Новинки компьютерной техники и технологии. NVIDIA: Стриминг видеоигр никогда не обойдёт PC. Чипы без проводов: лазерное соединение

Помощь 24.04.2019
Помощь

Писатели-фантасты предвидели, что когда-то в мире появится множество уникальных технических приспособлений, способных подарить человеку новые возможности, ощущения, эмоции. Например, Рэй Брэдбери предсказал изобретение «ракушек», которые стали прототипами современных наушников, а Жюль Верн успешно описал не существовавшие в его время телевидение и видеосвязь. Вот только кое-что осталось за пределами прогнозов авторов – это то, что возникает в стремительно развивающихся компьютерных технологиях сегодня.

Провода – в прошлом

Новые компьютерные технологии, которые человечество сможет увидеть уже в ближайшем будущем, больше не будут зависеть от шнуров и кабелей, пусть даже самых тонких и едва заметных. Над достижением подобного результата трудятся сотрудники кембриджского Центра микрофотоники при Массачусетском технологическом институте. В настоящий момент именно провода являются элементами, соединяющими важные звенья и части любых процессоров. Однако ученые предполагают, что им удастся заменить их импульсами германиевых лазеров, которые окажутся способны передавать информацию в битах и байтах в 100 раз быстрее, чем традиционные фидеры с перемещаемыми по ним электронами.

В основе этой новейшей компьютерной технологии лежит применение системы скрытых каналов. Она заключается в следующем: в множестве специальных разъемов устанавливаются микроскопические датчики и сенсоры, которые передают световые импульсы и трансформируют их в точную информацию. Подобное решение поможет человечеству не только получить более высокую скорость передачи данных (чип с германиевым лазером уже показал значение в 1Тб/с, что в 2 раза быстрее проводных устройств), но и внести частичный вклад в стабилизацию экологической ситуации на планете. Эта новая технология в компьютерной технике не будет потреблять и вырабатывать энергию, а, следовательно, позволит снизить уровень выбрасываемого в атмосферу тепла.

Электроника для оптимизации тела

Следующие новые разработки в компьютерных технологиях охватывают целый комплекс приспособлений: это и наушники-вкладыши, фиксирующие частоту сердцебиения, и надеваемые под одежду сенсоры для контроля и корректировки осанки, и тактильные подкладки для обуви, способные с помощью вибрирования и встроенных датчиков GPS указать своему владельцу путь до места назначения. Все эти устройства можно охарактеризовать словосочетанием «носимая электроника» – это «умные» гаджеты, которые за счет последних достижений науки и техники заметно упрощают людям жизнь.

Например, онкологи ведущих клиник уже используют полуочки/полусмартфон Google Glass на базе Android для того, чтобы проводить сложные операции своим пациентам и вести сбор материалов в тех или иных клинических случаях. К помощи этой разработки прибегают и обычные граждане, которые благодаря голосовым командам:

  • отправляют сообщения различным адресатам;
  • следят за погодными изменениями;
  • находят подходящие авиарейсы;
  • быстро узнают о правилах оказания первой медицинской помощи в ситуациях, угрожающих жизни и здоровью.

Мемристорная память

Новая технология мемристор, или резисторов памяти, позволит компьютерной сфере стать более емкой, ведь эта разработка обещает перевести все цифровые устройства с флеш-памяти на максимально долговечный и скоростной принцип хранения информации. Исследователи и программисты назвали его ReRAM (Resistive Random Access Memory).

Уникальные чипы будут состоять из чередующихся слоев диоксида титана и платины. Независящие от энергии схемы помогут человеку обрабатывать данные в 1000 раз быстрее, совершать 1000000 перезаписей против возможных сегодня 100000 подобных циклов и обрабатывать сведения практически моментально. Мемристоры способны стать настоящим прорывом среди новых открытий в компьютерных технологиях, ведь внедрение их в переносные устройства, например, плееры, электронные книги и портативные ноутбуки, сделает возможным регулярно иметь с собой уже не гигабайты, а целые терабайты различных материалов! В планах разработчиков из Quantum Science Research, США, также числится создание платы с объемом памяти в 1 петабайт, равным свыше 1000000 гигабайт. Фактический размер такого чипа поражает воображение – благодаря использованию мемристор он окажется не больше 1 см.

Это интересно! Проект развития мемристор, являющийся одним из самых новых в компьютерных технологиях, станет полезным и для дальнейшей разработки самостоятельного искусственного интеллекта. Предполагается, что соединения мемристорной памяти смогут образовывать нечто похожее на синапсы нейронов, а, значит, и генерировать идеи, принимать решения и моделировать другие аспекты работы человеческого мозга.

Улучшение техники и ее свойств

Новые разработки в области компьютерных технологий не существуют опосредованно от остального мира, а, наоборот, служат разрешению острых проблем, важных для продолжения благополучной жизни общества. Так, сегодня экологи вместе с нанотехнологами и инженерами трудятся над созданием эффективных, но не угрожающих природе механизмов, транспортных средств, роботов. Здесь одной из первоочередных задач является искусственное структурирование углеводорода, входящего в состав композитных монолитов. Это поможет сделать производимые автомобили и другие машины, не предназначенные для передвижения, легче на 10%, а, следовательно, и снизить количество токсичных выхлопных газов, которые образуются при сгорании топлива.

Еще одна немаловажная тема – это вопрос длительного хранения энергии. Специалисты считают, что действенным окажется массовый выпуск в свет инновационных батарей – проточных для удержания жидкого химического потенциала веществ, вместительных графеновых конденсаторов для многотысячного заряжения и разряжения аккумуляторов, нанопроволочных литиево-ионных источников постоянного тока для сбережения солнечного излучения.

Грандиозная визуализация

Новые технологии в области компьютеров сделают доступным качественно иное восприятие реальности. Исследователи заверяют: привнесение в мир возможности просмотра телевидения без использования экранов приурочено уже к ближайшему будущему. О чем же идет речь? О создании головной транспортабельной гарнитуры виртуальной действительности (шлемов или очков), специальных смартфонов для слабовидящих и пожилых представителей населения, устройств для приема и отправки видеоголограмм.

То, что раньше можно было увидеть разве что в голливудских кинолентах, сегодня постепенно становится явью благодаря особым проекционным пленкам, панорамному изображению в формате 3D и бинауральному звуку, который записывается в микрофон, точно повторяющий форму человеческих ушей!

Интерфейс «мозг – компьютер»: киборгизация

Наконец, последняя новая технология в мире компьютеров представляет собой соединение главного органа ЦНС человека с высокоскоростной электронно-вычислительной машиной. Сотрудники Гарварда, США, уже добились в этой области значительных результатов – они создали едва ощутимую полимерную сетку с электродами, большая часть которой является свободным пространством. На основание (каркас) в мозгу способны и должны прикрепиться нейроны, что позволит инородной ткани стать одним из элементов организма, но продолжить выполнять заложенные в нее функции.

В 2012 году команда начала проводить эксперименты на мышах и крысах. Это предприятие завершилось успехом. Микроскопические изделия диаметром в несколько сантиметров были внедрены животным при помощи ультратонкой иглы (100 микрометров) прямо через черепа в определенные участки мозга. Позднее выяснилось, что сетки благополучно прижились и продолжили интегрироваться в нейронную среду тем лучше, чем дольше они там находились.

Подобный прорыв может оказаться крайне полезным с практической точки зрения. Нейроинтерефейсы дадут возможность полнее исследовать работу человеческого мозга, при необходимости активизировать те или иные доли, предотвращать и устранять нарушения, возникающие при болезнях Паркинсона, Альцгеймера и других, а также управлять сложными техническими конструкциями одной лишь силой мысли! Однако такая разработка влечет за собой и множество вопросов этического характера. Например, насколько правомерно будет проводить внедрение нейронного «чипа» маленьким детям? Что делать, если влияние на отделы мозга спровоцирует проявление нетипичных реакций? Не потеряет ли человек своей воли и свободы после подобного шага? На эти вопросы нанотехнологам, инженерам и философам будущего еще только предстоит ответить.

AMD или Intel? Борьба на рынке процессоров для ПК обостряется: после долгих лет неудач компания AMD выводит на рынок процессор Zen. Быстрее также станут мобильные чипы и видеокарты.

1 Дзен-мастер от AMD

Выпуском нового процессора Zen компания AMD объявила войну Intel, и у любителей мощных ПК весной снова появится возможность выбора между двумя равноценными марками чипов. Архитектура Zen объединяет в себе четыре ядра с разделяемым кешем третьего уровня и 14-нанометровыми транзисторами. При этом в каждом ядре AMD реализована гиперпоточность, которая до сих пор была прерогативой Intel.

2 Intel Kaby Lake с частотой 4,5 ГГц


Уже появились новые ноутбуки, в том числе Medion Akoya S3409, работающие на новом поколении процессоров от Intel - Kaby Lake. В 2017 году можно ожидать чипы для ПК с повышенной вплоть до 4,5 ГГц тактовой частотой. Вероятно, этому поспособствует 14-нанометровый техпроцесс изготовления полупроводников.

3 Artemis для смартфонов


В 2017 году компания ARM планирует выпустить процессор Artemis. Изготовленный по 10-нанометровому техпроцессу, он обещает смартфонам увеличенное на 30% время работы от батареи и больше вычислительной мощности. Предположительно, этот процессор будет использоваться в iPhone 7s.

4 AMD вернется на рынок топовых видеокарт


О следующем поколении видеочипов Vega от компании AMD официально пока еще известно очень мало. Но благодаря многочисленным утечкам становится понятно, что речь идет о решениях топового уровня, существенно превосходящих Polaris (Radeon RX 470/RX 480) - и все это при сравнительно скромном увеличении энергопотребления.

> Самой быстрой видеокартой во второй половине 2017 года должна стать двухчиповая плата на базе Vega с производительностью около 23 терафлопс, которая сможет проводить вдвое больше вычислений в единицу времени, чем действующий лидер NVIDIA Titan X. Скорее всего, в ней будет применяться второе поколение ­памяти High Bandwidth Memory увеличенного объема с подключением к процессору по очень широкой шине.

> Виртуальная реальность в 4К-разре­шении технически станет доступной на любом компьютере среднего уровня. Кроме того, в 2017 году появятся игры с отображением большей палитры цветов и повышенной четкости благодаря технологии High Dynamic Range (HDR). Именно для них и нужна эта гигантская мощь видеокарт в первую очередь.

Накопители данных: новый SSD созрел для рекорда

С 2017 года быстрые SSD- и флеш-накопители смогут вмещать в себя гораздо больше информации, чем традиционные HDD. Однако новый тип магнитной памяти имеет все шансы похоронить даже флеш.

5 Турбо-SSD читают со скоростью 10 Гбит/с

Существует ли предел скорости у SSD-технологии? 2017 год определенно даст шанс переосмыслить существующее положение вещей. Так, Samsung PM1725a выполняет более миллиона операций ввода-вывода в секунду. Seagate готовит SSD-накопитель Nytro XP7200 со скоростью чтения до 10 Гбит/с (1,25 Гбайт/с). Его подключение реализовано через шину PCIe с 16 линиями, то есть аналогично видеокартам. До сих пор максимумом на ПК были четыре линии, а в серверном оборудовании - восемь.

6 Гигантские SSD до 100 Тбайт


Прощай, магнитный диск: разработчики накопителей начали укладывать штабелями даже флеш-ячейки, что ведет к невероятной плотности записи. Seagate создает пока еще безымянный твердотельный накопитель на 60 Тбайт в формате 3,5 дюйма. Toshiba уже нацелилась на 100 Тбайт.

7 Масштабное объединение памяти


Не успела флеш-память набрать обороты, как на рынок вышла новая технология-преемник. Она отличается модулями, на которых ОЗУ и накопитель сливаются в один турбо-носитель. Такие модули выдерживают гораздо больше процессов записи, чем SSD, и передают данные так быстро, что могут заменять оперативную память. Фурор произвела память 3D XPoint от Intel, которая сейчас тестируется на серверах Facebook. Однако 3D XPoint пока лишь в десять раз обгоняет SSD - для ОЗУ этого недостаточно.

> Как нарочно, именно магнитная память должна завершить объединение: технология MRAM от компании Everspin использует для хранения информации не электрические токи, а магнитные элементы - впервые она была использована в модулях Aup-AXL-M128 для разъема M.2. (рис.1) Намагниченность ­может изменяться так быстро, что память MRAM достигает скорости оперативной памяти. Нерешенной осталась лишь проблема недостаточной емкости - 256 Мбит на чип. Но уже в следующем году плотность должна быть увеличена в четыре раза. Кроме того, MRAM не подвержена «старению», как флеш-память, и сохраняет данные при отключении питания.

> В микропроцессорах компания Fujitsu планирует начать использовать небольшую память NRAM от Nantero (рис.2). NRAM сохраняет информацию в углеродных нано-трубках за счет изменения проводимости. У этой технологии такой же хороший потенциал, как и у MRAM.

8 Терабайтные SSD для телефонов

К слову о плотности записи: Samsung размещает свой терабайтный SSD на площади всего в два квадратных сантиметра - идеально для ультрабуков, смартфонов и планшетов. Вероятно, это становится возможным благодаря новому поколению ячеек памяти V-NAND, когда друг на друга накладываются 64 слоя ячеек.

Быстрый Интернет в любых сетях

Благодаря новому телефону Pixel от Google и экипированным сетям скорость Интернета поднимется до невиданных ранее высот, даже в общественном транспорте, где уже предоставляется бесплатный Wi-Fi.

9 Новые скорости по ТВ-кабелю


За зашифрованным сокращением DOCSIS 3.1 скрывается мощный апгрейд передачи данных посредством коаксиального (телевизионного) кабеля, к которому ведущие провайдеры приступят в 2017 году. Помимо построения сети на стороне провайдера, клиентам также понадобится новый модем, такой как SURFboard SB8200 от Arris. В теории DOCSIS 3.1 позволит скачивать данные со скоростью до 10 Гбит/с, а загружать - со скоростью в 1 Гбит/с, окончательно похоронив тем самым стекловолокно.

10 Мобильная связь прорывает гигабитную границу

Ведущие сотовые операторы готовят свои сети для работы по технологии LTE Advanced Pro. Следующим летом они должны преодолеть гигабитный рубеж. Осталось надеяться, что провайдеры согласуют свои тарифы и смогут предложить своим клиентам больше трафика за те же деньги.

11 Бесплатный Wi-Fi в транспорте


До конца 2016 года «Мосгортранс» и РЖД планируют завершить оснащение всего транспорта новым оборудованием Wi-Fi. Теперь можно будет получить бесплатный доступ к ­Интернету везде.

12 Google нападает на Apple и Microsoft


Выпуском нового смартфона Pixel, преемника устройств Nexus, корпорация Google демонстрирует свою новую стратегию. Ценовая политика этой компании в будущем будет все сильнее ориентирована на Apple: в зависимости от телефона и комплектации стоимость варьируется от примерно 55 000 до 75 000 рублей. В отличие от линейки Nexus, где на переднем плане стояла операционная система Android, здесь на сцену выходит новый голосовой помощник, которого Google скромно называет «Ассистентом». Компания собирается поставить его в один ряд с Siri от Apple, Cortana от Microsoft и Alexa от Amazon.


> Новая ОС
Кроме того, Google в настоящее время работает над новой операционной системой под кодовым названием Andromeda, в которой должны объединиться Chrome OS и Android. Эта новая оболочка будет установлена, в первую очередь, на ноутбуках и планшетах «два в одном», которые Google противопоставляет устройствам Surface от Microsoft. Первым аппаратом на базе Andromeda должен стать ноутбук-трансформер Pixel 3 - последующая модификация модели Pixel C . Он выйдет на рынок осенью 2017 года.

Виртуальная реальность: погружение в мир иллюзий

Google вооружается, Oculus переоснащается, а Intel начинает восхождение - в 2017 году рынок виртуальной реальности может резко изменить курс. Также нас ожидает погружение в VR-миры с помощью браузера.

13 Google Daydream


Запуском своей VR-платформы Daydream компания Google прощается с дешевыми очками Cardboard из картона. Шлем, получивший названием «View», сделан по большей части из пластика и текстиля, благодаря чему мало весит. Он создает столь же реалистичное погружение, что и продукт-конкурент Gear VR от Samsung. Однако данный шлем работает только с совместимыми с Daydream смартфонами, такими как Pixel Phone.

14 Беспроводной шлем


Компания Oculus VR, один из лидеров рынка VR-шлемов, представила прототип гарнитуры Rift под названием «Santa Cruz», которая обходится без подключения к ПК. Вычислительный блок располагается на затылке пользователя.

15 Intel Project Alloy


Центральный элементом прототипа VR-очков от Intel является камера RealSense, распознающая физические объекты в пространстве - например, руки пользователя. В следующем году эта компания откроет свое программное и аппаратное оборудование для разработчиков.

16 WebVR: виртуальная реальность в браузере


Преимущество VR-контента в браузере заключается в отсутствии необходимости устанавливать дополнительное ПО, чтобы просматривать содержимое с помощью подходящего шлема. Сегодня разработкой виртуальной реальности для браузера занимаются множество организаций. Техническую базу составляет JavaScript-интерфейс WebVR, возникший в результате сотрудничества команд Mozilla и Google Chrome.

> Конфигурация автомобиля в VR На своей конференции Connect компания Oculus представила программу React VR, с помощью которой веб-разработчики в будущем смогут легко создавать контент WebVR. Кроме того, Oculus показала WebVR-приложение от автоконцерна Renault, позволяющее конфигурировать новый автомобиль в виртуальной реальности. Для просмотра контента WebVR Oculus также разрабатывает VR-браузер Carmel.

> VR для Microsoft Edge Даже Edge в будущем должен стать вратами в виртуальную реальность: разработчики Microsoft уже работают над поддержкой WebVR в браузере системы Windows 10. Вместе с очками HoloLens от Microsoft он принципиально ­изменит подход к работе в Интернете.

Мир на пороге больших перемен

В 2017 году мы будем управлять нашими умными домами посредством голоса, получать покупки при помощи дронов и ездить в зимний отпуск на автомобиле Tesla, если, конечно, все пойдет так, как задумано.

17 Tesla Model 3


В конце 2017 года это свершится: первые модели доступного электрического автомобиля Model 3 от компании Tesla Motors должны быть переданы первым покупателям, сделавшим предзаказ, - при условии, что производство аккумуляторов на фабрике Gigafactory входящей в состав компании, пойдет по плану. В США цена этих инновационных авто будущего среднего класса будет начинаться от $35 000 долларов. В нее не включена плата за использование станций быстрой зарядки.

18 Доставка с помощью дронов


Разрешения от соответствующих ведомств по вопросам воздушного сообщения уже получены: в настоящее время Google в США и Amazon в Великобритании тестируют доставку своих товаров автономными дронами. Коммерческий запуск планируется на 2017 год.

19 Умные дома от Google и Amazon


Благодаря динамикам Echo и Home компании Amazon и Google вступают в бизнес умных домов. Оба устройства управляются голосом. Отвечать будет голосовой помощник.

> Echo голосом ассистентки Alexa, ­разработанной компанией Amazon, предоставит информацию, прочитает аудиокниги, озвучит сообщения, данные о пробках и прогноз погоды, а также воспроизведет музыку из сервисов Prime и Spotify. Кроме того, с ее помощью можно управлять устройствами из домашней сети: лампами, выключателями и термостатами производства, к примеру, компаний Philips (Hue) и Innogy.

> Home (на иллюстрации) - конкурент устройства Echo от Google с практически теми же возможностями. Разница: в качестве помощника выступает «Ассистент» Google, и есть привязка к другим продуктам этой корпорации, таким как Chromecast и Play Music.

ФОТО: компании-производители; Martin Mielek/Google, Amazon, Samsung, Google; Deutsche Bahn AG; Dirk Ellenbeck/Vodafone

Сфера информационных технологий развивается в двух преимущественно независимых циклах: продуктовом и финансовом. В последнее время не утихают споры о том, на каком этапе финансового цикла мы находимся; очень много внимания уделяется финансовым рынкам, которые подчас ведут себя непредсказуемо и сильно колеблются. С другой стороны, продуктовым циклам достается относительно мало внимания, хотя именно они двигают информационные технологии вперед. Но, анализируя опыт прошлого, можно попытаться понять текущий продуктовый цикл и предугадать дальнейшее развитие технологий.

Развитие продуктовых циклов в сфере высоких технологий происходит за счет взаимодействия платформ и приложений: новые платформы позволяют создавать новые приложения, которые, в свою очередь, повышают ценность этих платформ, замыкая таким образом цепь положительной обратной связи.


Малые продуктовые циклы повторяются постоянно, но исторически сложилось так, что раз в 10–15 лет начинается очередной большой цикл – эпоха, полностью меняющая облик IT.


Финансовые и продуктовые циклы развиваются в основном независимо друг от друга

Когда-то возникновение компьютеров побудило предпринимателей создать первые текстовые редакторы, таблицы и много других приложений для ПК. С появлением интернета мир увидел поисковые механизмы, онлайн-коммерцию, электронную почту, социальные сети, бизнес-приложения модели SaaS и много других сервисов. Смартфоны дали толчок развитию мобильных социальных сетей и мессенджеров, а также появлению новых видов услуг вроде карпулинга. Мы живем в разгар мобильной эпохи, и, судя по всему, нас ожидает еще много любопытных инноваций.

Каждую эпоху можно условно разделить на 2 фазы: 1) фазу формирования – когда платформа впервые появляется на рынке, но является дорогостоящей, сырой и/или сложной в обращении; 2) активную фазу – когда новый продукт решает упомянутые недостатки платформы, тем самым начиная период ее стремительного развития.

Компьютер Apple II был выпущен в 1977 году, а Альтаир 8800 – в 1975 году, но активная фаза эпохи ПК началась с релиза IBM PC в 1981 году.


Продажи ПК в год (тыс.)

Фаза формирования интернета началась в 80-х и ранних 90-х годах , когда он, по сути, представлял собой инструмент обмена текстовыми данными, используемый учеными и правительством. Выход первого браузера, NCSA Mosaic, в 1993 году ознаменовал начало фазы интенсивного развития интернета, которая не закончилась и по сей день.


Количество пользователей интернета по всему миру

В 90-х годах уже существовали мобильные телефоны, а первые смартфоны появились на заре нулевых, но повсеместное производство смартфонов началось в 2007–2008 годах с выходом первого iPhone, а затем – с появлением платформы Android. С тех пор количество пользователей смартфонов взлетело до небес, и сейчас их число достигло уже порядка двух миллиардов. А к 2020 году смартфоны будут у 80 % населения планеты.


Продажи смартфонов по всему миру (млн.)

Если длительность каждого цикла действительно составляет 10–15 лет, всего через несколько лет начнется активная фаза новой компьютерной эпохи. Выходит, новая технология уже находится в фазе формирования. На сегодняшний день можно выделить несколько главных трендов в сферах аппаратного и программного обеспечения, позволяющих нам частично пролить свет на следующую эпоху. В данной статье я хочу обсудить эти тренды и выдвинуть несколько предположений о том, как может выглядеть наше будущее.

Аппаратное обеспечение: компактное, дешевое и универсальное

В мейнфрейм-эпоху только крупные организации могли позволить себе компьютер. Мини-компьютеры были доступны для организаций поменьше, а компьютеры – для домов и офисов.


Размер компьютеров уменьшается с постоянной скоростью

Сейчас мы на пороге новой эпохи, в которой процессоры и сенсоры становятся настолько дешевыми и компактными, что компьютеров скоро будет больше, чем людей.

Этому способствуют два фактора. Во-первых, неуклонный прогресс в производстве полупроводников за последние 50 лет (Закон Мура). Во-вторых, то, что Крис Андерсон называет «мирными дивидендами от войны смартфонов»: головокружительный успех смартфонов способствовал большим инвестициям в разработку процессоров и сенсоров. Загляните внутрь современного квадрокоптера, очков виртуальной реальности или любого устройства интернета вещей – что вы увидите? Правильно – главным образом компоненты смартфона.

Но в современную эпоху полупроводников всё внимание перешло от отдельных процессоров к целым узлам специальных микросхем, известным как однокристальные системы.


Цены на компьютеры стабильно снижаются

Обыкновенная однокристальная система сочетает в себе энергоэффективный ARM-процессор и специальный графический процессор, а также устройства обмена информацией, управления питанием, обработки видеосигнала и так далее.


Raspberry Pi Zero: 5-долларовый Компьютер на Linux с процессором 1 GHz

Эта инновационная архитектура позволила сбросить минимальную стоимость базовых вычислительных систем со 100 до 10 долларов за единицу. Отличным примером послужит Raspberry Pi Zero – первый 5-долларовый компьютер на Linux с частотой 1 GHz. За те же деньги можно приобрести микроконтроллер Wi-Fi , поддерживающий одну из версий Python. Совсем скоро эти микропроцессоры будут стоить меньше доллара, и мы без труда сможем встраивать их практически всюду.

Но более серьезные достижения происходят сегодня в мире высококачественных микропроцессоров. Отдельного внимания заслуживают графические процессоры , лучшие из которых производит компания NVIDIA. Графические процессоры полезны не только для обработки графики, но и при работе с алгоритмами машинного обучения, а также с устройствами виртуальной и дополненной реальности. Однако представители компании NVIDIA обещают более существенные улучшения производительности графических процессоров в ближайшем будущем.

Козырем всей сферы информационных технологий по-прежнему остаются квантовые компьютеры, которые пока существуют преимущественно в лабораториях. Но стоит сделать их коммерчески привлекательными, и это приведет к грандиозному росту производительности, прежде всего, в сфере биологии и искусственного интеллекта.


Квантовый компьютер Google

Программное обеспечение: золотой век искусственного интеллекта

Сегодня в мире программного обеспечения происходит много любопытных вещей. Хороший пример – распределенные системы. Их появление обусловлено многократным увеличением количества устройств за последние годы, что вызвало необходимость распараллеливать задания на нескольких машинах, налаживать обмен данными между устройствами и координировать их работу. Отдельного внимания заслуживают такие технологии распределенных систем, как Hadoop или Spark , предназначенные для работы с большими массивами данных. Стоит также упомянуть технологию блокчейн, обеспечивающую безопасность данных и ресурсов и впервые реализованную в криптовалюте Bitcoin.

Но, пожалуй, самые захватывающие открытия совершаются сегодня в области искусственного интеллекта (ИИ), имеющего длинную историю взлетов и падений. Еще сам Алан Тьюринг предсказывал , что к 2000 году машины будут способны имитировать людей. И хотя это предсказание пока не осуществилось, есть веские причины полагать, что ИИ наконец вступает в золотой век своего развития.

«Машинное обучение – это ключевой, революционный способ переосмысления всего, что мы делаем», – генеральный директор компании Google Сундар Пичаи .

Наибольший ажиотаж в области ИИ сосредоточен вокруг так называемого глубинного обучения – метода, который был широко освещен в рамках одного известного проекта компании Google, запущенного в 2012 году. В этом проекте была задействована высокопроизводительная сеть компьютеров, целью которой было научиться распознавать котиков на видеороликах с YouTube. Метод глубинного обучения основывается на искусственных нейронных сетях – технологии, зародившейся еще в 40-х годах прошлого века. Недавно эта технология снова стала актуальной из-за многих факторов : появления новых алгоритмов, снижения стоимости параллельных вычислений и широкого распространения больших наборов данных.


Процент ошибок в конкурсе ImageNet (красная линия соответствует показателям человека)

Остается надеяться, что глубинное обучение не станет просто очередным модным термином Силиконовой долины. Впрочем, интерес к этому методу обучения подкрепляется впечатляющими теоретическими и практическими результатами. К примеру, до введения глубинного обучения допустимый процент ошибок победителей ImageNet, известного конкурса по машинному видению, составлял 20–30 %. Но после его применения правильность алгоритмов неуклонно росла, и уже в 2015 году показатели машин превзошли показатели человека.

А вот небольшое стартап-приложение для классификации предметов в реальном времени:


Приложение Teradeep идентифицирует предметы в реальном времени

Хм, а ведь где-то я уже это видел:


Фрагмент из фильма Терминатор 2: Судный день (1991 г.)

Одним из первых приложений с методом глубинного обучения, выпущенных крупной компанией, было удивительно умное приложение для поиска изображений Google Photos:


Поиск по фотографиям (без метаданных) с ключевой фразой «big ben»

В скором времени нас ожидает значительное повышение производительности ИИ во всех сферах программного и аппаратного обеспечения: голосовые помощники, поисковые механизмы, чат-боты , 3D сканеры , языковые переводчики, автомобили, дроны, системы диагностической визуализации и многое-многое другое.

«Легко предугадать идеи следующих 10000 стартапов: взять Х и прибавить искусственный интеллект», – Кевин Келли .

Стартапы, создающие продукцию с упором на ИИ, должны оставаться предельно сфокусированными на определенных приложениях, чтобы поддерживать конкуренцию с крупными компаниями, для которых ИИ является высшим приоритетом. Системы ИИ становятся эффективнее по мере того, как увеличивается объем собранных для них данных. Получается нечто вроде маховика, постоянно вращающегося за счет так называемого эффекта сети данных (больше пользователей → больше данных → лучше продукция → больше пользователей). К примеру, команда картографического сервиса Wase использовала эффект сети данных, чтобы сделать качество предоставляемых карт лучше, чем у их более маститых конкурентов. Всем, кто намерен использовать ИИ для своего стартапа, стоит придерживаться аналогичной стратегии.

Программное + аппаратное обеспечение: новые компьютеры

Сейчас на стадии формирования находится целый ряд перспективных платформ, которые скоро вполне могут перейти на стадию развития, так как они сочетают в себе самые последние разработки из сфер программного и аппаратного обеспечения. И хотя эти платформы могут выглядеть по-разному либо иметь разную комплектацию, у них есть одна общая черта: использование последних расширенных возможностей умной виртуализации. Рассмотрим некоторые из этих платформ:

Автомобили. Крупные информационно-технологические компании вроде Google, Apple, Uber и Tesla немало инвестируют в разработку автономных или беспилотных автомобилей. На рынке уже представлены полуавтономные автомобили Tesla Model S и вскоре ожидается выход обновленных и более совершенных моделей. Создание полностью автономного автомобиля потребует некоторого времени, однако есть основания полагать, что ждать осталось не более пяти лет. На самом деле, уже существуют разработки полностью автономных автомобилей, которые ездят не хуже, чем под управлением человека. Тем не менее, в силу многих аспектов культурного и регулятивного характера такие автомобили должны ездить намного лучше, чем управляемые человеком, чтобы быть допущенными к широкой эксплуатации.


Беспилотный автомобиль составляет схему своего окружения

Несомненно, объем инвестиций в беспилотные автомобили будет только расти. В дополнение к информационно-технологическим компаниям, крупные производители автомобилей тоже начали задумываться над автономностью. Нас ждет еще много интересных стартап-продуктов. Программные средства глубинного обучения стали настолько эффективными, что сегодня одному-единственному разработчику под силу сделать полуавтономный автомобиль.


Самодельный беспилотный автомобиль

Дроны. Современные дроны укомплектованы по последнему слову техники (в основном компонентами смартфонов и механическими деталями), но имеют относительно простое ПО. В скором времени появятся усовершенствованные модели, оснащенные компьютерным зрением и другими видами ИИ, что сделает их более безопасными, удобными в управлении и полезными. Фото- и видеосъемка с дронов будет популярной не только среди аматоров, но, что важнее, найдет и коммерческое применение. К тому же, существует немало опасных видов работ, в том числе высотных, для выполнения которых было бы гораздо безопаснее использовать дроны.


Полностью автономный полет дрона

Интернет вещей. Самые основные преимущества устройств интернета вещей – это их энергоэффективность, безопасность и удобство. Хорошими примерами первых двух характеристик могут послужить продукты Nest и Dropcam . Что касается удобства, стоит обратить внимание на устройство Echo от Amazon.

Большинство людей полагают, что Echo – это очередная маркетинговая уловка, но, воспользовавшись хотя бы раз, они удивляются, насколько удобным оказывается это устройство. Оно блестяще демонстрирует эффективность голосового управления как основы пользовательского интерфейса. Конечно, мы еще не скоро увидим роботов с универсальным интеллектом, способных поддерживать полноценный разговор. Но, как показывает Echo, компьютеры уже способны справляться с более-менее сложными голосовыми командами. По мере того как метод глубинного обучения будет совершенствоваться, компьютеры научатся лучше понимать язык.


3 основных преимущества: энергоэффективность, безопасность, удобство

Устройства интернета вещей также найдут применение в бизнес-сегменте. К примеру, устройства с сенсорами и возможностью сетевого подключения широко используются для оперативного контроля промышленного оборудования.

Носимая техника. Сегодня функциональность носимых компьютеров варьируется в зависимости от ряда факторов: емкости батареи, средств коммуникации и обработки данных. Наиболее успешные устройства обычно имеют весьма узкую сферу применения: к примеру, фитнес-трекинг. По мере улучшения компонентов аппаратного обеспечения носимые устройства будут, как и смартфоны, расширять свою функциональность, открывая тем самым возможности для новых приложений. Как и в случае с интернетом вещей, предполагается, что голос станет основным пользовательским интерфейсом управления носимыми устройствами.


Миниатюрный наушник с искусственным интеллектом, фрагмент из фильма «Она»

Виртуальная реальность. 2016 год будет очень интересным для развития средств VR: релиз очков виртуальной реальности Oculus Rift и HTC Vive (и, возможно, PlayStation VR) означает, что удобные и иммерсивные системы VR наконец станут общедоступными. Разработчикам устройств VR придется хорошенько постараться, чтобы не допустить возникновения у пользователей так называемого эффекта «зловещей долины» , при котором чрезмерная правдоподобность робота или другого искусственного объекта вызывает неприязнь у людей-наблюдателей.

Для создания качественных систем VR требуются качественные экраны (с высоким разрешением, высокой частотой обновления и низкой инерционностью), мощные видеокарты и возможность отслеживать точное положение пользователя (предыдущие поколения систем VR могли только отслеживать поворот головы пользователя). В этом году благодаря новым устройствам пользователи впервые смогут испытать на себе полноценный эффект присутствия
Создание виртуального мира в 3D формате с помощью очков VR

Дополненная реальность. Скорее всего, AR получит развитие только после VR, потому что для полноценного использования дополненной реальности потребуются все возможности виртуальной вместе с дополнительными новыми технологиями. К примеру, для полноценного объединения в одной интерактивной сцене реальных и виртуальных объектов средствам AR потребуются продвинутые технологии машинного зрения с малой задержкой.


Устройство дополненной реальности, фрагмент из фильма «Kingsman: Секретная служба»

Но, скорее всего, эпоха дополненной реальности наступит быстрее, чем вам кажется. Этот деморолик был отснят непосредственно через устройство AR Magic Leap:


Демонстрация Magic Leap: виртуальный персонаж в реальной среде

Этот деморолик был снят непосредственно через устройство Magic Leap 14 октября 2015 года. При его создании не применялись ни спецэффекты, ни композитинг.

Что дальше?

Возможно, циклы в 10–15 лет больше не повторятся, и мобильная эпоха будет последним из них. А может быть, следующая эпоха будет короче, или лишь какой-то один подвид из рассмотренных выше технологий станет впоследствии действительно важным.

Я предпочитаю думать, что мы сейчас находимся в точке пересечения нескольких эпох. «Мирными дивидендами от войны смартфонов» стало стремительное появление новых устройств и разработок в сфере ПО, в особенности искусственного интеллекта, способного сделать эти устройства еще более умными и полезными.

Некоторые исследователи отмечают, что большинство новых устройств пока еще находятся в «пубертатном периоде» : они могут быть несовершенными и в некоторой степени нелепыми, а всё потому, что они еще не перешли в фазу развития. Как и в случае с персональными компьютерами в 70-х, интернетом в 80-х и смартфонами на заре нулевых, мы видим не полную картину, а лишь фрагменты того, во что текущим технологиям предстоит превратиться. Так или иначе, будущее близко: рынки колеблются, мода приходит и уходит, но прогресс, как и прежде, уверенно двигается вперед.

Лазерные чипы, гибкие печатные схемы, мемристоры и другие чудеса техники уже совсем рядом! Представьте себе мир, в котором электронные устройства заряжают себя сами, музыкальные плееры, способные проиграть всю вашу аудиоколлекцию, самовосстанавливающиеся батареи и чипы, изменяющие свои возможности «на лету». Судя по тому, над чем сегодня работают американские исследовательские лаборатории, все это не только возможно, но и перспективно.

«Следующие пять лет станут действительно впечатляющим периодом в развитии электроники, — говорит Дэвид Сейлер (David Seiler), глава подразделения полупроводниковой электроники коммерческого отдела Национального института Стандартов и Технологий (National Institute of Standards and Technology, NIST) в Гейтерсберге, штат Мерилэнд. - Множество вещей, которые сегодня кажутся далекой фантастикой, получат повсеместное распространение».

Итак, вы готовы начать путешествие в будущее электроники? Многие из идей, о которых мы расскажем сегодня, могут выглядеть фантастически, некоторые покажутся лишенными здравого смысла, но все их объединяет то, что они уже были опробованы в лабораториях и имеют все шансы превратиться в коммерческие продукты в ближайшие 5 лет.

Основная тема этой статьи - новые разработки в области микропроцессорной техники - от процессоров, передающих данные с помощью лазеров, заменяющих провода, до схем, выполненных на основе новых материалов, которые придут на смену традиционному кремнию. Эти технологии могут стать строительным материалом для множества новых инновационных продуктов, некоторые из которых мы даже не можем себе представить сегодня.

Чипы без проводов: лазерное соединение

При ближайшем рассмотрении можно увидеть, что типичный микропроцессор содержит миллионы тонких проводов, которые тянутся во все направления, соединяя активные элементы. Заглянув под поверхность вы найдете еще раз в пять больше проводов. Юрген Мишель (Jurgen Michel), ученый из Центра микрофотоники при Массачусетском технологическом институте в Кембридже (MIT"s Microphotonics Center in Cambridge), намерен заменить все эти провода импульсами германиевых лазеров, передающих данные с помощью инфракрасного излучения.

«По мере увеличения числа ядер и компонентов в процессорах соединительные провода переполняются данными и становятся слабым каналом связи. Использование фотонов вместо электронов позволяет улучшить ситуацию», — объясняет Мишель.

Перемещая данные со скоростью света, германиевые лазеры способны передавать биты и байты информации в 100 раз быстрее, чем путем перемещения электронов по проводам. Это особенно важно для связи между ядрами процессора и его памятью. Так же, как оптоволоконные линии улучшили эффективность телефонных звонков, использование лазеров в микропроцессорах может поднять обработку данных на небывалые высоты.

Самое приятное, что система Массачусетского технологического института не требует применения внутри процессоров огромного количества тоненьких кабелей. Вместо этого чип содержит множество скрытых туннелей и полостей, по которым перемещаются световые импульсы, а крошечные зеркала и сенсоры передают и интерпретируют данные.

Сочетание традиционной кремниевой электроники с оптическими компонентами, известное как кремниевая фотоника, может сделать компьютеры более экологичными - дружественными для окружающей среды. И все потому, что лазеры потребляют меньше энергии, чем провода, и излучают меньше тепла в окружающее пространство.

«Оптоэлектроника - это настоящий святой Грааль, — говорит Сейлер. - Она позволяет расширить возможности электроники и предоставляет при этом отличный способ снизить энергопотребление, поскольку не содержит проводов, которые являются настоящими теплорадиаторами для окружающего пространства».

В феврале 2010 года Мишель и его коллеги, Лайонел Кимерлинг (Lionel Kimerling) и Джифенг Лиу (Jifeng Liu), успешно создали и протестировали действующую схему, использующую для передачи данных встроенный германиевый лазер. В новом чипе была достигнута скорость передачи данных свыше 1 ТБ/с, что на два порядка быстрее, чем позволяют лучшие современные чипы с проводными соединениями.

Новый чип был создан с использованием современных технологий производства полупроводников с некоторыми дополнениями, поэтому Мишель считает, что переход к использованию чипов на основе лазерных соединений состоится уже в ближайшие пять лет. Если дальнейшие тесты пройдут успешно, MIT лицензирует технологию производства. Широкое распространение нового типа чипов ожидается к 2015 году.

Более того, к 2015 году ожидается появление компьютеров с 64-ядерными процессорами, ядра которых будут работать независимо и одновременно.

«Соединять их при помощи проводов - тупиковый путь, — говорит Мишель. - Использование германиевого лазера имеет грандиозный потенциал и большое преимущество».

Новейшие схемы: мемристоры

Ваш MP3-плеер переполнен любимыми музыкальными композициями и вы чувствуете себя сродни убийце, удаляя тот или иной трек? В таком случае мемристоры могут прийти как раз вовремя.

Это первые фундаментально новые электронные компоненты после создания в 50-х годах прошлого века кремниевых транзисторов. Мемристоры являются более скоростной, долговечной и потенциально более дешевой альтернативой флэш-памяти. А еще они в два раза более емкие - настоящее раздолье для любителей музыки.

«Если сегодня мы решим пересмотреть технологию производства компьютеров, мы просто обязаны использовать мемристорную память, считает Р. Стенли Уильямс (R. Stanley Williams), ведущий исследователь и глава группы квантовых исследований (Quantum Science Research, QSR) HP Labs в Пало-Альто, Калифорния. - Это фундаментальная структура для будущей электроники».

Мемристор - другими словами, резистор с памятью, — впервые упомянул профессор Калифорнийского университета Леон Чу (Leon Chua) еще в 1971 году. Но мемристорные прототипы HP Labs не демонстрировались публично вплоть до 2008 года.

Для создания мемристоров HP использует чередующиеся слои диоксида титана и платины. Под электронным микроскопом они выглядят как серии длинных параллельных выступов. Ниже под прямым углом расположен такой же слой, образуя «кубики» с размерами ячеек 2 х 3 нм.

Ключевой момент состоит в том, что любые два соседних провода можно соединить с электрическим переключателем под поверхностью, создавая ячейку памяти. Изменяя напряжение, прилагаемое к «кубикам», ученые могут открывать и закрывать крошечные электронные переключатели, сохраняя данные, как в традиционных чипах флэш-памяти.

Новый тип памяти получил название ReRAM (Resistive Random Access Memory). Такие чипы не только позволяют сохранить в два раза больше данных, чем флэш, но и работают в 1 000 раз быстрее, а также выдерживают до 1 000 000 циклов перезаписи, по сравнению со 100 000 циклов перезаписи у стандартной флэш-памяти. Кроме того, ReRAM читает и записывает данные на сравнимых скоростях, тогда как флэш-памяти требуется намного больше времени для записи данных, чем для их чтения.

HP и южнокорейская компания Hynix заключили договор о сотрудничестве с целью наладить массовое производство чипов ReRAM, которые смогут найти применения во многих портативных устройствах, таких как мультимедийные плееры. А ведь это означает терабайты музыкальных треков, видео и электронных книг! Первые продукты с новыми чипами памяти ожидают на рынке в 2013 году.

ReRAM также придет на смену динамической оперативной памяти в компьютерах. Поскольку ReRAM энергонезависима, она не будет терять информацию при выключении системы и не будет расходовать электроэнергию, в отличие от DRAM. По мнению Уильямса, грядет эра мгновенной обработки данных. Сегодня пользователи чаще не выключают компьютеры, а отправляют их в спящий режим. Но все равно для «пробуждения» компьютерной технике требуется от нескольких секунд до минуты, и лишь после этого доступ к данным будет восстановлен. Устройства, использующие ReRAM, возвращаются в рабочее состояние мгновенно.

Более того, по словам Уильямса, есть возможность размещать массивы мемристоров внутри чипа один над другим. Это путь к созданию 3D-памяти, которая позволит более рационально использовать пространство внутри чипа, вмещать гораздо больше памяти в одинаковый физический объем.

«Не существует фундаментальных ограничений на количество слоев, которые мы можем произвести, — объясняет Уильямс. - В ближайшие 10 лет мы можем создать чипы с объемом памяти в петабайт». Это миллион гигабайтов памяти, его достаточно для хранения видео высокой четкости, которого хватило бы на год просмотра. При этом размеры самого чипа не превышают размеров человеческого ногтя.

«Память - это только одна из возможностей применения мемристоров, но далеко не единственная. У этой технологии гигантский потенциал», — считает Сейлер.

В ближайшие 20 лет дизайн компьютеров может быть пересмотрен. В 2010 году исследователи из HP обнаружили, что мемристоры можно использовать для логических вычислений, а не только для хранения данных. Это означает, что, теоретически, обе эти функции можно реализовать на одном чипе.

И опять слово Уильямсу: «Один мемристор способен заменить множество схем, что в свою очередь позволит упростить архитектуру, дизайн и работу компьютеров». Например, один мемристор способен заменить шесть транзисторов, используемых для создания статичных ячеек RAM в кэш-памяти процессора.

По мнению Уильямса, мемристорная технология позволит даже создать искусственные нейронные синапсы, способные имитировать работу мозга. Сегодня это лишь отдаленные перспективы, но главное - в принципе возможные.

«Мемристоры имеют все шансы переписать правила электроники», — говорит Супратик Гуха (Supratik Guha), директор департамента физических наук IBM. Однако, по его мнению, технология требует дальнейшего совершенствования. «Они могут иметь потенциал в качестве элементов памяти, — добавляет он. - Но, как и любая другая технология, здесь следует двигать ползком, прежде чем идти и идти, прежде чем бежать».

Другими словами, мемристорные технологии не появятся неожиданно. Пройдет еще много времени, прежде чем мемристоры станут столь же широко распространенными, как DRAM или флэш-память.

Изменяемые чипы: программируемые слои

От самых скоростных процессоров к самым миниатюрным модулям памяти. Почти все чипы, используемые в современной электронике, имеют одну общую черту: их активные элементы находятся в верхних 1-2% слоя кремния, из которого он сделан.

В ближайшие несколько лет ситуация изменится, так как производители будут стараться втиснуть в вертикальные слои как можно больше компонент. Некоторые производители, такие как Intel, используют технологии склеивания отдельных чипов, а ученые из Университета Рочестера создают многослойные 3D-структуры внутри чипов. Оба подхода являются очень сложными и дорогими.

Вот если бы можно было заставить чипы перестраивать свою схему «по требованию», чтобы иметь несколько слоев активных элементов. Эта идея была воплощена в технологии Spacetime от Tabula и нашла применение в архитектуре чипов ABAX.

Вместо того, чтобы намертво впечатывать в кремний несколько слоев постоянных компонент, ABAX использует перепрограммируемые схемы, которые могут изменять функции в зависимости от требований пользователя. Сегодняшние чипы производителя содержат 8 разных слоев, свойства которых можно изменить в мгновение ока.

«Это выглядит примерно как супермаркет с восемью этажами, — объясняет Стив Тиг (Steve Tieg), глава по технологиям компании Tabula. - Чтобы перемещаться между этажами вы пользуетесь эскалатором». Но вместо того, чтобы создавать восемь отдельных физических этажей с собственной структурой и ассортиментом товаров, Tabula продемонстрировала способ создать единый слой (или этаж), который можно переконфигурировать в зависимости от задач.

«Это можно сравнить с тем, как если бы пока покупатель находится на эскалаторе, кто-то перестраивал бы этаж, чтобы создать нужный уровень с нужными продуктами, — добавляет Тиг. - Обстановка за пределами эскалатора выглядит так, будто покупатель находится на восьмом этаже, но на самом деле этаж один, просто изменившийся в соответствии с его потребностями».

Перепрограммирование чипа в рабочее состояние занимает всего 80 пикосекунд, в 1000 раз быстрее цикла вычислений обычного чипа. Таким образом, слои меняются практически «на лету», пока чип находится в ожидании следующей цепочки команд.

Таким образом, чипы ABAX позволяют сделать больше с меньшими затратами. Сделанные с использованием традиционной технологии производства полупроводников, чипы Tabula ABAX обходятся производителю примерно в ту же сумму, что и производство обычных чипов. Данный дизайн по-прежнему использует только верхние слои чипа, но один слой выполняет функции восьми различных чипов. По словам Тига, технология позволяет увеличить плотность схем в два раза, а память и пропускную способность видео - в 3.5 раза.

Сегодня Tabula сконцентрировала усилия на производстве чипов для специальных целей. Такие чипы - настоящие «рабочие лошадки» нашего времени. Они находят применение, например, в беспроводных маршрутизаторах или оборудовании для вышек сотовой связи.

В дальнейших планах Tabula - наладить производство чипов для популярных электронных устройств - цифровых камер, игровых консолей, а быть может даже и для полноценных компьютеров. Текущий 8-слойный дизайн чипов уже запущен в массовое производство, и сейчас Tabula работает над созданием 12-слойной версии с перспективой увеличения количества слоев до 20.

«Не существует ограничения на количество слоев, которые мы могли бы интегрировать», — отметил Тиг.

От сажи к схемам: графены

На протяжении последних 45 лет количество транзисторов в кремниевых процессорах компьютеров удваивалось каждые два года, доказав, что закон Мура работает так же надежно, как и закон тяготения. По мере того, как активные элементы чипов становились все меньше и дешевле для производства, в конечные устройства их можно было «втиснуть» во все возрастающих количествах, что в свою очередь увеличивало сложность, возможности и… энергопотребление электроники.

Но на самом деле такой путь оказался тупиковым. Ученые пытались поместить в кремниевый чип еще больше транзисторов, но примерно с размеров в 14 нм начались трудности с дальнейшей миниатюризацией элементов. 14 нм - это размер двух молекул гемоглобина в нашей крови или около одной тысячной размера гранулы тальковой пудры.

Вещество под названием графен вдохнуло новую жизнь в закон Мура, доказанный кремниевыми технологиями. Графен представляет собой слой атомов углерода, выстроенных в виде шестиугольных ячеек. Толщина такого слоя - 1 атом. Под электронным микроскопом графен очень похож на соты.

«Он не только странно выглядит, но и обладает необычными свойствами, — говорит Вольт де Гир (Walt de Heer) заведующий нанолабораторией Технологического института Джорджии. - Графен - уникальный материал будущего. Он скоростной, потребляющий мало энергии и из него можно делать самые миниатюрные элементы. Его возможности превосходят кремний, он делает то, что не под силу кремнию. Именно за ним будущее электроники».

Исследователи в области полупроводников экспериментировали с графеном еще с 70-х годов прошлого века. Но до недавнего времени им не удавалось создать ультратонкие слои графеновых шестиугольников. Ученые из Манчестерского университета Андре Гейм (Andre Geim) и Константин Новоселов успешно создали первые графеновые слои в 2004 году (за это и другие достижения в исследовании графенов в 2010 году они были удостоены Нобелевской премии). После этого графеновые технологии начали быстро развиваться.

В начале 2011 года группа де Гира создала графеновые провода - первый большой шаг на пути к созданию микрочипов. Толщины провода около 10 нм удалось добиться путем эпитаксии - наращивания чистого графена на кремниевой основе. (Эпитаксия - процесс наращивания тонкого слоя кристалла на подложке из другого кристалла (субстрате), так что наращиваемый слой повторяет структуру субстрата).

В конце концов, ученым удалось получить электронные структуры, имеющие толщину 1 нм и намного более скоростные, чем кремний. По прогнозам ученых, использование графенов позволит создать процессоры с частотой, измеряемой в терагерцах - это в 20 раз быстрее, чем быстродействие современным кремниевых процессоров.

В следующем году ученые Технологического института Джорджии надеются завершить создание прототипа чипа со встроенным графеном и протестировать возможности использования уникальных свойств этого материала для создания микросхем.

Ученые из IBM создали экспериментальные транзисторы и интегральные схемы на основе графенов, используя стандартные технологии производства полупроводников. По их словам - это можно считать первым шагом на пути к использованию графенов в промышленных масштабах.

«Эта область имеет огромный потенциал, — говорит директор департамента физических наук IBM Супратик Гуха. - Графены найдут применение в военной промышленности и в беспроводных технологиях, кроме того, их можно будет интегрировать с кремнием. Сегодня нужно хорошо потрудиться, чтобы продемонстрировать возможности создания схем усилителей с интегрированными в них высококачественными активными элементами из графена».

По прогнозам, первые продукты, использующие графены, появятся в 2013 году. Поэтому ожидать появления в ближайшее время супер-скоростных ноутбуков с графеновыми процессорами пока преждевременно. Если такая техника и появится, она будет слишком дорогой и сможет найти применение лишь в тех областях, где цена не имеет значения по сравнению с высокими скоростями и низким энергопотреблением.

Также и привычные нам интегральные схемы когда-то были «дорогим удовольствием» и применялись лишь в военной промышленности и для других особых целей. История в этой области такова, что многие вещи являются в мир дорогими и недоступными, а затем становятся дешевыми и общераспространенными. Графены имеют огромный потенциал, предполагается, что они могут стать общедоступными уже в ближайшие 10 лет.

Печатные схемы: бюджетные чипы

Стандартная технология производства полупроводников включает целый ряд сложных этапов, которые проводятся в абсолютно чистом помещении, где нет разрушительной для электроники пыли и загрязняющих веществ. Компания Xerox применяет более простой и дешевый способ производства электроники путем печати схем на пластиковой основе. Технологический процесс подразумевает использование оборудования, которое может стоить тысячи долларов, но не миллиарды, необходимые для развертывания традиционного завода для производства процессоров.

«Обычные электронные элементы - быстрые, маленькие и дорогие, — говорит Дженифер Эрнст (Jennifer Ernst), бывший директор по развитию бизнеса лаборатории Xerox PARC в Пало-Альто, Калифорния. - Печатая их непосредственно на пластик, PARC делает электронные элементы медленными, большими и дешевыми».

Технологический процесс печатания схем, разработанный PARC, требует немногим больших усилий, чем, например, распечатка обычной картинки. Все, что для этого нужно - специальные материалы, вроде серебряных чернил, а сама схема наносится на гибкие полиэтиленовые пластины, а не на хрупкий кремний. В принципе, конечный продукт даже сложно назвать чипом.

Адаптация различных технологий печати, включая впрыскивание чернил, штамповку и трафаретную печать, PARC производит усилители, батареи и переключатели намного менее дорогие, чем произведенные традиционным способом. А недавно компании удалось наладить производство 20-разрядной памяти и контроллеров, которые появятся в продаже уже в следующем году.

Другой интересный проект на основе печатных схем - детектор взрывов, который PARC разработала для Управления перспективного планирования оборонных научно-исследовательских работ США (U.S. Defense Advanced Research Projects Agency, DARPA). Гибкие печатные схемы встраиваются в военные каски, где новые сенсоры измеряют давление, мощность звука, ускорение и освещенность в условиях боевых действий.

Проведя неделю на передовой, солдат возвращается и сдает каску в специальную лабораторию, где полученные данные тщательно анализируются, и врачи делают вывод о возможности наличия травм головного мозга. Такие датчики хорошо выполняют свою работу, а стоят менее $1 по сравнению с $7, в которые обходится один традиционный сенсор.

Конечно же, печатные схемы и близко не способны конкурировать с кремнием, когда речь идет о быстродействии или возможности «упаковать» в малый объем миллиарды транзисторов. Но существует много областей применения, где стоимость гораздо важнее быстродействия. А в начале 2012 года печатные схемы начнут применять в игрушках и электронных играх, требующих простейшей обработки данных - например, синтезаторах речи, а также для управления подушками безопасности в автомобилях.

А уже к 2015 году печатные схемы можно будет найти и в других электронных продуктах - гибких ридерах электронных книг, которые можно будет сворачивать в трубочку наподобие бумажных журналов или для производства одежды из специальных тканей с солнечными элементами, с помощью которой можно будет подзаряжать мобильный телефон или музыкальный плеер.

По прогнозам аналитической фирмы IDTechEx, объемы продаж гибких печатных схем возрастут с $1 млрд в 2010 до $45 млрд в 2016 году. Они найдут применение в широком спектре устройств.

Платежные системы с распознаванием лиц: широко применяются уже сейчас

Системы распознавания лиц используются во многих странах для розыска преступников, контроля доступа к режимным объектам, а в некоторых странах - для подтверждения платежей в онлайн-банкинге. С 2014 года китайская компания Alibaba Group тестирует алгоритмы распознавания лиц, разработанные компанией Face++. Их собираются использовать для идентификации личности и подтверждения заказов в платежной системе Alipay. Точность алгоритма уже достигла 80%.

Еще одна компания, которая постепенно внедряет распознавание лиц, - . Она использует функцию Selfie Pay, которая позволяет подтверждать онлайн-платежи с помощью селфи. Чтобы приложение сделало снимок, нужно кивнуть или моргнуть - таким образом алгоритм убедится, что перед ним живой клиент, а не его фотография. Систему уже тестируют в Нидерландах, США, Канаде и странах Евросоюза. В этом году MasterCard обещает расширить перечень стран.

Панорамное селфи: уже сейчас

Первая любительская камера Panono Explorer Edition, позволяющая делать фото с обзором в 360 градусов, появилась на рынке в 2015 году и открыла новую эру в области фотографии. После этого на рынке появилось множество панорамных камер стоимостью до $500 производства Kodak, Samsung, Sony и других компаний. Журналисты из ведущих мировых изданий используют такие камеры, чтобы снимать репортажи из горячих точек. Например, журналисты из The New York Times на камеру Samsung Gear 360 сняли видео из лагеря беженцев в Нигере.

Формат 360-градусных фото и видео дает возможность показать происходящее наиболее достоверно, и в будущем, возможно, станет стандартом для новостных материалов.

Панорамные видеоролики уже используют для создания виртуальной реальности. Например, британский производитель алкоголя Diageo снял VR-ролик «Decisions», предупреждающий об опасности вождения в состоянии алкогольного опьянения.

Генная терапия 2.0: уже сейчас

Фото: Steve Gschmeissner/Science Photo Library

Генная терапия - совокупность биотехнологических и медицинских методов, направленных на лечение заболеваний, вызванных мутациями в структуре ДНК или поражением ДНК вирусами, с помощью редактирования генетического аппарата. Изначально генную терапию рассматривали как средство излечения наследственных генетических заболеваний, однако сейчас исследователи надеются применить ее для борьбы с широким спектром заболеваний: болезнью Альцгеймера, диабетом, сердечной недостаточностью и раком. В мае Евросоюз одобрил использование генной терапии при тяжелом комбинированном иммунодефиците у детей.

Одной из самых перспективных технологий генной терапии является редактирование генома CRISPR/Cas9. Эту технологию открыли в 2013 году как механизм бактериального иммунитета вирусной ДНК. Ученые называют ее «молекулярными ножницами», так как она позволяет с высокой точностью вырезать и изменять участки ДНК любых организмов прямо в живых клетках. В октябре китайские ученые провели первый в мире эксперимент по взрослого человека с помощью технологии CRISPR/Cas9. Сотрудники Сычуаньского университета ввели модифицированные Т-лимфоциты пациенту, больному раком легких. Предполагается, что это запустит процесс уничтожения раковых клеток в его организме.

Ботнет вещей: уже сейчас

В начале 2000-х годов хакеры научились взламывать подключенные к интернету компьютеры и организовывать их в сеть для массированных атак на определенный сервер. С распространением «интернета вещей» - недорогих подключаемых камер, принтеров и сканеров - хакеры все чаще стали выбирать своей мишенью уязвимые смарт-устройства. Через них киберпреступники получают контроль над оборудованием локальных сетей, модемами, сетевыми хранилищами, системами видеонаблюдения и даже промышленными управляющими системами.

В сентябре сайт хостинговой компании OVH подвергся рекордным с помощью ботнета. Суммарная мощность атак достигла 1 Тб/с, наибольшая мощность одной из них - 799 Гб/с.

Обучение с подкреплением: распространится через 1–2 года

Искусственный интеллект AlphaGo, основанный на обучении с подкреплением, обыграл в го мирового чемпиона Ли Седоля

Обучение с подкреплением - один из способов машинного обучения, в ходе которого система обучается, взаимодействуя со средой. Самые перспективные исследования в этой области ведет лаборатория DeepMind, подразделение Alphabet. В 2016 году ее программа AlphaGo обыграла мирового чемпиона Ли Седоля со счетом 4:1 в го - древнекитайскую настольную игру, которая долгое время считалась недоступной искусственному интеллекту.

Сотрудники DeepMind предполагают, что перспективы обучения с подкреплением гораздо шире игрового искусственного интеллекта. Например, оно позволит роботам учиться ходить и манипулировать незнакомыми предметами без предварительных исчерпывающих инструкций, а беспилотным автомобилям - извлекать опыт из каждой поездки.

Практический квантовый компьютер: через 4–5 лет

Квантовый компьютер D-Wave Systems.

Квантовый компьютер - это вычислительное устройство, которое для передачи и обработки данных использует явления квантовой суперпозиции и квантовой запутанности. Основной единицей вычисления в нем является квантовый бит, который, в отличие от бита, может означать 1 и 0 одновременно. Это позволяет квантовому компьютеру производить вычисления в 100 млн раз быстрее, чем стандартный компьютер.

В мае прошлого года IBM через облачную платформу IBM Quantum Experience открыл доступ к своему квантовому компьютеру, который находится в лаборатории в Йорктаун-Хайтс. На данный момент около 40 тысяч пользователей провели более 275 тысяч экспериментов с использованием IBM Quantum Experience. Процессор компьютера состоит из пяти кубитов, а в будущем IBM надеется увеличить мощность до 50 кубитов. 6 марта компания объявила о создании нового подразделения IBM Q, которое будет заниматься разработкой модели квантового компьютера.

Кроме IBM, в этом году сразу несколько компаний - Google, Inte, Microsoft, - а также Научно-исследовательский институт Нидерландов и Технический институт Делфта обещают представить практические наработки в области квантовых вычислений.

Нейрочипы для парализованных: через 10–15 лет

Парализованный пациент играет в Guitar Hero с помощью нейрочипа. Фото: Battelle Memorial Institute

В последние годы ученые делают большие успехи в разработке нейроинтерфейсов, восстанавливающих двигательные функции у пациентов с травмами спинного мозга. Если в 2015 году речь шла в основном об опытах на животных - крысах и приматах, - то сейчас лаборатории в разных странах тестируют новые технологии на добровольцах-людях.

В апреле 2016 года сотрудникам Университета штата Огайо и Мемориального института Баттеля удалось достичь серьезного прогресса при лечении пациента с квадриплегией - параличом всех конечностей. Благодаря имплантированному в двигательную область коры головного мозга микрочипу, передающему декодированные сигналы в мускулы руки с помощью электростимуляторов, он смог заново научиться шевелить пальцами руки и даже в Guitar Hero.

В будущем ученые также надеются создать беспроводные нейрочипы, способные восстанавливать нейронные связи у пациентов с болезнью Альцгеймера.

Беспилотные грузовики: через 5–10 лет

Беспилотный грузовик Otto совершил первый коммерческий рейс 20 октября 2016 года. Фото: Anheuser-Busch, Otto

Согласно прогнозам, появление на дорогах автономных грузовиков окажет более сильное и противоречивое влияние на общество, чем появление легковых автомобилей. В долгосрочной перспективе беспилотные технологии сделают грузоперевозки дешевле, но в краткосрочной приведут к всплеску безработицы. Согласно докладу Белого дома, только в США работу около 1,7 миллиона водителей грузовиков.

Разработчики предполагают, что внедрение автономных грузовиков поможет сократить количество аварий, так как более 90% из них происходят вследствие ошибок водителя.

Первая коммерческая доставка беспилотным грузовиком состоялась 20 декабря. Ее совершила принадлежащая Uber компания Otto, которая занимается разработкой автономных систем управления для грузового транспорта. Грузовик без водителя преодолел 200 километров города Форт-Коллинс до Колорадо Спрингс со скоростью 88 километров в час и доставил 45 тысяч банок пива Budweiser для пивоваренной корпорации Anheuser-Busch.

Клеточный атлас: через 5 лет

Иллюстрация: Genome Research Limited

Международный консорциум ученых из США, Великобритании, Швеции, Израиля, Нидерландов и Японии собирается создать подробную трехмерную карту человеческих клеток, которая впервые визуализирует то, из чего состоит тело человека. Для этого придется каталогизировать 37,2 триллиона микроскопических изображений клеток человеческого организма, определив молекулярную подпись каждой клетки и присвоив ей «географические координаты» расположения в человеческом организме. «Клеточный атлас» - приоритетный проект в списке медицинских исследований, в которые Марк Цукерберг и его жена Присцилла Чан собираются инвестировать $3 миллиарда. Ученые ожидают, что этот проект окажет значительное влияние на биологию и медицину на ближайшие несколько десятилетий, поможет понять причины развития онкологических и аутоиммунных заболеваний, а также разработать эффективные препараты для их лечения.

Солнечные термофотоэлектрические батареи: через 10–15 лет

Нанофотонный солнечный термофотоэлектрический элемент. Фото: MIT

Стандартные кремниевые солнечные элементы захватывают только видимое излучение в диапазоне от фиолетового (380 нанометров) до красного (780 нанометров) и могут преобразовать в электричество ограниченное количество света. В настоящее время большинство солнечных батарей работают с коэффициентом полезного действия 20%, и, по подсчетам ученых, даже в теории он не сможет превысить 32%. Ученые Массачусетского технологического института (MIT) работают над созданием термофотоэлектрического преобразователя (STPV), который позволит получать энергию не только из света, но и из преобразованного тепла.

Элемент состоит из нескольких слоев углеродных нанотрубок, которые поглощают тепловое излучение, и фотонного кристалла-излучателя, который преобразует его в световое излучение видимого спектра и перенаправляет на солнечную ячейку, которая преобразует энергию в электричество. Такая установка как минимум в два раза эффективнее обычных солнечных элементов.



Рекомендуем почитать

Наверх