что приводит к большому падению напряжения на транзисторе и его чрезмерному нагреву. Это так называемое проявление эффекта Миллера.

Для того чтобы ёмкость затвора быстро зарядилась и транзистор открылся, необходимо чтобы ваша схема управления могла обеспечить как можно больший ток заряда транзистора. Ёмкость затвора транзистора можно узнать из паспортных данных на изделие и при расчете следует принять Свх = Сiss.

Для примера возьмём MOSFET – транзистор IRF740. Он обладает следующими интересующими нас характеристиками:

Время открытия (Rise Time — Tr) = 27 (нс)

Время закрытия (Fall Time — Tf) = 24 (нс)

Входная ёмкость (Input Capacitance — Сiss) = 1400 (пФ)

Максимальный ток открытия транзистора рассчитаем как:

Максимальный ток закрытия транзистора определим по тому же принципу:

Так как, обычно мы используем для питания схемы управления 12 вольт, то токоограничивающий резистор определим используя закон Ома.

То есть, резистор Rg=20 Ом, согласно стандартному ряду Е24.

Заметьте, что управлять таким транзистором напрямую от контроллера не получится, введу того, что максимальное напряжение, которое может обеспечить контроллер, будет в пределах 5 вольт, а максимальный ток в пределах 50 мА. Выход контроллера будет перегружен, а на транзисторе будет проявляться эффект Миллера, и ваша схема очень быстро выйдет из строя, так как кто-то, или контроллер, или транзистор, перегреются раньше.
Поэтому необходимо правильно подобрать драйвер.
Драйвер представляет собой усилитель мощности импульсов и предназначен для управления силовыми ключами. Драйверы бывают верхнего и нижнего ключей в отдельности, либо объединенные в один корпус в драйвер верхнего и нижнего ключа, например, такие как IR2110 или IR2113.
Исходя из информации изложенной выше, нам необходимо подобрать драйвер, способный поддерживать ток затвора транзистора Ig = 622 мА.
Таким образом, нам подойдёт драйвер IR2011 способный поддерживать ток затвора Ig = 1000 мА.

Так же необходимо учесть максимальное напряжение нагрузки, которое будут коммутировать ключи. В данном случае оно равно 200 вольт.
Следующим, очень важным параметром является скорость запирания. Это позволяет устранить протекание сквозных токов в двухтактных схемах, изображенной на рисунке ниже, вызывающие потери и перегрев.

Если вы внимательно читали начало статьи, то по паспортным данным транзистора видно, что время закрытия должно быть меньше времени открытия и соответственно ток запирания выше тока открытия If>Ir. Обеспечить больший ток закрытия, можно уменьшив сопротивление Rg, но тогда также увеличится и ток открытия, это повлияет на величину коммутационного всплеска напряжения при выключении, зависящего от скорости спада тока di/dt. С этой точки зрения повышение скорости коммутации является в большей степени негативным фактором, снижающим надежность работы устройства.

В таком случае воспользуемся замечательным свойством полупроводников, пропускать ток в одном направлении, и установим в цепи затвора диод, который будет пропускать ток запирания транзистора If.

Таким образом, отпирающий ток Ir будет протекать через резистор R1, а запирающий ток If — через диод VD1, а так как сопротивление p – n перехода диода намного меньше, чем сопротивление резистора R1, то и If>Ir. Для того чтобы ток запирания не превышал своего значения, последовательно с диодом включим резистор, сопротивление которого определим пренебрегая сопротивлением диода в открытом состоянии.

Возьмем ближайший меньший из стандартного ряда Е24 R2=16 Ом.

Теперь рассмотрим, что же обозначает название драйвера верхнего и драйвера нижнего ключа.
Известно, что MOSFET и IGBT транзисторы управляются напряжением, а именно напряжением заствор-исток (Gate-Source) Ugs.
Что же такое верхний и нижний ключ? На рисунке ниже приведена схема полумоста. Данная схема содержит верхний и нижний ключи, VT1 и VT2 соответственно. Верхний ключ VT1 подключен стоком к плюсу питания Vcc, а истоком к нагрузке и должен открываться напряжением приложенным относительно истока. Нижний же ключ, стоком подключается к нагрузке, а истоком к минусу питания (земле), и должен открываться напряжением, приложенным относительно земли.

И если с нижним ключом все предельно ясно, подал на него 12 вольт – он открылся, подал на него 0 вольт — он закрылся, то для верхнего ключа нужна специальная схема, которая будет открывать его относительно напряжения на истоке транзистора. Такая схема уже реализована внутри драйвера. Все что нам нужно, это добавить к драйверу бустрептную ёмкость С2, которая будет заряжаться напряжением питания драйвера, но относительно истока транзистора, как это изображено на рисунке ниже. Именно этим напряжением и будет отпираться верхний ключ.

Данная схема вполне работоспособна, но использование бустрептной ёмкости позволяет ей работать в узких диапазонах. Эта ёмкость заряжается, когда открыт нижний транзистор и не может быть слишком большой, если схема должна работать на высоких частотах, и так же не может быть слишком маленькой при работе на низких частотах. То есть при таком исполнении мы не можем держать верхний ключ бесконечно открытым, он закроется сразу после того как разрядится конденсатор С2, если же использовать ёмкость побольше, то она может не успеть перезарядится к следующему периоду работы транзистора.
Мы не раз сталкивались с данной проблемой и очень часто приходилось экспериментировать с подбором бустрептной ёмкости при изменении частоты коммутации или алгоритма работы схемы. Проблему решили со временем и очень просто, самым надежным и «почти» дешевым способом. Изучая Technical Reference к DMC1500, нас заинтересовало назначение разъёма Р8.

Почитав внимательно мануал и хорошо разобравшись в схеме всего привода, оказалось, что это разъём для подключения отдельного, гальванически развязанного питания. Минус источника питания мы подключаем к истоку верхнего ключа, а плюс ко входу драйвера Vb и плюсовой ножке бустрептной ёмкости. Таким образом, конденсатор постоянно заряжается, за счет чего появляется возможность держать верхний ключ открытым на столько долго, на сколько это необходимо, не зависимо от состояния нижнего ключа. Данное дополнение схемы позволяетреализовать любой алгоритм коммутации ключей.
В качестве источника питания для заряда бустрептной ёмкости можно использовать как обычный трансформатор с выпрямителем и фильтром, так и DC-DC конвертер.

«ZVS-драйвер» (Zero Voltage Switching) — очень простой и поэтому довольно распространенный низковольтный генератор. Он собирается по несложной схеме, при этом эффективность данного решения может достигать 90% и выше. Для сборки устройства достаточно одного дросселя, пары полевых транзисторов, четырех резисторов, двух диодов, двух стабилитронов, и рабочего колебательного контура со средней точкой на катушке. Можно обойтись и без средней точки, и об этом поговорим далее.

В сети можно найти много реализаций этой схемы, среди которых индукционные нагреватели, индукционные плитки, высоковольтные трансформаторы, и просто высокочастотные преобразователи напряжения. Схема напоминает генератор Ройера, однако это не он. Давайте же рассмотрим, как эта схема работает.

При подаче питания на схему, ток начинает течь к стокам обоих полевых транзисторов, одновременно с этим заряжаются емкости затворов через резисторы. Поскольку полевые транзисторы не полностью одинаковы, один из них (например Q1) открывается быстрее, и начинает проводить ток, при этом через диод D2 разряжается затвор другого транзистора Q2, который удерживается таким образом надежно закрытым.

Поскольку в схему включен колебательный контур, напряжение на стоке закрытого полевого транзистора Q2 сначала возрастает, но затем понижается, переходя через ноль, в этот момент затвор открытого полевого транзистора Q1 быстро разряжается, и открытый первым транзистор Q1 теперь запирается, а так как он теперь заперт, то на его стоке уже не ноль, и затвор второго транзистора Q2 быстро дозаряжается через резистор, и второй транзистор Q2 теперь открывается, при этом разряжая через диод D1 затвор транзистора Q1.

Через пол периода все повторяется с точностью до наоборот — второй транзистор закроется, а первый — откроется, и т. д. В контуре возникнут таким образом синусоидальные автоколебания. Дроссель L1 ограничивает питающий ток, и сглаживает небольшие коммутационные выбросы.

Легко заметить, что запирание обоих полевых транзисторов происходит при нулевом напряжении на их стоках, когда ток в контурной катушке максимален, а это значит, что коммутационные потери сведены к минимуму, и даже при мощности устройства в 1 кВт (например для ), ключам нужны лишь небольшие радиаторы. Это как раз и объясняет большую популярность данной схемы.

Частоту автоколебаний можно легко вычислить по формуле f = 1/(2π*√[ L*C]), так как индуктивность первичной обмотки (если используется трансформаторное включение) и емкость конденсатора образуют контур, обладающий собственной резонансной частотой. Важно при этом помнить, что амплитуда колебаний будет по напряжению больше напряжения питания приблизительно в 3,14 (Пи) раза.

Вот типичные компоненты, которые используют для сборки: пятиваттные резисторы по 470 Ом, для ограничения тока заряжающего затворы; два резистора по 10 кОм, для подтягивания затворов к минусу; стабилитроны на 12, 15 или 18 вольт, дабы уберечь затворы от превышения допустимого напряжения; и диоды UF4007 для разрядки затворов через противоположные плечи контура.

Полевые транзиcторы IRFP250 и IRFP260 хорошо подходят для данного ZVS-драйвера. Естественно, если потребуется дополнительное охлаждение, то каждый транзистор должен быть установлен на отдельный радиатор, поскольку работают транзисторы не одновременно. Если радиатор только один, то обязательно использование изолирующих подложек. Питание схемы не должно превышать 36 вольт, это связано с обычными ограничениями для затворов.

Если контур без средней точки, то просто ставят два дросселя вместо одного, на каждое плечо, и режим работы сохраняется аналогичным, ровно как и с одним дросселем.

Между тем, на Алиэкспресс уже появились изделия на основе этой автоколебательной схемы ZVS, причем как с одним дросселем, так и с двумя. Вариант с двумя дросселями особенно удобен в качестве резонансного источника питания нагревательных индукторов без средней точки.



Рекомендуем почитать

Наверх