Масштабирование трехмерного изображения. Масштабирование изображения. Как масштабировать фотографии

Новости 21.03.2019
Новости

На сегодняшний день домашний компьютер во многих случаях является не только средством для работы с офисными приложениями, но и мощным мультимедийным центром, с помощью которого можно создавать и обрабатывать фотографии, смотреть видеоролики и фильмы, слушать музыку или наслаждаться современными трехмерными видеоиграми.

Мощное развитие цифровых технологий, и в частности цифровой фототехники, превратили современные домашние компьютеры в настоящие фотоархивы, а редактирование всевозможных изображений теперь является одним из самых любимых занятий многих пользователей.

Но как обидно бывает, когда вы пытаетесь открыть на компьютере графический файл, а он не открывается? Наверняка многие из вас уже сталкивались с подобной ситуацией. Так в чем же причина?

Конечно, цифровой фотографией или иллюстрациями на сайтах не исчерпывается весь мир компьютерной графики, которую в общем можно разбить на три большие группы - растровая графика , векторная графика и трехмерная графика . При этом изображения одного типа могут иметь разный формат, который зависит от программ и способов, с помощью которых они были созданы. Давайте разбираться.

Это самый распространенный тип изображений, которые формируются с помощью отдельных точек, называемых пикселями , которые в итоге образуют матрицу фиксированного размера. Каждый пиксель имеет свои геометрические параметры и цветовой оттенок. Из-за крохотного размера точек, человеческий глаз не может различить их по отдельности и в большинстве случаев изображение сформированное таким способом нам кажется однородным. Но стоит только сильно увеличить картинку, как вы увидите, что она состоит из множества разноцветных прямоугольников. К растровой графике относится большинство изображений, которые встречаются нам во время работы на компьютере, включая и цифровые фотографии.

На увеличенном изображении зрачка справа видно, что картинка состоит из множества разноцветных квадратиков.

Основным параметром растровой картинки является ее физическое разрешение, определяющееся количеством точек (пикселей) размещающихся по горизонтали и вертикали. Например, разрешение 1920x1080 означает, что ширина изображения составляет 1920 пикселов, а высота - 1080. Учтите, что при одинаковом размере изображения его разрешение может быть разным, и чем оно выше, тем качественнее картинка. В общем, чем из большего количества точек будет состоять рисунок, тем оно будет реалистичнее.

Растровые изображения, как правило, хранятся в сжатом виде, которое происходит с помощью специальных программных алгоритмов. При этом само сжатие может быть двух видов: без потерь или с потерями. В первом случае картинку можно будет восстановить до оригинального состояния, то есть в котором она была до сжатия, а во втором, как вы понимаете, нет.

Наиболее распространенными форматами, обеспечивающими сжатие без потерь, являются BMP, PNG и GIF. В самом же широко используемом формате JPEG (JPG, JPE) используется сжатие с потерями. Еще один популярный формат TIFF имеет разные настройки сжатия, а вот RAW наиболее часто используется для хранения информации, получаемой с цифровых камер, без внесения в нее каких либо изменений. Практически все полупрофессиональные или профессиональные фотокамеры позволяют сохранять изображения именно в этом формате для последующей его обработки.

Программ, позволяющих создавать, редактировать и тем более просто просматривать растровые картинки великое множество. Но, наверное, самой популярной и профессиональной из них является графический редактор Adobe Photoshop (собственный формат PSD). Возможности этого инструмента воистину впечатляют и смогут удовлетворить потребности самых продвинутых пользователей. При этом Photoshop имеет в своем арсенале некоторые инструменты для работы с векторными и трехмерными изображениями, о которых мы поговорим ниже. Для тех же, кто не готов выкладывать почти тысячу долларов за данный продукт, можно попробовать в деле его облегченный вариант Photoshop Elements, стоимостью $100. Еще одним популярным продуктом в этой категории является редактор GIMP, который часто называют бесплатной альтернативой Photoshop, хотя сами разработчики с этим не согласны.

Впрочем, многим пользователям (особенно начинающим) для просмотра и редактирования растровых изображений хватит тех возможностей, которые предоставляют приложения, встроенные в систему Windows. К их услугам простенький редактор Paint и штатное средство для просмотра фотографий. В более продвинутых редакциях Windows для воспроизведения и каталогизации картинок можно использовать стильную оболочку Windows Media Center.

Для систематизации и упорядочивания коллекций, хранящихся на компьютере фотографий, рисунков и картинок, можно использовать бесплатное приложение Picasa или XnView, а так же более функциональный, но платный (чуть более 1000 рублей) графический редактор ACDSee. Хотя, как уже упоминалось, выбор программного обеспечения для работы с растровыми изображениями очень широк и недостатка, как в платных, так и бесплатных приложениях у пользователей нет.

Векторная графика

В этом случае рисунок состоит уже не из точек, а из различных геометрических объектов - простых фигур, линий, кривых и тех же точек. Большим плюсом такого построения изображений является их масштабируемость без потери качества. То есть если увеличить векторную картинку, она растянется и не распадется на отдельные пиксели, сохранив при этом плавность линий.

Одним из основных недостатков векторной графики является тот факт, что далеко не каждый объект может быть изображен с ее применением. Иногда для создания изображения подобного оригиналу может потребоваться огромное количество объектов различной сложности, что сильно увеличивает размер картинки и время ее отображения. Так же при особо малых разрешениях рисунка его масштабирование может осуществляться некорректно.

Векторная графика наиболее часто используется в простых изображениях, которые не нуждаются в фотореализме. Например, формат PDF использует модель именно этого типа графики.

С большой долей уверенности можно сказать, что самой знаменитой и популярной программой для работы с векторными изображениями является Corel Draw, а файлы, создаваемые с ее помощью, имеют собственный формат CDR. Хотя такие приложения как Adobe Illustrator (собственный формат AI, EPS), Xara Designer (собственный формат XAR), бесплатный Inkscape(собственный формат SVG) и другие имеют так же не малое количество поклонников.

Стоит отметить, что большинство популярных векторных редакторов не ограничиваются возможностями работы только в собственном (иногда закрытом) формате, а поддерживают огромное количество других, как векторных, так и растровых форматов изображений. Например, Corel Draw способен работать с более тридцатью самыми популярными форматами графических файлов.

Трехмерная графика (3 D )

Раздел компьютерной графики, предназначенный для отображения объемных объектов. По сути, трехмерное изображение является геометрической проекцией объемной модели на плоскость. Для его получения сначала происходит моделирование - создание математической 3D-модели сцены и объектов в ней, а затем визуализация (рендеринг) - построение проекции на основе выбранной физической модели.

Одним из основных призваний трехмерной графики является создание движения 3D-модели в пространстве, называемое анимацией, которая в наше время является неотъемлемой частью не только для современных компьютерных игр, но и телевидения, кинематографа, а так же научного и промышленного моделирования. Так же трехмерная графика широко применяется в архитектурной визуализации и печатной продукции.

Самыми популярными программами, используемыми для создания 3D графики и анимации, являются пакеты компании Autodesk: 3DS Max (собственный формат MAX) и Maya (собственный формат MA). Стоит отметить и универсальное комплексное приложение Maxon Cinema 4D (собственный формат C4D) с более простым интерфейсом, чем у продуктов Autodesk и поддержкой русского языка, что делает его особенно привлекательным для русскоязычной аудитории.

Процесс трехмерного моделирования, визуализации и анимации является очень ресурсоемкой задачей, так что если вы решите попробовать свои силы на этом поприще, придется раскошелиться на высокопроизводительный компьютер. Более того, и само программное обеспечение стоит очень недешево. Например, за 3DS MAX просят около 4000 евро. Хотя Autodesk пошла навстречу тем людям, которые не собираются извлекать коммерческую выгоду при использовании этой программы, выпустив для них бесплатную версию, которая становится доступна после регистрации на сайте компании.

Заключение

Наверное, было бы неправильно не сказать несколько слов о компьютерных ресурсах, которые требуются для комфортной работы с графикой. Если в основном вы планируете заниматься лишь просмотром изображений или осуществлять их простое редактирование, то для этих задач подойдет даже самый простой и маломощный ПК. А вот для работы с такими тяжеловесами, как Adobe Photoshop или Corel Draw понадобится достаточно мощный процессор и большой объем оперативной памяти (от 4 Гб). Но самой требовательной к системным ресурсам является трехмерная графика. Здесь для комфортной работы потребуется не только топовый процессор в сочетании с немалым объемом «оперативки» (8 Гб и более), но и мощная видеокарта, со своей собственной видеопамятью и графическим чипом. Недаром, самыми дорогими компьютерами считаются, те, которые ориентированы на любителей современных 3D-игр и людей профессионально работающих с 3D-графикой.

В заключении же хотелось бы сказать следующее. Не смотря на то, что компьютерная графика бывает разных типов, мы с вами, пользователи, видим на экране монитора именно растровую двухмерную картинку. Дело в том, что подавляющее большинство дисплеев, в силу их технологических особенностей, являются матрицей, состоящей из ячеек (пикселей), с помощью которых и формируется видимое изображение. Для вывода векторной графики на подобных устройствах используются программные или встроенные в видеокарту (аппаратные) преобразователи.

А вот трехмерная графика - это лишь плод нашего воображения. Ведь экран монитора может формировать только плоскую (2D) картинку, которая является лишь проекцией объемных объектов, пространство для которых мы придумываем сами. То же самое, касается и новомодных 3D-телевизоров или 3D-мониторов. На самом деле эти устройства показывают обычное двухмерное изображение, которое может быть построено особым способом, при просмотре которого через специальные очки, создается иллюзия объема.

Читатйте также:

День добрый, любители астрономии и астрофотографии! В этой статье - короткий, но очень полезный расчет, который однажды пригодится даже тем, кто снимает небо редко. Ну а те кто занимается этим приятным ночным делом постоянно, должны знать его назубок! :) Речь пойдет о масштабе изображения получаемой с вашй техникой. У вас, наверное спрашивают - какое увеличение дает этот телескоп? И по сути ответить людям нечего, тк обычное понятие увеличение предполагает наличие окуляра, ибо считается оно по формуле F/f, где F - фокус объектива, а f - фокус окуляра. Как же быть в случае с одним лишь объективом и фотокамерой? Давайте посчитаем!

Предположим, у вас есть классический телескоп системы Ньютона с зеркалом D=200 мм и фокусным расстоянием F=1000мм. Съемка ведется на матрицу QHY5-L-II-M. Каков же будет масштаб изображения? Фактически вопрос заключается в том насколько большую картинку мы увидим на экране монитора. Но помимо визуального эффекта вопрос имеет и практическую составляющую. К примеру, зная сколько секунд дуги неба приходится на один пиксель матрицы можно оценить влияние турбуленции на изображение или понять какую выдержку надо дать чтобы движущийся с известной скоростью в кадре астероид/комета еще не успел размазаться в черточку. Также можно оценить видимость деталей на планетах, к примеру - сможем ли мы наблюдать в данный телескоп вулкан Олимп на Марсе в момент великого противостояния.

Поскольку нас известен из документации фокус нашего телескопа, начнем с него. Из геометрии известно, что 1 угловая секунда - это угловой размер объекта на расстоянии равном 206265 его линейных размеров. Отсюда масштаб изображения в секундах на миллиметр s = 206265/F, где F - фокус в миллиметрах, то есть s = 206,265"/мм. Обратите внимание, ответ в секундах дуги на миллиметр.

Но нам нужен масштаб в секундах на пиксель. Это легко! Из документации к матрице узнаем, что размер ее пикселя 3,75 мкм, то бишь миллионных долей метра или тысячных долей миллиметра. Значит, в одном миллиметре умещается 267 таких пикселей и окончательный масштаб s = 206,265/267 = 0,77"/px .

Отсюда выходит, что у астрофотографов для получения большого масштаба есть два пути: взять телескоп с большим фокусным расстоянием (или линзу барлоу), либо достать матрицу с меньшим размером пикселя. У каждого из способов есть свои недостатки: больший фокус потребует большего диаметра зеркала при сохранении светосилы (и конечно же будет более чувствителен к атмосфере и механике телескопа), а меньший пиксель будет принимать меньшее количество фотонов в единицу времени, значит потребует большей выдержки для получения той же величины отношения сигнала к шуму.

октябрь 2015,

Ваш Назаров Сергей.

Астробиблиотека

МАСШТАБ ИЗОБРАЖЕНИЯ

МАСШТАБ ИЗОБРАЖЕНИЯ

Отношение линейного размера изображения к линейному размеру . Служит хар-кой проекционных систем и определяется их увеличением. Выбор М. и. диктуется размерами изображаемого объекта: у телескопа, фотоаппарата, глаза М. и. меньше единицы (у телескопа М. и. практически равен нулю), а у микроскопа, кино- и диапроекторов, фотоувеличителей, ионных проекторов и электронных микроскопов больше единицы. Если изображение получается с помощью неск. последоват. проекций, его М. и. определяется произведением М. и. каждой проекции в отдельности.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .


Смотреть что такое "МАСШТАБ ИЗОБРАЖЕНИЯ" в других словарях:

    Масштаб изображения - Отношение длины линии на чертеже к длине соответствующей линии в натуре Источник: Рабочая документация для строительства. Выпуск I. Общие требования Смотри также родственные термины: 3.1.8 масштаб изображения на дисплее (Display scale): Отношение …

    масштаб изображения - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN image scale …

    масштаб изображения на дисплее - 3.1.8 масштаб изображения на дисплее (Display scale): Отношение расстояния между двумя точками на экране к фактическому расстоянию между этими же точками на местности, выраженное, например, как 1:10000. Источник … Словарь-справочник терминов нормативно-технической документации

    усилитель рентгеновского изображения (масштаб изображения нормальный) Справочник технического переводчика

    усилитель рентгеновского изображения (масштаб изображения увеличенный) - Символ следует наносить на пульты управления и штативы рентгеновских аппаратов для обозначения места включения, управления и регулирования при проведении рентгеновских исследований, а также в конструкторской и сопроводительной эксплуатационной… … Справочник технического переводчика

    изменять масштаб изображения - — Тематики электросвязь, основные понятия EN zoom … Справочник технического переводчика

    увеличивать (масштаб изображения) - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN zoom … Справочник технического переводчика

    увеличить масштаб изображения - — Тематики электросвязь, основные понятия EN zoom in … Справочник технического переводчика

    уменьшить масштаб изображения - — Тематики электросвязь, основные понятия EN zoom out … Справочник технического переводчика

    масштаб преобразования радиационного изображения - Отношение линейного размера элемента преобразованного выходного изображения к аналогичному линейному размеру соответствующего элемента исходного радиационного изображения. [Система неразрушающего контроля. Виды (методы) и технология… … Справочник технического переводчика

Рассмотрим частичное изменение масштаба. Оно реализуется следующим образом:

S (Sx , Sy , Sz , 1) =,

т. е. [x,y,z, 1]*S(Sx,Sy,Sz)= [Sx*x,Sy*y,Sz*z, 1].

Общее изменение масштаба получается за счет 4-го диагонального элемента, т. е.

[x y z 1] *
= [x y z S ] = [x* y* z* 1] = [
].

Такой же результат можно получить при равных коэффициентах частичных изменений масштабов. В этом случае матрица преобразования такова:

S = .

3. Трехмерный сдвиг

Недиагональные элементы матрицы 33 осуществляют сдвиг в трех измерениях, т. е.

[x y z 1]*
=[x+yd+hz, bx+y+iz, cx+fy+z, 1].

4.Трехмерное вращение

Двухмерный поворот, рассмотренный ранее, является в то же время трехмерным поворотом вокруг оси Z . В трехмерном пространстве поворот вокруг осиZ описывается матрицей

R z ()=
.

Матрица поворота вокруг оси X имеет вид

R x ()=
.

Матрица поворота вокруг оси Y имеет вид

R y ()=
.

Результатом произвольной последовательности поворотов вокруг осей x, y, z является матрица

А =
.

Подматрицу 33 называют ортогональной, так как ее столбцы являются взаимно ортогональными единичными векторами.

Матрицы поворота сохраняют длину и углы, а матрицы масштабирования и сдвига нет.

    1. Проекции

В общем случае проекции преобразуют точки, заданные в системе координат размерностью n , в системы координат размерностью меньше чемn .

Будем рассматривать случай проецирования трех измерений в два. Проекция трехмерного объекта (представленного в виде совокупности точек) строится при помощи прямых проекционных лучей, которые называются проекторами и которые проходят через каждую точку объекта и, пересекая картинную плоскость, образуютпроекцию .

Рис. 3.33.Центральная и параллельная проекции

Определенный таким образом класс проекций существует под названием плоских геометрических проекций , так как проецирование производится на плоскость, а не на искривленную поверхность и в качестве проекторов используются прямые, а не кривые линии.

Многие картографические проекции являются либо не плоскими, либо не геометрическими.

Плоские геометрические проекции в дальнейшем будем называть просто проекциями.

Проекции делятся на два основных класса (рис. 3 .33.):

    параллельные (аксонометрические);

    центральные (перспективные).

Полная классификация проекций приведена на рис. 3 .34.

Рис. 3.34. Классификация проекций

Параллельные проекции делятся на два типа в зависимости от соотношения между направлением проецирования и нормалью к проекционной плоскости (рис. 3 .35.):

    ортографические – направления совпадают, т. е. направление проецирования является нормалью к проекционной плоскости;

    косоугольные – направление проецирования и нормаль к проекционной плоскости не совпадают.

Рис. 3.35. Ортографические и косоугольные проекции

Наиболее широко используемыми видами ортографических проекций является вид спереди, вид сверху(план) и вид сбоку, в которых картинная плоскость перпендикулярна главным координатным осям. Если проекционные плоскости не перпендикулярны главным координатным осям, то такие проекции называются аксонометрическими .

При аксонометрическом проецировании сохраняется параллельность прямых, а углы изменяются; расстояние можно измерить вдоль каждой из главных координатных осей (в общем случае с различными масштабными коэффициентами).

Изометрическая проекция – нормаль к проекционной плоскости, (а следовательно и направление проецирования) составляетравные углы с каждой из главных координатных осей. Если нормаль к проекционной плоскости имеет координаты (a,b,c ), то потребуем, чтобы |a| = |b| = |c|, илиa = b = c , т. е. имеется 8 направлений (по одному в каждом из октантов), которые удовлетворяют этому условию. Однако существует лишь 4 различных изометрических проекции (если не рассматривать удаление скрытых линий), так как векторы(a, a, a) и(-a,-a,-a) определяют нормали к одной и той же проекционной плоскости.

Изометрическая проекция (рис. 3 .36.) обладает следующим свойством: все 3 главные координатные оси одинаково укорачиваются. Поэтому можно проводить измерения вдоль направления осей с одним и тем же масштабом. Кроме того, главные координатные оси проецируются так, что их проекции составляют равные углы друг с другом (120°).

Рис. 3.36. Изометрическая проекция единичного куба

Косоугольные (наклонные) проекции сочетают в себе свойства ортографических проекций (видов спереди, сверху и сбоку) со свойствами аксонометрии. В этом случае проекционная плоскость перпендикулярна главной координатной оси, поэтому сторона объекта, параллельная этой плоскости, проецируется так, что можно измерить углы и расстояния. Проецирование других сторон объекта также допускает проведение линейных измерений (но не угловых) вдоль главных осей. Отметим, что нормаль к проекционной плоскости и направление проецирования не совпадают.

Двумя важными видами косоугольных проекций являются проекции:

    Кавалье (cavalier) – горизонтальная косоугольная изометрия (военная перспектива);

    Кабине (cabinet) – фронтальная косоугольная диметрия.

Рис. 3.37. Проекция Кавалье

В проекции Кавалье (рис. 3 .37.) направление проецирования составляет с плоскостью угол 45. В результате проекция отрезка, перпендикулярного проекционной плоскости, имеет ту же длину, что и сам отрезок, т. е. укорачивание отсутствует.

Рис. 3.38. Проекция Кабине

Проекция Кабине (рис. 3 .38.) имеет направление проецирования, которое составляет с проекционной плоскостью угол
= arctg(½) (≈26,5°). При этом отрезки, перпендикулярные проекционной плоскости, после проецирования составляют ½ их действительной длины. Проекции Кабине являются более реалистическими, чем проекции Кавалье, так как укорачивание с коэффициентом ½ больше согласуется с нашим визуальным опытом.

Центральная проекция любой совокупности параллельных прямых, которые не параллельны проекционной плоскости, будет сходиться в точке схода. Точек схода бесконечно много. Если совокупность прямых параллельна одной из главных координатных осей, то их точка схода называетсяглавной точкой схода . Имеются только три такие точки, соответствующие пересечениям главных координатных осей с проекционной плоскостью. Центральные проекции классифицируются в зависимости от числа главных точек схода, которыми они обладают, а следовательно и от числа координатных осей, которые пересекают проекционную плоскость.

1. Одноточечная проекция (рис. 3 .39.).

Рис. 3.39. Одноточечная перспектива

2. Двухточечная проекция широко применяется в архитектурном, инженерном и промышленном проектировании.

3. Трехточечные центральные проекции почти совсем не используются, во-первых, потому, что их трудно конструировать, а во-вторых, из-за того, что они добавляют мало нового с точки зрения реалистичности по сравнению с двухточечной проекцией.

Учебник под редакцией Л.Г.Петерсон.

Тип урок: ОНЗ.

Основные цели:

  • сформировать понятие масштаба, умение использовать это понятие для решения практических задач;
  • повторить и закрепить понятия отношения, пропорции, закрепить навыки решения уравнений с помощью пропорций;
  • развивать умение обобщать, анализировать, делать выводы.

Оборудование: компьютер, раздаточный материал для проведения практической работы, лист самоконтроля, карточки рефлексии.

ХОД УРОКА

1. Мотивация к учебной деятельности

1) Сегодня вы продолжите изучение темы «Пропорции», рассмотрите ее применение в одной из областей жизни, убедитесь, какое важное практическое применение имеет материал сегодняшнего урока. Запишите в тетрадях сегодняшнее число 25.11. Начнем с повторения.

2) Актуализация знаний.

Давайте вспомним, что называется отношением? Что оно показывает? Что вы знаете об отношении именованных величин? Что называется пропорцией? Каким свойством обладает пропорция?

Найдите неизвестный член пропорции (устно): (Приложение 1 . Слайд 2)

Взаимопроверка.

2. Изучение нового материала .

1) Объявляется тема урока. (Слайд 3)
2) Вопросы к учащимся:

– Что вы знаете об этом термине? (Размах, охват, значение).
– На каких уроках уже встречали?
– Для чего применяли?
– Предлагаю вам для начала изобразить человека на альбомном листе в натуральную величину. Не получится? Почему? Тогда попробуйте изобразить микроб.
– Очень часто в жизни приходится использовать увеличение или уменьшение для создания различных видов изображений реальных объектов. Мы не можем нарисовать на альбомном листе человека того роста, который он имеет; а если мы захотим нарисовать муравья, то нам придется на рисунке увеличить его размеры относительно реальных. Для того, чтобы точно и умело выполнять увеличения и уменьшения необходимо использовать в работе приемы масштабирования, т.е. уметь создавать масштабное изображение.

– Давайте попробуем определить цель сегодняшнего урока. (Рассмотреть практическое применение масштаба, понять основные приемы решения масштабных задач).

– Итак, первое, с чем у вас возникла ассоциация слова «масштаб» – география.
Географическая карта – один из важнейших документов человеческой культуры. Путь к современным картам был долгим и трудным. Первые картографические изображения появились в древнем мире (Слайд 4).

Карта древнего Вавилона

– А вот так выглядел мир глазами людей в 15 веке. (Слайд 5)

Карта 1482 года

– Большой вклад в создание первых карт внесли древние греки. Так, в войске Александра Македонского назначались специальные люди, которые обязаны были подсчитать число шагов, которые понадобились военному строю, чтобы перейти от одного пункта к другому. Все сведения о завоеванных странах тщательно записывались и пересылались в Афины в академию. Александр Македонский основал город Александрию, и именно житель этого города создал первую карту.

3) Сейчас у вас будет возможность узнать имя этого ученого древности, но для этого вы должны правильно выполнить следующее задание. Слайд 6.

Заполните пропуски:

3 см = 0,03 м
13 см = 0,00013 км
5 м = 0,005 км
7 м = 700 см
11 км = 11000 м
2 км = 200000 см

Самопроверка с экрана.

– Посмотрите, как называются числа, записанные в левом столбце?

– Имя какого ученого связано с простыми числами?

Эратосфен

4) Физкультминутка

– Давайте попробуем дать определение масштаба. (Версии учащихся) . Слайд 7.

Отношение длины отрезка на изображении к его настоящей длине называется масштабом изображения

5) Масштаб и его виды вы рассматривали на уроках географии. Почему же в учебнике математики предложена такая тема? (Масштаб – это отношение, а отношение – одно из понятий математики).

– Проговорите про себя определение масштаба. Повторите определение друг другу.

Слайд 8. – На каком рисунке применен увеличивающий, а на каком уменьшающий масштаб?

– Как вы думаете, какие из записанных масштабов можно применить для увеличения, а какие для уменьшения? Слайд 7.

– Сделайте вывод: Если в записи масштаба вторая величина больше первой, то данный масштаб дает уменьшение реальных размеров и наоборот.

3. Применение новых знаний. Первичное закрепление .

1) Расстояние от Москвы до Санкт-Петербурга по прямой составляет примерно 635 км от центра до центра. По автотрассе протяженность маршрута 700 км.
Во сколько раз надо уменьшить это расстояние, чтобы его можно было изобразить на слайде в виде отрезка длиной в 14 см?

Слайд 9. – Решаем с комментированием.

700 км = 700000 м = 70 000000 см
70000000 см: 14 см = 5000000 раз

– Что означает отношение 1: 5 000 000 ?

2) Итак, масштаб – это отношение, значит, задачи на масштаб можно решать с помощью …. (пропорций).

Пробное задание.
Попробуем решить задачу № 31(4) на с.12 учебника. Один учащийся у доски.

Составим пропорцию:

Ответ: М 1:40000

– Что нужно знать для определения масштаба карты?

4. Самостоятельная работа .

– Попробуем применить на практике полученные знания. Работаем в парах по карте.
Слайд 11. Определите, по какой дороге путь от МКАД до Павловской гимназии короче: по Волоколамскому шоссе или по Новорижскому? Масштаб карты 1:

По Волоколамскому:

По Новорижскому:

5. Подведение итогов

– Какое математическое выражение необходимо составить для решения задачи с масштабом?
– Что необходимо учитывать при записи длин отрезков?
– Какие данные нужно иметь, чтобы восстановить масштаб карты?

6. Рефлексия

1) Я знаю, что такое масштаб
2) Я знаю, как находить расстояние на местности
3) Я умею находить расстояние на местности
4) У меня сегодня все получалось, я не допускал ошибок

7. Домашнее задание . Слайд 13. С. 10-11,

1) №55 (1,3)
2) По карте определить расстояние, которое проделал М.В.Ломоносов из Холмогор в Москву.



Рекомендуем почитать

Наверх