Как работает процессор компьютера? Принцип работы. Производство современных процессоров. Технологический экскурс

Вайбер на компьютер 12.07.2019
Вайбер на компьютер

Фотография кристалла микропроцессора Intel 8008 под микроскопом (см. фотографию большего разрешения 3565×2549)

Энтузиаст микропроцессоров и зарядных устройств Кен Ширрифф (Ken Shirriff) хорошо известен в сообществе электролюбителей. Он раньше публиковал обстоятельные хорошо иллюстрированные репортажи с разбором крохотного зарядного устройства для iPhone , десятка других зарядных устройств , среди которых великолепное изделие Apple даже не самое лучшее. В 2013 году он провёл (это процессор из Osborne 1, TRS-80 и Sinclair ZX Spectrum).

Из документации процессора можно узнать, где именно на кристалле располагаются конкретные функциональные области. Все они подписаны на следующем изображении. Слева располагается арифметико-логическое устройство (ALU), в котором происходили вычисления.

ALU использовал два временных регистра для хранения входящих данных. Эти регистры занимали значительную площадь на кристалле. Не потому что они сложные, а потому что нужны большие транзисторы для передачи сигнала через цепь ALU.

Треугольный дизайн ALU тоже выглядит необычно. В большинстве процессоров цепи компонуются по прямоугольным блокам для каждого бита. Однако в 8008 восемь блоков (по одному для каждого бита) распределены по треугольной площади беспорядочным образом, чтобы уместиться в площадь, которую для них оставил треугольный генератор ускоренного переноса (carry generator).

Физическая структура чипа неплохо совпадает с блок-схемой из руководства пользователя Intel 8008 . Блоки на чипе находятся почти в тех же местах, что и на схеме.

Инженер обращает внимание, что у специалистов нет объяснения, почему Intel использовала явно недостаточное количество 18 ножек для такой микросхемы (14 разрядов адреса и 8 разрядов данных), ведь из-за такой нестандартной архитектуры шины приходилось использовать много дополнительной электроники с этим процессором. Он говорит, что 16 контактов были буквально «религией в Intel», но конструкторам за счёт хитрых манипуляций с архитектурой шины удалось уменьшить количество ножек только до 18-ти.

Как и обещал – подробный рассказ о том, как делают процессоры… начиная с песка. Все, что вы хотели знать, но боялись спросить)


Я уже рассказывал о том, «Где производят процессоры » и о том, какие «Трудности производства » на этом пути стоят. Сегодня речь пойдет непосредственно про само производство – «от и до».

Производство процессоров

Когда фабрика для производства процессоров по новой технологии построена, у нее есть 4 года на то, чтобы окупить вложенные средства (более $5млрд) и принести прибыль. Из несложных секретных расчетов получается, что фабрика должна производить не менее 100 работающих пластин в час.

Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы. Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска. Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы. После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров – если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.

Уроки химии

Давайте рассмотрим весь процесс более подробно. Содержание кремния в земной коре составляет порядка 25-30% по массе, благодаря чему по распространённости этот элемент занимает второе место после кислорода. Песок, особенно кварцевый, имеет высокий процент содержания кремния в виде диоксида кремния (SiO 2) и в начале производственного процесса является базовым компонентом для создания полупроводников.

Первоначально берется SiO 2 в виде песка, который в дуговых печах (при температуре около 1800°C) восстанавливают коксом:

Такой кремний носит название «технический » и имеет чистоту 98-99.9%. Для производства процессоров требуется гораздо более чистое сырье, называемое «электронным кремнием » - в таком должно быть не более одного чужеродного атома на миллиард атомов кремния. Для очистки до такого уровня, кремний буквально «рождается заново». Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl 4), который в дальнейшем преобразуется в трихлорсилан (SiHCl 3):
Данные реакции с использованием рецикла образующихся побочных кремнийсодержащих веществ снижают себестоимость и устраняют экологические проблемы:
2SiHCl 3 SiH 2 Cl 2 + SiCl 4
2SiH 2 Cl 2 SiH 3 Cl + SiHCl 3
2SiH 3 Cl SiH 4 + SiH 2 Cl 2
SiH 4 Si + 2H 2
Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» - монокристалл высотой со взрослого человека. Вес соответствующий - на производстве такая дуля весит порядка 100 кг.

Слиток шкурят «нулёвкой»:) и режут алмазной пилой. На выходе – пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (~12 дюймов; именно такие используются для техпроцесса в 32нм с технологией HKMG, High-K/Metal Gate). Когда-то давно Intel использовала диски диаметром 50мм (2"), а в ближайшем будущем уже планируется переход на пластины с диаметром в 450мм – это оправдано как минимум с точки зрения снижения затрат на производство чипов. К слову об экономии - все эти кристаллы выращиваются вне Intel; для процессорного производства они закупаются в другом месте.

Каждую пластину полируют, делают идеально ровной, доводя ее поверхность до зеркального блеска.

Производство чипов состоит более чем из трёх сотен операций, в результате которых более 20 слоёв образуют сложную трёхмерную структуру – доступный на Хабре объем статьи не позволит рассказать вкратце даже о половине из этого списка:) Поэтому совсем коротко и лишь о самых важных этапах.

Итак. В отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать? Вообще, нанесение различных слоев на процессорную подложу это целая наука, ведь даже в теории такой процесс непрост (не говоря уже о практике, с учетом масштабов)… но ведь так приятно разобраться в сложном;) Ну или хотя бы попытаться разобраться.

Фотолитография

Проблема решается с помощью технологии фотолитографии - процесса избирательного травления поверхностного слоя с использованием защитного фотошаблона. Технология построена по принципу «свет-шаблон-фоторезист» и проходит следующим образом:
- На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист - слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом.
- Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон
- Удаление отработанного фоторезиста.
Нужная структура рисуется на фотошаблоне - как правило, это пластинка из оптического стекла, на которую фотографическим способом нанесены непрозрачные области. Каждый такой шаблон содержит один из слоев будущего процессора, поэтому он должен быть очень точным и практичным.

Иной раз осаждать те или иные материалы в нужных местах пластины просто невозможно, поэтому гораздо проще нанести материал сразу на всю поверхность, убрав лишнее из тех мест, где он не нужен - на изображении выше синим цветом показано нанесение фоторезиста.

Пластина облучается потоком ионов (положительно или отрицательно заряженных атомов), которые в заданных местах проникают под поверхность пластины и изменяют проводящие свойства кремния (зеленые участки - это внедренные чужеродные атомы).

Как изолировать области, не требующие последующей обработки? Перед литографией на поверхность кремниевой пластины (при высокой температуре в специальной камере) наносится защитная пленка диэлектрика – как я уже рассказывал, вместо традиционного диоксида кремния компания Intel стала использовать High-K-диэлектрик. Он толще диоксида кремния, но в то же время у него те же емкостные свойства. Более того, в связи с увеличением толщины уменьшен ток утечки через диэлектрик, а как следствие – стало возможным получать более энергоэффективные процессоры. В общем, тут гораздо сложнее обеспечить равномерность этой пленки по всей поверхности пластины - в связи с этим на производстве применяется высокоточный температурный контроль.

Так вот. В тех местах, которые будут обрабатываться примесями, защитная пленка не нужна – её аккуратно снимают при помощи травления (удаления областей слоя для формирования многослойной структуры с определенными свойствами). А как снять ее не везде, а только в нужных областях? Для этого поверх пленки необходимо нанести еще один слой фоторезиста – за счет центробежной силы вращающейся пластины, он наносится очень тонким слоем.

В фотографии свет проходил через негативную пленку, падал на поверхность фотобумаги и менял ее химические свойства. В фотолитографии принцип схожий: свет пропускается через фотошаблон на фоторезист, и в тех местах, где он прошел через маску, отдельные участки фоторезиста меняют свойства. Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски.

Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором – вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент – результатом такого подхода становятся различные картины замыканий на каждом слое микропроцессора.

Собственно говоря, все предыдущие шаги были нужны для того, чтобы создать в необходимых местах полупроводниковые структуры путем внедрения донорной (n-типа) или акцепторной (p-типа) примеси. Допустим, нам нужно сделать в кремнии область концентрации носителей p-типа, то есть зону дырочной проводимости. Для этого пластину обрабатывают с помощью устройства, которое называется имплантер - ионы бора с огромной энергией выстреливаются из высоковольтного ускорителя и равномерно распределяются в незащищенных зонах, образованных при фотолитографии.

Там, где диэлектрик был убран, ионы проникают в слой незащищенного кремния – в противном случае они «застревают» в диэлектрике. После очередного процесса травления убираются остатки диэлектрика, а на пластине остаются зоны, в которых локально есть бор. Понятно, что у современных процессоров может быть несколько таких слоев - в таком случае на получившемся рисунке снова выращивается слой диэлектрика и далее все идет по протоптанной дорожке - еще один слой фоторезиста, процесс фотолитографии (уже по новой маске), травление, имплантация… ну вы поняли.

Характерный размер транзистора сейчас - 32 нм, а длина волны, которой обрабатывается кремний - это даже не обычный свет, а специальный ультрафиолетовый эксимерный лазер - 193 нм. Однако законы оптики не позволяют разрешить два объекта, находящиеся на расстоянии меньше, чем половина длины волны. Происходит это из-за дифракции света. Как быть? Применять различные ухищрения - например, кроме упомянутых эксимерных лазеров, светящих далеко в ультрафиолетовом спектре, в современной фотолитографии используется многослойная отражающая оптика с использованием специальных масок и специальный процесс иммерсионной (погружной) фотолитографии.

Логические элементы, которые образовались в процессе фотолитографии, должны быть соединены друг с другом. Для этого пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» - в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.

Финишная прямая

Ура – самое сложное позади. Осталось хитрым способом соединить «остатки» транзисторов - принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны – хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов». Отдаленно (при очень большом увеличении) все это похоже на футуристическую дорожную развязку – и ведь кто-то же эти клубки проектирует!

Когда обработка пластин завершена, пластины передаются из производства в монтажно-испытательный цех. Там кристаллы проходят первые испытания, и те, которые проходят тест (а это подавляющее большинство), вырезаются из подложки специальным устройством.

На следующем этапе процессор упаковывается в подложку (на рисунке – процессор Intel Core i5, состоящий из CPU и чипа HD-графики).

Привет, сокет!

Подложка, кристалл и теплораспределительная крышка соединяются вместе – именно этот продукт мы будем иметь ввиду, говоря слово «процессор». Зеленая подложка создает электрический и механический интерфейс (для электрического соединения кремниевой микросхемы с корпусом используется золото), благодаря которому станет возможным установка процессора в сокет материнской платы – по сути, это просто площадка, на которой разведены контакты от маленького чипа. Теплораспределительная крышка является термоинтерфейсом, охлаждающим процессор во время работы – именно к этой крышке будут примыкать система охлаждения, будь то радиатор кулера или здоровый водоблок.

Сокет (разъём центрального процессора) - гнездовой или щелевой разъём, предназначенный для установки центрального процессора. Использование разъёма вместо прямого распаивания процессора на материнской плате упрощает замену процессора для модернизации или ремонта компьютера. Разъём может быть предназначен для установки собственно процессора или CPU-карты (например, в Pegasos). Каждый разъём допускает установку только определённого типа процессора или CPU-карты.

На завершающем этапе производства готовые процессоры проходят финальные испытания на предмет соответствия основным характеристикам – если все в порядке, то процессоры сортируются в нужном порядке в специальные лотки – в таком виде процессоры уйдут производителям или поступят в OEM-продажу. Еще какая-то партия пойдет на продажу в виде BOX-версий – в красивой коробке вместе со стоковой системой охлаждения.

The end

Теперь представьте себе, что компания анонсирует, например, 20 новых процессоров. Все они различны между собой – количество ядер, объемы кэша, поддерживаемые технологии… В каждой модели процессора используется определенное количество транзисторов (исчисляемое миллионами и даже миллиардами), свой принцип соединения элементов… И все это надо спроектировать и создать/автоматизировать – шаблоны, линзы, литографии, сотни параметров для каждого процесса, тестирование… И все это должно работать круглосуточно, сразу на нескольких фабриках… В результате чего должны появляться устройства, не имеющие права на ошибку в работе… А стоимость этих технологических шедевров должна быть в рамках приличия… Почти уверен в том, что вы, как и я, тоже не можете представить себе всего объема проделываемой работы, о которой я и постарался сегодня рассказать.

Ну и еще кое-что более удивительное. Представьте, что вы без пяти минут великий ученый - аккуратно сняли теплораспределительную крышку процессора и в огромный микроскоп смогли увидеть структуру процессора – все эти соединения, транзисторы… даже что-то на бумажке зарисовали, чтобы не забыть. Как думаете, легко ли изучить принципы работы процессора, располагая только этими данными и данными о том, какие задачи с помощью этого процессора можно решать? Мне кажется, примерно такая картина сейчас видна ученым, которые пытаются на подобном уровне изучить работу человеческого мозга. Только если верить стэнфордским микробиологам, в одном человеческом мозге

Здравствуйте, дорогие читатели. Сегодня мы Вам покажем, из чего состоит процессор изнутри. Многие пользователи, конечно, имели опыт с установкой процессора на материнскую плату, но не многие знают о том, как он выглядит изнутри. Мы постараемся объяснить Вам на достаточно простом языке, что бы было понятно, но в то же время не опуская подробностей. Прежде, чем начать рассказывать о составных частях процессора, Вы можете ознакомится с очень любопытным российским прототипом Эльбрус .

Многие пользователи считают, что процессор выглядит именно так, как показано на рисунке.

Однако это вся конструкция в сборе, которая состоит из более мелких и жизненно важных частей. Давайте посмотрим, из чего состоит процессор изнутри. В состав процессора входит:

На рисунке выше под номером 1 изображена защитная крышка, которая обеспечивает механическую защиту от попадания пыли и других мелких частиц. Крышка изготовлена из материала, который имеет высокий коэффициент теплопроводности, что позволяет забирать лишнее тепло с кристалла, тем самым обеспечивая нормальный температурный диапазон работы процессора.

Под номером 2 изображен «мозг» процессор и компьютера в целом — это кристалл. Именно он считается самым «умным» элементом процессора, который выполняет все возложенные на него задачи. Вы можете увидеть,что на кристалл нанесена тонким слоем микросхема, которая обеспечивает заданное функционирование процессора. Наиболее часто кристаллы процессора делают из кремния: это обуславливается тем, что этот элемент имеет достаточно сложные молекулярные связи, которые используются при формировании внутренних токов, что обеспечивает созданию многопоточной обработки информации.

Под номером 3 показана текстолитовая платформа, к которой крепятся все остальные делали: кристалл и крышка. Эта платформа так же играет роль хорошего проводника, который обеспечивает хороший электрический контакт с кристаллом. На обратной стороне платформы с целью повышения электропроводности находится много точек, изготовленных из драгоценного метала (иногда используют даже золото).

Вот как выглядят электопроводящие точки на примере процессора Intel.

Форма контактов зависит от того, какой сокет стоит на материнской плате. Бывет и так, что вмето точек на обратной стороне платформы Вы можете увидеть штырьки, которые выполняют ту же роль. Как правило, для процессоров семейства Intel штырьки находятся в самой материнской плате. В этом случае на подложке (она же платформа) будут располагаться точки. Для семейства процессоров AMD штырьки находяться непосредственно на самой подложке. Выглядят такие процессоры следующим образом.

Теперь рассмотрим сам способ крепления всех деталей. Для того, что бы крышка прочно удерживалась на подложке, ее «садят» при помощи специального клея-герметика, который устойчивый у большим температурам. Это позволяет конструкции находится в постоянной связке, не нарушая ее целостности.

Для того, что бы кристалл не перегревался, на него наносят специальную прокладку 1, поверх которой, в свою очередь, наносится термопаста 2, обеспечивающая эффективный теплоотвод на крышку. Крышка так же «смазывается» с внутренней стороны термопастой.

Давайте теперь посмотрим, как выглядит двухъядерный процессор. Ядро представляет собой отдельный функционально независимый кристалл, который параллельно устанавливается на подложку. Выглядит это так.

Таким образом 2 установленных рядом ядра увеличивают сумарную мощность процессора. Однако, если Вы увидите 2 кристалла, стоящих рядом, это не всегда будет означать, что у Вас двухъядерный процессор. На некоторых сокетах устанавливаются 2 кристалла, один из которых отвечает за арифметико-логическую часть, а другой — за обработку графики (некий встроенный графический процессор). Это выручает в тех случаях, когда у Вас встроенная видеокарта, мощности которой не хватает справится, например, с какой-нибудь игрой. В тих случаях львиную долю вычислений берет на себя графическая часть центрального процессора. Вот так выглядит процессор с графическим ядром.

Вот так вот, друзья, мы с Вами и разобрались, из чего состоит процессор. Теперь стало ясно, что все устройства, входящие в состав процессора, играют важную и незаменимую роль для качественной работы. Не забывайте комментировать статьи нашего сайта, подписывайтесь на нашу рассылку и узнавайте много интересного. Ваше мнение Важно для нас!

Как делают микросхемы

тобы понять, в чем заключается основное различие между этими двумя технологиями, необходимо сделать краткий экскурс в саму технологию производства современных процессоров или интегральных микросхем.

Как известно из школьного курса физики, в современной электронике основными компонентами интегральных микросхем являются полупроводники p-типа и n-типа (в зависимости от типа проводимости). Полупроводник — это вещество, по проводимости превосходящее диэлектрики, но уступающее металлам. Основой полупроводников обоих типов может служить кремний (Si), который в чистом виде (так называемый собственный полупроводник) плохо проводит электрический ток, однако добавление (внедрение) в кремний определенной примеси позволяет радикально изменить его проводящие свойства. Существует два типа примеси: донорная и акцепторная. Донорная примесь приводит к образованию полупроводников n-типа c электронным типом проводимости, а акцепторная — к образованию полупроводников p-типа с дырочным типом проводимости. Контакты p- и n-полупроводников позволяют формировать транзисторы — основные структурные элементы современных микросхем. Такие транзисторы, называемые КМОП-транзисторами, могут находиться в двух основных состояниях: открытом, когда они проводят электрический ток, и запертом — при этом они электрический ток не проводят. Поскольку КМОП-транзисторы являются основными элементами современных микросхем, поговорим о них подробнее.

Авторы статьи: Гвинджилия Григорий и Пащенко Сергей

Как устроен КМОП-транзистор

Простейший КМОП-транзистор n-типа имеет три электрода: исток, затвор и сток. Сам транзистор выполнен в полупроводнике p-типа с дырочной проводимостью, а в областях стока и истока формируются полупроводники n-типов с электронной проводимостью. Естественно, что за счет диффузии дырок из p-области в n-область и обратной диффузии электронов из n-области в p-область на границах переходов p- и n-областей формируются обедненные слои (слои, в которых отсутствуют основные носители зарядов). В обычном состоянии, то есть когда к затвору не прикладывается напряжение, транзистор находится в «запертом» состоянии, то есть не способен проводить ток от истока к стоку. Ситуация не меняется, даже если приложить напряжение между стоком и истоком (при этом мы не принимаем во внимание токи утечки, вызванные движением под воздействием формируемых электрических полей неосновных носителей заряда, то есть дырок для n-области и электронов для p-области).

Однако если к затвору приложить положительный потенциал (рис. 1), то ситуация в корне изменится. Под воздействием электрического поля затвора дырки выталкиваются в глубь p-полупроводника, а электроны, наоборот, втягиваются в область под затвором, образуя обогащенный электронами канал между истоком и стоком. Если приложить к затвору положительное напряжение, эти электроны начинают двигаться от истока к стоку. При этом транзистор проводит ток — говорят, что транзистор «открывается». Если напряжение с затвора снимается, электроны перестают втягиваться в область между истоком и стоком, проводящий канал разрушается и транзистор перестает пропускать ток, то есть «запирается». Таким образом, меняя напряжение на затворе, можно открывать или запирать транзистор, аналогично тому, как можно включать или выключать обычный тумблер, управляя прохождением тока по цепи. Именно поэтому транзисторы иногда называют электронными переключателями. Однако, в отличие от обычных механических переключателей, КМОП-транзисторы практически безынерционны и способны переходить из открытого в запертое состояние триллионы раз в секунду! Именно этой характеристикой, то есть способностью мгновенного переключения, и определяется в конечном счете быстродействие процессора, который состоит из десятков миллионов таких простейших транзисторов.

Итак, современная интегральная микросхема состоит из десятков миллионов простейших КМОП-транзисторов. Остановимся более подробно на процессе изготовления микросхем, первый этап которого — получение кремниевых подложек.

Шаг 1. Выращивание болванок

Создание таких подложек начинается с выращивания цилиндрического по форме монокристалла кремния. В дальнейшем из таких монокристаллических заготовок (болванок) нарезают круглые пластины (wafers), толщина которых составляет приблизительно 1/40 дюйма, а диаметр — 200 мм (8 дюймов) или 300 мм (12 дюймов). Это и есть кремниевые подложки, служащие для производства микросхем.

При формировании пластин из монокристаллов кремния учитывается то обстоятельство, что для идеальных кристаллических структур физические свойства в значительной степени зависят от выбранного направления (свойство анизотропии). К примеру, сопротивление кремниевой подложки будет различным в продольном и поперечном направлениях. Аналогично, в зависимости от ориентации кристаллической решетки, кристалл кремния будет по-разному реагировать на какие-либо внешние воздействия, связанные с его дальнейшей обработкой (например, травление, напыление и т.д.). Поэтому пластина должна быть вырезана из монокристалла таким образом, чтобы ориентация кристаллической решетки относительно поверхности была строго выдержана в определенном направлении.

Как уже отмечалось, диаметр заготовки монокристалла кремния составляет либо 200, либо 300 мм. Причем диаметр 300 мм — это относительно новая технология, о которой мы расскажем ниже. Понятно, что на пластине такого диаметра может разместиться далеко не одна микросхема, даже если речь идет о процессоре Intel Pentium 4. Действительно, на одной подобной пластине-подложке формируется несколько десятков микросхем (процессоров), но для простоты мы рассмотрим лишь процессы, происходящие на небольшом участке одного будущего микропроцессора.

Шаг 2. Нанесение защитной пленки диэлектрика (SiO2)

После формирования кремниевой подложки наступает этап создания сложнейшей полупроводниковой структуры.

Для этого в кремний нужно внедрить так называемые донорную и акцепторную примеси. Однако возникает вопрос — как осуществить внедрение примесей по точно заданному рисунку-шаблону? Для того чтобы это стало возможным, те области, куда не требуется внедрять примеси, защищают специальной пленкой из диоксида кремния, оставляя оголенными только те участки, которые подвергаются дальнейшей обработке (рис. 2). Процесс формирования такой защитной пленки нужного рисунка состоит из нескольких этапов.

На первом этапе вся пластина кремния целиком покрывается тонкой пленкой диоксида кремния (SiO2), который является очень хорошим изолятором и выполняет функцию защитной пленки при дальнейшей обработке кристалла кремния. Пластины помещают в камеру, где при высокой температуре (от 900 до 1100 °С) и давлении происходит диффузия кислорода в поверхностные слои пластины, приводящая к окислению кремния и к образованию поверхностной пленки диоксида кремния. Для того чтобы пленка диоксида кремния имела точно заданную толщину и не содержала дефектов, необходимо строго поддерживать постоянную температуру во всех точках пластины в процессе окисления. Если же пленкой из диоксида кремния должна быть покрыта не вся пластина, то предварительно на кремниевую подложку наносится маска Si3N4, предотвращающая нежелательное окисление.

Шаг 3. Нанесение фоторезистива

После того как кремниевая подложка покроется защитной пленкой диоксида кремния, необходимо удалить эту пленку с тех мест, которые будут подвергаться дальнейшей обработке. Удаление пленки осуществляется посредством травления, а для защиты остальных областей от травления на поверхность пластины наносится слой так называемого фоторезиста. Термином «фоторезисты» обозначают светочувствительные и устойчивые к воздействию агрессивных факторов составы. Применяемые составы должны обладать, с одной стороны, определенными фотографическими свойствами (под воздействием ультрафиолетового света становиться растворимыми и вымываться в процессе травления), а с другой — резистивными, позволяющими выдерживать травление в кислотах и щелочах, нагрев и т.д. Основное назначение фоторезистов — создание защитного рельефа нужной конфигурации.

Процесс нанесения фоторезиста и его дальнейшее облучение ультрафиолетом по заданному рисунку называется фотолитографией и включает следующие основные операции: формирование слоя фоторезиста (обработка подложки, нанесение, сушка), формирование защитного рельефа (экспонирование, проявление, сушка) и передача изображения на подложку (травление, напыление и т.д.).

Перед нанесением слоя фоторезиста (рис. 3) на подложку последняя подвергается предварительной обработке, в результате чего улучшается ее сцепление со слоем фоторезиста. Для нанесения равномерного слоя фоторезиста используется метод центрифугирования. Подложка помещается на вращающийся диск (центрифуга), и под воздействием центробежных сил фоторезист распределяется по поверхности подложки практически равномерным слоем. (Говоря о практически равномерном слое, учитывают то обстоятельство, что под действием центробежных сил толщина образующейся пленки увеличивается от центра к краям, однако такой способ нанесения фоторезиста позволяет выдержать колебания толщины слоя в пределах ±10%.)

Шаг 4. Литография

После нанесения и сушки слоя фоторезиста наступает этап формирования необходимого защитного рельефа. Рельеф образуется в результате того, что под действием ультрафиолетового излучения, попадающего на определенные участки слоя фоторезиста, последний изменяет свойства растворимости, например освещенные участки перестают растворяться в растворителе, которые удаляют участки слоя, не подвергшиеся освещению, или наоборот — освещенные участки растворяются. По способу образования рельефа фоторезисты делят на негативные и позитивные. Негативные фоторезисты под действием ультрафиолетового излучения образуют защитные участки рельефа. Позитивные фоторезисты, напротив, под воздействием ультрафиолетового излучения приобретают свойства текучести и вымываются растворителем. Соответственно защитный слой образуется в тех участках, которые не подвергаются ультрафиолетовому облучению.

Для засветки нужных участков слоя фоторезиста используется специальный шаблон-маска. Чаще всего для этой цели применяются пластинки из оптического стекла с полученными фотографическим или иным способом непрозрачными элементами. Фактически такой шаблон содержит рисунок одного из слоев будущей микросхемы (всего таких слоев может насчитываться несколько сотен). Поскольку этот шаблон является эталоном, он должен быть выполнен с большой точностью. К тому же с учетом того, что по одному фотошаблону будет сделано очень много фотопластин, он должен быть прочным и устойчивым к повреждениям. Отсюда понятно, что фотошаблон — весьма дорогая вещь: в зависимости от сложности микросхемы он может стоить десятки тысяч долларов.

Ультрафиолетовое излучение, проходя сквозь такой шаблон (рис. 4), засвечивает только нужные участки поверхности слоя фоторезиста. После облучения фоторезист подвергается проявлению, в результате которого удаляются ненужные участки слоя. При этом открывается соответствующая часть слоя диоксида кремния.

Несмотря на кажущуюся простоту фотолитографического процесса, именно этот этап производства микросхем является наиболее сложным. Дело в том, что в соответствии с предсказанием Мура количество транзисторов на одной микросхеме возрастает экспоненциально (удваивается каждые два года). Подобное возрастание числа транзисторов возможно только благодаря уменьшению их размеров, но именно уменьшение и «упирается» в процесс литографии. Для того чтобы сделать транзисторы меньше, необходимо уменьшить геометрические размеры линий, наносимых на слой фоторезиста. Но всему есть предел — сфокусировать лазерный луч в точку оказывается не так-то просто. Дело в том, что в соответствии с законами волновой оптики минимальный размер пятна, в который фокусируется лазерный луч (на самом деле это не просто пятно, а дифракционная картина), определяется кроме прочих факторов и длиной световой волны. Развитие литографической технологии со времени ее изобретения в начале 70-х шло в направлении сокращения длины световой волны. Именно это позволяло уменьшать размеры элементов интегральной схемы. С середины 80-х в фотолитографии стало использоваться ультрафиолетовое излучение, получаемое с помощью лазера. Идея проста: длина волны ультрафиолетового излучения меньше, чем длина волны света видимого диапазона, следовательно, возможно получить и более тонкие линии на поверхности фоторезиста. До недавнего времени для литографии использовалось глубокое ультрафиолетовое излучение (Deep Ultra Violet, DUV) с длиной волны 248 нм. Однако когда фотолитография перешагнула границу 200 нм, возникли серьезные проблемы, впервые поставившие под сомнение возможность дальнейшего использования этой технологии. Например, при длине волны меньше 200 мкм слишком много света поглощается светочувствительным слоем, поэтому усложняется и замедляется процесс передачи шаблона схемы на процессор. Подобные проблемы побуждают исследователей и производителей искать альтернативу традиционной литографической технологии.

Новая технология литографии, получившая название ЕUV-литографии (Extreme UltraViolet — сверхжесткое ультрафиолетовое излучение), основана на использовании ультрафиолетового излучения с длиной волны 13 нм.

Переход с DUV- на EUV-литографию обеспечивает более чем 10-кратное уменьшение длины волны и переход в диапазон, где она сопоставима с размерами всего нескольких десятков атомов.

Применяемая сейчас литографическая технология позволяет наносить шаблон с минимальной шириной проводников 100 нм, в то время как EUV-литография делает возможной печать линий гораздо меньшей ширины — до 30 нм. Управлять ультракоротким излучением не так просто, как кажется. Поскольку EUV-излучение хорошо поглощается стеклом, то новая технология предполагает использование серии из четырех специальных выпуклых зеркал, которые уменьшают и фокусируют изображение, полученное после применения маски (рис. 5 , , ). Каждое такое зеркало содержит 80 отдельных металлических слоев толщиной примерно в 12 атомов.

Шаг 5. Травление

После засвечивания слоя фоторезиста наступает этап травления (etching) с целью удаления пленки диоксида кремния (рис. 8).

Часто процесс травления ассоциируется с кислотными ваннами. Такой способ травления в кислоте хорошо знаком радиолюбителям, которые самостоятельно делали печатные платы. Для этого на фольгированный текстолит лаком, выполняющим функцию защитного слоя, наносят рисунок дорожек будущей платы, а затем опускают пластину в ванну с азотной кислотой. Ненужные участки фольги стравливаются, обнажая чистый текстолит. Этот способ имеет ряд недостатков, главный из которых — невозможность точно контролировать процесс удаления слоя, так как слишком много факторов влияют на процесс травления: концентрация кислоты, температура, конвекция и т.д. Кроме того, кислота взаимодействует с материалом по всем направлениям и постепенно проникает под край маски из фоторезиста, то есть разрушает сбоку прикрытые фоторезистом слои. Поэтому при производстве процессоров используется сухой метод травления, называемый также плазменным. Такой метод позволяет точно контролировать процесс травления, а разрушение вытравливаемого слоя происходит строго в вертикальном направлении.

При использовании сухого травления для удаления с поверхности пластины диоксида кремния применяется ионизированный газ (плазма), который вступает в реакцию с поверхностью диоксида кремния, в результате чего образуются летучие побочные продукты.

После процедуры травления, то есть когда оголены нужные области чистого кремния, удаляется оставшаяся часть фотослоя. Таким образом, на кремниевой подложке остается рисунок, выполненный диоксидом кремния.

Шаг 6. Диффузия (ионная имплантация)

Напомним, что предыдущий процесс формирования необходимого рисунка на кремниевой подложке требовался для того, чтобы создать в нужных местах полупроводниковые структуры путем внедрения донорной или акцепторной примеси. Процесс внедрения примесей осуществляется посредством диффузии (рис. 9) — равномерного внедрения атомов примеси в кристаллическую решетку кремния. Для получения полупроводника n-типа обычно используют сурьму, мышьяк или фосфор. Для получения полупроводника p-типа в качестве примеси используют бор, галлий или алюминий.

Для процесса диффузии легирующей примеси применяется ионная имплантация. Процесс имплантации заключается в том, что ионы нужной примеси «выстреливаются» из высоковольтного ускорителя и, обладая достаточной энергией, проникают в поверхностные слои кремния.

Итак, по окончании этапа ионной имплантации необходимый слой полупроводниковой структуры создан. Однако в микропроцессорах таких слоев может насчитываться несколько. Для создания очередного слоя на полученном рисунке схемы выращивается дополнительный тонкий слой диоксида кремния. После этого наносятся слой поликристаллического кремния и еще один слой фоторезиста. Ультрафиолетовое излучение пропускается сквозь вторую маску и высвечивает соответствующий рисунок на фотослое. Затем опять следуют этапы растворения фотослоя, травления и ионной имплантации.

Шаг 7. Напыление и осаждение

Наложение новых слоев осуществляется несколько раз, при этом для межслойных соединений в слоях оставляются «окна», которые заполняются атомами металла; в результате на кристалле создаются металлические полоски — проводящие области. Таким образом в современных процессорах устанавливаются связи между слоями, формирующими сложную трехмерную схему. Процесс выращивания и обработки всех слоев длится несколько недель, а сам производственный цикл состоит из более чем 300 стадий. В результате на кремниевой пластине формируются сотни идентичных процессоров.

Чтобы выдержать воздействия, которым подвергаются пластины в процессе нанесения слоев, кремниевые подложки изначально делаются достаточно толстыми. Поэтому, прежде чем разрезать пластину на отдельные процессоры, ее толщину уменьшают на 33% и удаляют загрязнения с обратной стороны. Затем на тыльную сторону подложки наносят слой специального материала, улучшающего крепление кристалла к корпусу будущего процессора.

Шаг 8. Заключительный этап

По окончании цикла формирования все процессоры тщательно тестируются. Затем из пластины-подложки с помощью специального устройства вырезаются конкретные, уже прошедшие проверку кристаллы (рис. 10).

Каждый микропроцессор встраивается в защитный корпус, который также обеспечивает электрическое соединение кристалла микропроцессора с внешними устройствами. Тип корпуса зависит от типа и предполагаемого применения микропроцессора.

После запечатывания в корпус каждый микропроцессор повторно тестируется. Неисправные процессоры отбраковывают, а исправные подвергают нагрузочным испытаниям. Затем процессоры сортируют в зависимости от их поведения при различных тактовых частотах и напряжениях питания.

Перспективные технологии

Технологический процесс производства микросхем (в частности, процессоров) рассмотрен нами весьма упрощенно. Но даже такое поверхностное изложение позволяет понять технологические трудности, с которыми приходится сталкиваться при уменьшении размеров транзисторов.

Однако, прежде чем рассматривать новые перспективные технологии, ответим на поставленный в самом начале статьи вопрос: что же такое проектная норма технологического процесса и чем, собственно, отличается проектная норма 130 нм от нормы 180 нм? 130 нм или 180 нм — это характерное минимальное расстояние между двумя соседними элементами в одном слое микросхемы, то есть своеобразный шаг сетки, к которой осуществляется привязка элементов микросхемы. При этом совершенно очевидно, что, чем меньше этот характерный размер, тем больше транзисторов можно разместить на одной и той же площади микросхемы.

В настоящее время в производстве процессоров Intel используется 0,13-микронный технологический процесс. По этой технологии изготавливают процессор Intel Pentium 4 с ядром Northwood, процессор Intel Pentium III с ядром Tualatin и процессор Intel Celeron. В случае применения такого технологического процесса полезная ширина канала транзистора составляет 60 нм, а толщина оксидного слоя затвора не превышает 1,5 нм. Всего же в процессоре Intel Pentium 4 размещается 55 млн. транзисторов.

Наряду с увеличением плотности размещения транзисторов в кристалле процессора, 0,13-микронная технология, пришедшая на смену 0,18-микронной, имеет и другие нововведения. Во-первых, здесь используются медные соединения между отдельными транзисторами (в 0,18-микронной технологии соединения были алюминиевыми). Во-вторых, 0,13-микронная технология обеспечивает более низкое энергопотребление. Для мобильной техники, например, это означает, что энергопотребление микропроцессоров становится меньше, а время работы от аккумуляторной батареи — больше.

Ну и последнее нововведение, которое было воплощено при переходе на 0,13-микронный технологический процесс — это использование кремниевых пластин (wafer) диаметром 300 мм. Напомним, что до этого большинство процессоров и микросхем изготовлялись на основе 200-миллиметровых пластин.

Увеличение диаметра пластин позволяет снизить себестоимость каждого процессора и увеличить выход продукции надлежащего качества. Действительно, площадь пластины диаметром 300 мм в 2,25 раза больше площади пластины диаметром 200 мм, соответственно и количество процессоров, получаемых из одной пластины диаметром 300 мм, в два с лишним раза больше.

В 2003 году ожидается внедрение нового технологического процесса с еще меньшей проектной нормой, а именно 90-нанометрового. Новый технологический процесс, по которому корпорация Intel будет производить большую часть своей продукции, в том числе процессоры, наборы микросхем и коммуникационное оборудование, был разработан на опытном заводе D1C корпорации Intel по обработке 300-миллиметровых пластин в г.Хиллсборо (шт.Орегон).

23 октября 2002 года корпорация Intel объявила об открытии нового производства стоимостью 2 млрд. долл. в Рио-Ранчо (шт.Нью-Мексико). На новом заводе, получившем название F11X, будет применяться современная технология, по которой будут производиться процессоры на 300-мм подложках с использованием технологического процесса с проектной нормой 0,13 микрон. В 2003 году завод будет переведен на технологический процесс с проектной нормой 90 нм.

Кроме того, корпорация Intel уже заявила о возобновлении строительства еще одного производственного объекта на Fab 24 в Лейкслипе (Ирландия), который предназначен для изготовления полупроводниковых компонентов на 300-миллиметровых кремниевых подложках с 90-нанометровой проектной нормой. Новое предприятие общей площадью более 1 млн. кв. футов с особо чистыми помещениями площадью 160 тыс. кв. футов предполагается ввести в строй в первой половине 2004 года, и на нем будет работать более тысячи сотрудников. Стоимость объекта составляет около 2 млрд. долл.

В 90-нанометровом процессе применяется целый ряд передовых технологий. Это и самые маленькие в мире серийно изготавливаемые КМОП-транзисторы с длиной затвора 50 нм (рис. 11), что обеспечивает рост производительности при одновременном снижении энергопотребления, и самый тонкий оксидный слой затвора среди всех когда-либо производившихся транзисторов — всего 1,2 нм (рис. 12), или менее 5 атомарных слоев, и первая в отрасли реализация высокоэффективной технологии напряженного кремния.

Из перечисленных характеристик в комментариях нуждается, пожалуй, лишь понятие «напряженного кремния» (рис. 13). В таком кремнии расстояние между атомами больше, чем в обычном полупроводнике. Это, в свою очередь, обеспечивает более свободное протекание тока, аналогично тому, как на дороге с более широкими полосами движения свободнее и быстрее движется транспорт.

В результате всех нововведений на 10-20% улучшаются рабочие характеристики транзисторов, при увеличении затрат на производство всего на 2%.

Кроме того, в 90-нанометровом технологическом процессе используется семь слоев в микросхеме (рис. 14), что на один слой больше, чем в 130-нанометровом технологическом процессе, а также медные соединения.

Все эти особенности в сочетании с 300-миллиметровыми кремниевыми подложками обеспечивают корпорации Intel выигрыш в производительности, объемах производства и себестоимости. В выигрыше оказываются и потребители, поскольку новый технологический процесс Intel позволяет продолжить развитие отрасли в соответствии с законом Мура, вновь и вновь повышая производительность процессоров.

Сейчас полно информации в интернете по теме процессоров, можно найти кучу статей о том как он работает, где в основном упоминаются регистры, такты, прерывания и прочее...Но, человеку не знакомому со всеми этими терминами и понятиями достаточно трудно вот так "с лету" вникнуть в понимание процесса, а начинать надо с малого - а именно с элементарного понимания как устроен процессор и из каких основных частей он состоит .

Итак, что же окажется внутри микропроцессора, если его разобрать:

цифрой 1 обозначается металлическая поверхность (крышка) микропроцессора, служащая для отвода тепла и защиты от механических повреждений того, что находится за этой крышкой (тоесть внутри самого процессора).

Под номером 2 - находится сам кристалл, по факту являющийся самой важной и дорогой в изготовлении частью микропроцессора. Именно благодаря этому кристаллу происходят все вычисления (а это и есть самая главная функция процессора) и чем он сложнее, чем совершенней - тем мощнее получается процессор и тем дороже соответственно. Кристалл изготавливается из кремния. На самом деле процесс изготовления очень сложный и содержит в себе десятки шагов, подробнее в этом видео:

Цифра 3 - специальная текстолитовая подложка, к которой крепятся все остальные части процессора, кроме того она играет роль контактной площадки - на ее обратной стороне есть большое количество золотистых "точек" - это контакты (на рисунке их немного видно). Благодаря контактной площадке (подложке) обеспечивается тесное взаимодействие с кристаллом, ибо напрямую хоть как нибудь воздействовать на кристалл не представляется возможным.

Крышка (1) крепится к подложке (3) с помощью клея-герметика, устойчивого к высоким температурам. Между кристаллом (2) и крышкой нет воздушного зазора, его место занимает термопаста, при застывании из нее получается "мостик" между кристаллом процессора и крышкой, благодаря чему обеспечивается очень хороший отток тепла.

Кристалл соединяется с подложкой с помощью пайки и герметика, контакты подложки соединяются с контактами кристалла. На этом рисунке наглядно показано как соединяются контакты кристалла с контактами подложки при помощи очень тонких проводков (на фото 170-кратное увеличение):

Вообще устройство процессоров разных производителей и даже моделей одного производителя может сильно разниться. Однако принципиальная схема работы остается прежней - у всех есть контактная подложка, кристалл (или несколько, расположенных в одном корпусе) и металлическая крышка для отвода тепла.

Так например выглядит контактная подложка процессора Intel Pentium 4 (процессор перевернут):

Форма контактов и структура их расположения зависит от процессора и материнской платы компьютера (сокеты должны совпадать). Например на рисунке чуть выше контакты у процессора без "штырьков", поскольку штырьки находятся прямо в сокете материнской платы.

А бывает другая ситуация, где "штырьки" контактов торчат прямо из контактной подложки. Эта особенность характерна в основном для процессоров AMD:

Как уже упоминалось выше, устройство разных моделей процессоров одного производителя может различаться, перед нами яркий тому пример - четырехъядерный процессор Intel Core 2 Quad, который по сути представляет собой 2 двухъядерных процессора линейки core 2 duo, совмещенных в одном корпусе:

Важно! Количество кристаллов внутри процессора и количество ядер процессора - не одно и то же.

В современных моделях процессоров Intel умещается сразу 2 кристалла (чипа). Второй чип - графическое ядро процессора, по-сути играет роль встроенной в процессор видеокарты, тоесть даже если в системе отсутствует , графическое ядро возьмет на себя роль видеокарты, причем довольно мощной (в некоторых моделях процессоров вычислительная мощь графических ядер позволяет играть в современные игры на средних настройках графики).

Вот и все устройство центрального микропроцессора , вкратце конечно же.



Рекомендуем почитать

Наверх