Воздушный трансформатор тесла. Что такое трансформатор тесла

Faq 03.09.2019
Faq

Катушка тесла наверняка знакома многим по компьютерным играм или художественным фильмам. Если кто и не знает, что это проясним, это специальное приспособление , которое создает высокое напряжение высокой частоты. Если говорить проще, то благодаря катушке тесла можно держать искру в руках, зажигать лампочку без проводов и так далее.

Перед тем, как приступить к изготовлению нашей катушки, предлагаем посмотреть видеоролик

Нам понадобится:
- 200 м медного провода диаметром от 0.1 до 0.3 мм;
- провод диаметром 1 мм;
- 15-30 см пластиковой канализационной трубы диаметром от 4 до 7 см;
- 3-5 см канализационной трубы диаметром от 7 до 10 см
- транзистор D13007;
- радиатор для транзистора;
- переменный резистор на 50 кОм;
- постоянный резистор на 75 Ом и 0.25 вт.;
- источник питания на 12-18 вольт и ток 0.5 на ампера;
- паяльник, припой и канифоль.

Длинный кусок трубы необходим для вторичной обмотки, а короткий для первичной. Если найти трубу такого диаметра не удается, то можно заменить ее обычным скотчем, как это делает автор. Медный провод можно достать из старых трансформаторов или же просто приобрести на рынке.

С материалами разобрались, можно приступить к сборке. Сборку, по словам автора видео, лучше начинать не с первичной, а со вторичной катушки, то есть длинной трубы. Для этого берем трубу, которая отныне будет каркасом и закрепляем на ней проволоку.

Теперь нужно намотать примерно 1000 витков, обращая на то, чтобы не было перехлестов, больших расстояний между витками. Автор утверждает, что это сделать не так сложно, как может показаться с первого взгляда, и при желании можно закончить работу за час-полтора.

Когда обмотка вторичного каркаса окончена советуется покрыть ее лаком или просто обклеить скотчем, чтобы конструкция не испортилась со временем.

Теперь можно приступить к первичной обмотке. Делается она обычным проводом диаметром 1 мм. Провод можно использовать абсолютно любой. Обмотать нужно примерно 5-7 витков.

Крепим транзистор D13007 на радиаторе, затем припаиваем провод, идущий от вторичной обмотки к одному контакту транзистора.

На тот же контакт припаиваем постоянный резистор.

На втором конце постоянного резистора припаиваем переменный резистор.

Теперь берем первичную обмотку, засовываем вторичную в нее и припаиваем два провода, которые идут с нее на переменный резистор и резистор D13007.

Подключаем плюсовой и минусовой провода к тем же резисторам и подключаем нашу катушку тесла к источнику. Если желаемого эффекта не наблюдается, то нужно всего лишь поменять местами провода, идущие от первичной обмотки.

В 1997 году я заинтересовался катушкой Тесла и решил построить свою. К сожалению, я потерял интерес к ней, прежде чем я смог её запустить. Через несколько лет я нашел свою старую катушку, немного пересчитал её и продолжил строительство. И снова я забросил ее. В 2007 году друг показал мне свою катушку, напомнив мне о моих незавершенных проектах. Я опять нашел свою старую катушку, пересчитал все и в этот раз завершил проект.

Катушка Тесла - это резонансный трансформатор. В основном это LC схемы, настроенные на одну резонансную частоту.

Высоковольтный трансформатор используется для зарядки конденсатора.

Как только конденсатор достигает достаточного уровня заряда, он разряжается на разрядник и там проскакивает искра. Происходит короткое замыкание первичной обмотки трансформатора и в ней начинаются колебания.

Поскольку ёмкость конденсатора фиксирована, схема настраивается путем изменения сопротивления первичной обмотки, изменяя точку подключения к ней. При правильной настройке, очень высокое напряжение будет в верхней части вторичной обмотки, что приведет к впечатляющим разрядам в воздухе. В отличие от традиционных трансформаторов, соотношение витков между первичной и вторичной обмотками практически не влияет на напряжение.

Этапы строительства

Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.

Вот основные шаги, с которых следует начать:

  1. Выбор источника питания. Трансформаторы которые используются в неоновых вывесках, вероятно, лучше всего подойдут для начинающих, так как они относительно дешевые. Я рекомендую трансформаторы с выходным напряжением не меньше чем 4кВ.
  2. Изготовление разрядника. Это могут быть просто два винта, вкрученных в паре миллиметров друг от друга, но я рекомендую приложить немного больше усилий. Качество разрядника сильно влияет на производительность катушки.
  3. Расчет ёмкости конденсатора. Используя формулу ниже, рассчитайте резонансную емкость для трансформатора. Значение конденсатора должно быть примерно в 1,5 раза больше этого значения. Вероятно, лучшим и наиболее эффективным решение будет сборка конденсаторов. Если вы не хотите тратить деньги, можете попробовать изготовить конденсатор сами, но он может не работать, а его емкость трудно определить.
  4. Изготовление вторичной обмотки. Используйте 900-1000 витков эмалированной медной проволоки 0,3-0,6мм. Высота катушки обычно равна 5 её диаметрам. Водосточная труба из ПВХ, возможно, не самый лучший, но доступный материал для катушки. Полый металлический шар прицеплен к верхней части вторичной обмотки, а её нижняя часть заземлена. Для этого желательно использовать отдельное заземление, т.к. при использовании общедомового заземления есть шанс испортить другие электроприборы.
  5. Изготовление первичной обмотки. Первичная обмотка может быть сделана из толстого кабеля, или ещё лучше из медной трубки. Чем толще трубка, тем меньше резистивных потерь. 6 миллиметровой трубы вполне достаточно для большинства катушек. Помните, что толстые трубы намного сложнее сгибать и медь трескается при многочисленных перегибах. В зависимости от размера вторичной обмотки, от 5 до 15 витков с шагом от 3 до 5 мм должно хватить.
  6. Соедините все компоненты, настройте катушку, и все готово!

Перед тем как начать делать катушку Тесла настоятельно рекомендуется ознакомиться с правилами ТБ и работы с высокими напряжениями!

Также обратите внимание, что не были упомянуты схемы защиты трансформатора. Они не были использованы, и пока проблем нет. Ключевое слово здесь - пока.

Детали

Катушка делалась в основном из тех деталей, которые были в наличии.
Это были:
4кВ 35mA трансформатор от неоновой вывески.
0.3мм медная проволока.
0.33μF 275V конденсаторы.
Пришлось докупить 75мм водосточную трубу ПВХ и 5 метров 6мм медной трубки.

Вторичная обмотка


Вторичная обмотка сверху и снизу покрыта пластиковой изоляцией, для предотвращения пробоя

Вторичная обмотка была первым изготовленным компонентом. Я намотал около 900 витков провода вокруг сливной трубы высотой около 37см. Длина использованного провода была примерно 209 метров.

Индуктивности и емкости вторичной обмотки и металлической сферы (либо тороида) можно рассчитать по формулам которые можно найти на других сайтах. Имея эти данные можно рассчитать резонансную частоту вторичной обмотки:
L = [(2πf) 2 C] -1

При использовании сферы диаметром 14см, резонансная частота катушки равна примерно 452 кГц.

Металлическая сфера или тороид

Первой попыткой было изготовление металлической сферы путем обвертывания пластикового шара фольгой. Я не смог разгладить фольгу на шаре достаточно хорошо, и решил изготовит тороид. Я сделал небольшой тороид, обмотав алюминиевой лентой гофрированную трубу, свернутую в круг. Я не смог получить очень гладкий тороид, но он работает лучше, чем сфера из-за своей формы и за счет большего размера. Для поддержки тороида под него был подложен фанерный диск.

Первичная обмотка

Первичная обмотка состоит из медных трубок диаметром 6 мм, намотанных по спирали вокруг вторичной. Внутренний диаметр обмотки 17см, внешний 29см. Первичная обмотка содержит 6 витков с расстоянием 3 мм между ними. Из-за большого расстояния между первичной и вторичной обмоткой, они могут быть слабо связаны между собой.
Первичная обмотка вместе с конденсатором является LC генератором. Необходимая индуктивность может быть рассчитана по следующей формуле:
L = [(2πf) 2 C] -1
С - емкость конденсаторов, F-резонансная частота вторичной обмотки.

Но эта формула и калькуляторы основанные на ней дают лишь приблизительное значение. Правильный размер катушки должен быть подобран экспериментально, поэтому лучше сделать её слишком большой, чем слишком маленькой. Моя катушка состоит из 6 витков и подключена на 4 витке.

Конденсаторы


Сборка из 24 конденсаторов с гасящим резистором 10МОм на каждом

Так как у меня было большое количество мелких конденсаторов, я решил собрать их в один большой. Значение конденсаторов может быть рассчитано по следующей формуле:
C = I ⁄ (2πfU)

Значение конденсатора для моего трансформатора 27.8 нФ. Фактическое значение должно быть немного больше или меньше этого, так как быстрый рост напряжения в связи с резонансом может привести к поломке трансформатора и / или конденсаторов. Небольшую защиту от этого обеспечивают гасящие резисторы.

Моя сборка конденсаторов состоит из трех сборок с 24 конденсаторами в каждой. Напряжение в каждой сборке 6600 В, общая ёмкость всех сборок 41.3нФ.

Каждый конденсатор имеет свой 10 МОм гасящий резистор. Это важно, так как отдельные конденсаторы могут сохранять заряд в течение очень долгого времени после того, как питание было отключено. Как видно из рисунка ниже, номинальное напряжение конденсатора является слишком низким, даже для 4 кВ трансформатора. Чтобы хорошо и безопасно работать оно должно быть по крайней мере, 8 или 12 кВ.

Разрядник

Мой разрядник это просто два винта с металлическим шариком в середине.
Расстояние регулируется таким образом, что разрядник будет искрить только тогда, когда он является единственным подключенным к трансформатору. Увеличение расстояния между ними теоретически может увеличить длину искры, но есть риск разрушения трансформатора. Для большей катушки необходимо строить разрядник с воздушным охлаждением.

Одним из самых распространенных изобретений Николы Тесла считается трансформатор Тесла. Работа этого устройства основана на действии резонансных электромагнитных стоячих волн в катушках. Этот принцип лег в основу множества современных вещей: , кинескопы телевизоров, зарядка устройств на расстоянии. Благодаря явлению резонанса в момент совпадения частоты колебаний контура первичной обмотки с частотой колебания стоячих волн вторичной обмотки между концами катушки проскакивает дуга.

Несмотря на всю кажущуюся сложность этого генератора, сделать его можно и самому. Технология того, как сделать катушку Тесла своими руками, содержится ниже.

Составные части и принцип работы

Трансформатор Тесла собирается из первичной, вторичной катушки и обвязки, составляемой из разрядника или прерывателя, конденсатора и терминала, служащего выходом.

Первичная обмотка состоит из небольшого числа витков медного провода большого сечения или медной трубки. Она бывает горизонтальной (плоской), вертикальной (цилиндрической) или конической. Вторичная обмотка состоит из большого числа витков меньшего сечения и является наиболее важным узлом конструкции. Отношение ее длины к диаметру должно составлять 4:1, а в основании должно располагаться заземленное защитное кольцо из медного провода, призванное сохранить электронику установки.

Так как работает трансформатор Тесла в импульсном режиме, его конструкция характеризуется тем, что в нее не входит ферромагнитный сердечник. Это позволяет снизить взаимную индукцию между обмотками. Конденсатор, взаимодействуя с первичной катушкой, создает колебательный контур с включенным в него разрядником, в данном случае газовым. Разрядник собирают из массивных электродов, а для большей износостойкости дополнительно снабжают радиаторами.

Принцип работы катушки Тесла следующий. Конденсатор через дроссель заряжается от трансформатора. Скорость зарядки напрямую зависит от показателя индуктивности. Зарядившись до критического уровня, он вызовет пробой разрядника. После этого в первичном контуре генерируются высокочастотные колебания. Одновременно с этим активируется разрядник, убирающий трансформатор из общего контура, замыкая его.

Если это не произошло, то в первичном контуре могут произойти потери, негативно влияющие на его работу. В стандартной схеме параллельно с источником питания устанавливается газовый разрядник.

Таким образом, катушка Тесла на выходе может выдать напряжение в несколько миллионов вольт. От такого напряжения в воздухе возникают разряды электричества, имеющие вид коронарных разрядов и стримеров.

Крайне важно помнить, что эти изделия генерируют токи высокого потенциала и смертельно опасны для жизни. Даже маломощные устройства способны вызывать сильные ожоги, повреждение нервных окончаний, мышечных тканей и связок. Способны вызывать остановку сердца.

Конструкция и сборка

Трансформатор Тесла был запатентован в 1896 г. и по своей конструкции прост для исполнения. Он включает в себя:

  1. Первичную катушку с обмоткой из медной жилы сечением от 6 мм², в количестве достаточном для 5-7 витков.
  2. Вторичную катушку из диэлектрического материала и провода диаметром до 0,5 мм и длиной достаточной для 800-1000 витков.
  3. Полусферы разрядника.
  4. Конденсаторов.
  5. Защитного кольца из медной жилы, как на первичной обмотке трансформатора.

Особенность прибора заключается в том, что его мощность не зависит от мощности питающего источника. Важнее физические свойства воздуха. Устройство может создавать колебательные контуры различными методами:

  • с использованием разрядника искрового промежутка;
  • с помощью генератора колебания на транзисторах;
  • на лампах.

Для изготовления трансформатора Тесла своими руками потребуется:

  1. Для первичной обмотки – 3 м тонкой медной трубки диаметром 6 мм либо медная жила того же диаметра и длины.
  2. Для сборки вторичной обмотки необходима ПВХ труба диаметром 5см и длиной около 50 см и резьбовой фитинг ПВХ к ней. Также необходим медный, покрытый лаком или эмалью, провод диаметром 0,5 мм и длиной 90 м.
  3. Металлический фланец с внутренним диаметром 5 см.
  4. Различные гайки, шайбы и болты.
  5. Разрядник.
  6. Гладкая полусфера для терминала.
  7. Конденсатор можно изготовить самостоятельно. Для него потребуются 6 стеклянных бутылочек, поваренная соль, рапсовое или вазелиновое масло, алюминиевая фольга.
  8. Потребуется источник питания, выдающий 9кВ при 30мА.

Тесла проста в реализации. От трансформатора отходят 2 провода с подключенным разрядником. К одному из проводов подключаются конденсаторы. В конце расположена первичная обмотка. Отдельно располагается вторичная катушка с терминалом и заземленным кольцом защиты.

Описание того, как собрать катушку Тесла в домашних условиях:

  1. Изготавливают вторичную обмотку, предварительно закрепив край провода на конце трубы. Наматывать следует равномерно, не допуская обрыва провода. Между витками не должны присутствовать зазоры.
  2. Закончив, оберните обмотку в верхней и нижней частях малярной лентой. После этого покройте обмотку лаком или эпоксидной смолой.
  3. Подготовьте 2 панели для нижнего и верхнего оснований. Подойдет любой диэлектрический материал, лист фанеры или пластика. Установите по центру нижнего основания металлический фланец и закрепите его болтами так, чтобы между нижним и верхним основаниями осталось место.
  4. Подготовьте первичную обмотку, скрутив ее в спираль и закрепив на верхнем основании. Просверлив в нем 2 отверстия, выведите концы трубки в них. Закреплять ее следует так, чтобы исключить соприкосновение обмоток и при этом соблюсти расстояние между ними в 1 см.
  5. Для изготовления разрядника потребуется поместить 2 болта напротив друг друга в деревянную рамку. Расчет сделан на то, что при движении они будут играть роль регулятора.
  6. Конденсаторы изготавливаются следующим образом. Стеклянные бутылки обматывают фольгой и заливают в них соленую воду. Ее состав для всех бутылок должен быть одинаковым – 360 г на 1л воды. Пробивают крышки и вставляют в них провода. Конденсаторы готовы.
  7. Соединяют все узлы по схеме, описанной выше. Обязательно заземляют вторичную обмотку.
  8. Итоговое количество в первичной обмотке должно составить 6,5 витка, во вторичной – 600 витков.

Описанная последовательность действий дает представление о том, как сделать трансформатор Тесла самому.

Включение, проверка и регулировка

Первый запуск желательно производить вне помещения, также стоит подальше убрать все бытовые приборы, чтобы исключить их поломку. Помните о мерах предосторожности! Для запуска выполняют следующие действия:

  1. Проходят по всей цепочке проводов и проверяют, чтобы нигде не соприкасались оголенные контакты, а все узлы были надежно закреплены. В разряднике между болтами оставляют небольшой зазор.
  2. Подают напряжение и наблюдают за появлением стримера. В случае его отсутствия к вторичной обмотке подносят люминесцентную лампу или лампу накаливания. Желательно закрепить их на диэлектрике, подойдет кусок ПВХ трубы. Появление свечения подтверждает, что трансформатор Тесла работает.
  3. В случае отсутствия свечения меняют выводы первичной катушки местами.

Если с первого раза не получилось, не отчаивайтесь. Попробуйте изменить количество витков во вторичной обмотке и расстоянием между обмотками. Подкрутите болты в разряднике.

Мощная катушка Тесла

Отличительной особенностью такой катушки являются ее размеры, сила получаемого тока и метод генерации резонансных колебаний.

Выглядит это следующим образом. После включения заряжается конденсатор. Достигнув максимального уровня заряда, происходит пробой в разряднике. На следующем этапе образуется LC контур – цепь, образованная последовательным включением конденсатора и первичного контура. Это создает во вторичной обмотке резонансные колебания и напряжения высокой мощности.

При этом нечто подобное можно собрать и в домашних условиях. Для этого следует:

  1. Увеличить в 1,5-2,5 раза диаметр катушки и сечение провода.
  2. Изготовить терминал в форме тороида. Для этого подойдет алюминиевая гофра диаметром 100 мм.
  3. Заменить источник постоянного на источник переменного тока, выдающий 3-5кВ.
  4. Сделать надежное заземление.
  5. Убедиться в том, что ваша проводка выдержит такую нагрузку.

Такие трансформаторы могут генерировать мощность до 5кВт и создавать коронарные и дуговые разряды. При этом максимальный эффект достигается при совпадении частоты обоих контуров.

Ни для кого не является секретом кто такой знаменитый Никола Тесла. Мистические истории, которые рассказывают о нем, на сегодня не обсуждаем. Вспомним известные изобретения, о которых спорят до сегодняшнего дня.

Основные изобретения

  • Беспроводная передача энергии на длительные расстояния;
  • Флуоресцентное свечение;
  • Электрочасы;
  • Турбина;
  • Электрические печи;
  • Люминесцентные лампы;
  • Электронный микроскоп.

Перечислить все его 800 изобретений просто нет возможности. Одним из изобретений, которое поражает яркими явлениями в виде молния образных вспышек, считают высокочастотные катушки Тесла. Они представляет собой резонансный трансформатор. Данное устройство уже не одно десятилетие поражает мощью больших разрядов. Увидев работу устройства, не сможете забыть удивительное явление, которые создает яркие световые эффекты, напоминающие собой управляемые молнии. Используя катушки диаметром в 60 метров и полюс из медной сферы, Тесла разместил их над лабораторией и генерировал разряды. Длина, их достигала более, сорока метров.

Такие стрелы создавали эффекты невероятной красоты, при этом звук грома (освобожденная энергия) был слышен за 25 километров. Над башней плыл светящийся шар диаметр, которого был не менее 30 метров. Людей поражало необычайное зрелище пляшущих по земле искр. Кроме того когда кто либо пытался открыть водопроводный кран получал охапку цветных огоньков. Подобный экспериментальный запуск состоялся в 1904 году.

Если вы специалист любитель, у вас есть заветная мечта повторить работу гениального изобретателя, тогда попытаемся разобраться, как собрать катушку Тесла. Несмотря на то, что сама работа не сложная, многие не могут с ней справиться. Для того чтобы все получилось, надо знать принцип работы катушки Тесла. Устройство имеет несколько названий, но все они обозначают одно, и то же:

  • Трансформатор Тесла (основное название);
  • Катушка Тесла;
  • Тесла.

Принцип работы катушки Тесла.

Следует помнить, что это универсальная трансформаторная конструкция, которая изготавливается из двух обмоток, не имеющих общего сердечника, поскольку он усиливает взаимоиндукцию. Первая (первичка) катушка, к ней подводят переменное напряжение, которое создает магнитное поле. С его помощью полученная энергия первичной катушки передается во вторую обмотку.

Вторая модель также создает контур (колебательный), но разница в том, что конденсат, заменяет емкость тороида. Вся полученная энергия определенное время сохраняется в данном контуре в виде напряжения. Отсюда вытекает вывод: чем больше мы накопим энергии, тем выше будет полученное напряжение. На выходе оно составляет ни много ни мало миллионы вольт. Это дает возможность наблюдать удивительное зрелище электрических разрядов. Длина импульсов достигает нескольких метров. Чтобы повторить изобретение, в первую очередь появляется вопрос, как собрать катушку Тесла. Для этого вам потребуется:

  1. Тороид. Выполняет три основных функции – снижает резонансные частоты, создает накопление энергии, формирует магнитные поля. Производят тороиды из алюминиевой стали или гофры;
  2. Вторичная модель катушки (основная деталь), должна обладать значительной индуктивностью;
  3. Первичная низко индуктивная катушка. Для изготовления используют медные трубы;
  4. Защитное кольцо используют для того чтобы не вышла из строя электроника;
  5. Обязательное заземление ;
  6. Металлическая проволока, имеющая разный диаметр;

После того как вы подготовите весь требуемый материал переходите к пошаговому созданию изобретения.

Работа начинается с обмотки.

Для того чтобы сделать обмотку на первой катушке, подготовьте специальную форму. Она должна быть конусной или цилиндрической. Вокруг намотайте проволоку из медного сплава. Оборотов должно быть не меньше десяти. Делать витки следует плотно, но в тоже время обязательно следует контролировать, чтобы не было нахлестов. После того как закончите обмотку обязательно заизолируйте и укрепите полученные витки используя для этого лак. Помните!!! Длина проволоки влияет на индуктивность, а она на первой катушке обязана быть только низкой.

Вторичная модель создается аналогично, но количество витков увеличивается. Их должно быть как минимум тысяча, при этом трансформационный коэффициент больше в пятьдесят раз по количественному соотношению второй обмотки к первичной. Намотка вторичной катушки Тесла должна быть мощнее. Но при этом должна иметь равную к первичной обмотке частоту, поскольку разница приведет к сгоранию первой катушки.

После того как закончили первый этап работы, переходите к подготовке трансформатора. Его следует выбирать очень тщательно, он должен строго соответствовать размерам катушки. Используя мелкие конденсаторы равных размеров, объедините их между собой, в цепь. Благодаря этому у вас будет потенциал для равномерного накопления энергии в первичном контуре. Чтобы он был достаточно мощным, полученный конденсатор должен постоянно получать зарядку. Получив основные элементы, соедините все, используя для этого дросселя. Полученный прибор начнет работать только после того как вы подключите трансформатор.

Виды получаемых разрядов:

  1. Стримеры – это тонкие каналы, которые имеют большое количество разветвлений, создают тусклое свечение и содержат ионизированные газовые атомы. Применяются разряды для ионизации воздуха;
  2. Спарк представляет собой скользящий разряд искр;
  3. Коронный вид разряда представляет собой свечение ионов, которые находятся в электрополе высокого напряжения;
  4. Дуговой разряд.

Не применяя провода, используя данное высокочастотное устройство, у вас будет возможность поддерживать свечение ламп. Кроме того на крае обмотки будет вырабатываться яркая красивая искра, к ней можно прикоснуться руками, поскольку она относительно безопасная. Но как советуют специалисты трансформаторное устройство нельзя включать возле ПК, телефонов или посторонних бытовых приборов, поскольку они могут выйти из строя. В том случае, если получится самостоятельно создать такую катушку, прежде чем начинать проводить испытание следует придерживаться определенных правил:

  1. Прибор может вывести из строя все электроприборы, которые включены в электрическую сеть;
  2. Находитесь подальше от предметов, сделанных из металла, поскольку сможете получить ожог.

Делитесь своими знаниями и опытом удачного создания катушки Тесла в

XIX век был этакой эпохой дикого Запада в экспериментальной физике электромагнетизма. Роберт Ван де Грааф, лорд Кельвин, Никола Тесла и многие другие учёные, исследователи и инженеры открывали всё новые и новые явления, а затем масштабировали производящие их установки до колоссальных размеров. Некоторые из их творений функционируют до сих пор - например, шестиметровый гигантский генератор Ван де Граафа в Бостонском музее науки , а некоторые, как широко известная башня Уорденклифф, так никогда и не появились на свет.

С течением времени и развитием науки и техники внимание учёных переключилось на другие направления, но отдельные энтузиасты продолжали собирать, изучать и совершенствовать классические разработки в области высоких напряжений, электростатики, физики плазмы - кто-то вследствие неугасающей веры в теорию эфира и бесплатную энергию, кто-то из любопытства, или для решения узкоспециальных прикладных задач, кто-то просто потому что ему это доставляло.

В последнее время, примерно с конца 90-х годов, эта отрасль инженерных задач переживает ренессанс, связанный с интересом шоу-бизнеса и индустрии развлечений к притягивающим внимание разрядам катушек Тесла , усилившийся в последнее десятилетие после изобретения DRSSTC , которая на настоящий момент представляет собой наиболее технически совершенный вид катушки Тесла, использующий вместо классического искрового разрядника силовые транзисторы, что позволяет быстро - в течение нескольких периодов колебаний - менять частоту появления разряда (BPS) и, как следствие, воспроизводить музыку непосредственно при помощи появляющихся молний. Один из примеров - известная серийная модель OneTesla, которая, при всей непродуманности предлагаемого авторами конструктора, вполне работоспособна при определённом приложении рук.

На настоящий момент трансформаторы Тесла и родственные им устройства (лестницы Иакова, генераторы Маркса и Кокрофта-Уолтона, плазменные колонны, генераторы Ван де Граафа и т. д.) разных размеров и зрелищности используются на постоянной основе в ряде организованных вокруг них шоу-проектов в США (Arc Attack), России (TeslaFX), Великобритании (Lords of Lightning), Китае (увы, иероглифам не обучен) и других странах, периодически светятся в шоу-бизнесе (спецэффекты в Гарри Поттере, Ученике Чародея, концерты Металлики и пр.), а также присутствуют в качестве экспоната в каждом уважающем себя музее науки.

Размер имеет значение

Короче говоря, в один момент группа инженеров-любителей, давно и прочно погрязших в коллективном тесластроении, решила, что играть в песочнице, делая небольшие комнатные (и даже среднеразмерные уличные) катушки, им уже скучно, и решила сделать что-то особенное. На тот момент у нас уже было (как нам казалось) достаточно опыта в разработке катушек Тесла различных топологий и имеющаяся математическая модель допускала масштабирование типовой конструкции в несколько раз. По факту, единственными явно заметными ограничениями были габариты доступного помещения, мощность розетки, и финансы (хотя, чего уж там, в итоге всё упирается в финансы). Прикинув бюджет, человекочасы и прочие скучные мелочи, было решено ограничиться габаритами установки примерно в три метра высоты, с расчётной мощностью около 30-40 кВт. Для разбирающихся в вопросе:

Итоговые технические характеристики

  • Технология: DRSSTC
  • Общая высота: 3.3 метра
  • Общая масса: ~130 кг
  • Питание: 3ф 380 В
  • Резонансная частота: ~50 кГц
  • Габариты вторичной обмотки: 310х1800 мм, провод 1.06 мм
  • Топология силовой части: полный мост, транзисторы CM600DU-24NFH
  • Пиковая потребляемая мощность: ~35 кВт
  • Пиковая мощность в контуре: ~2 МВт
  • Пиковый ток в контуре: 3800 А
  • Ёмкость первичного контура: 1.2 мкФ
  • Ёмкость электролитов инвертора: 18000 мкФ, 900 вольт
  • Максимальная зарегистрированная длина разряда: 6 метров

Технология, разумеется, была выбрана именно DRSSTC, поскольку при правильном подходе и отсутствии ошибок её стоимость (а также массогабариты) оказывается значительно ниже, чем у других вариантов (искровой разрядник или радиолампа) при тех же конечных параметрах. Ну и ещё, конечно же, на ней можно играть музыку.

Модульный принцип

При первичной проектировке достаточно крупной катушки Тесла проект можно разбить на несколько модулей (первичная обмотка, вторичная обмотка, тороид, корпус, силовой инвертор, драйвер, пульт управления, вспомогательная электрика и т. п.), каждый из которых придумывается и изготавливается в отдельности, после чего они собираются вместе, последовательно настраиваются и отлаживаются в процессе, и в итоге взрываются начинают испускать молнии. Обычно большинство трансформаторов Тесла собираются энтузиастами в одиночку от начала до конца, но у нас, во-первых, уже имелась более-менее слаженная команда с распределением функций (проект-менеджер, проектировщик, разработчик (он же тестировщик), и несколько человек на подхвате - монтажник, слесарь и так далее), а, во-вторых, сама по себе задача стояла довольно амбициозная, и хотелось сделать её без лишних расходов, но при этом более или менее качественно, насколько это возможно для прототипной и уникальной конструкции. Поэтому каждый мог заниматься своим делом, параллельно общаясь для синхронизации модулей между собой, а я, будучи этим самым проект-менеджером, могу рассказать про каждый из модулей по отдельности, а также показать, что получилось в итоге.

Подготовка и материалообработка

После обсуждения, осмысления и различного словоблудия по теме, общий концепт был утверждён коллективным решением и я изобразил примитивный эскиз в 3ds max. Эскиз был нужен для осознания масштабов задачи, понимания основных взаимных пропорций модулей, в качестве отправной точки для проектировки и для поднятия боевого духа команды. На основе эскиза проектировщик собрал проект в Creo Elements (тогда ещё Pro/Engineer), уже с соблюдением конкретных размеров, способов соединения деталей между собой и прочими нюансами. По результатам этого проекта были созданы чертежи: деталей корпуса, основания первичной обмотки, тороида, коробки для автоматики и электрики, а также блока конденсаторов первичного контура (MMC).

В качестве конструкционных материалов мы использовали стеклотекстолит толщиной 18 мм, обработанный методом гидроабразивной резки (ввиду его высокой конструкционной и термической устойчивости, другие методы обработки оказались нерентабельны), толстую фанеру для корпуса и алюминиево-пластиковый композит для блока автоматики (для экранировки от создаваемого катушкой мощного фронта электромагнитных помех, пагубно влияющего на её же собственные управляющие схемы), а также поликарбонат в ряде мест. Фанеру и пластик обрабатывали на ЧПУ фрезере, имевшемся во владении соседа по заводику, где наш коллектив занимался всем этим непотребством. Creo Elements позволяет создавать сразу готовые управляющие программы для ЧПУ, что очень сильно помогло в процессе - мы просто, по факту, арендовали станок и делали на нём что надо когда надо.

Первичка и вторичка

Вторичную обмотку намотали на классическом каркасе - большой оранжевой канализационной трубе из ПВХ (серьёзно, это лучший из имеющихся вариантов для катушек Тесла любых габаритов по соотношению цены, доступности и соответствия задаче). Намотанный виток к витку эмалированный провод (диаметр 1.06 мм) в один слой, покрытый затем эпоксидной смолой, превратил трубу в огромного размера индуктор, с нетерпением ожидающий своей минуты славы - вторичку гигантской катушки Тесла. Итоговые габариты трубы получились 310х1800 мм.

Первичную обмотку - тоже классика - мы намотали медной трубкой для кондиционеров, диаметром 22 мм (7/8 дюйма). Витки аккуратно ложились в пазы, вырезанные в стеклотекстолите струёй воды с абразивом под давлением в тысячи атмосфер, и вот уже два модуля, первичка и вторичка - скелет любой катушки Тесла - соединились друг с другом. Проект понемногу обретал форму и цвет.

Тороид

С тороидом, необходимым элементом любой мощной катушки Тесла, однако, всё оказалось сложнее. Изначально предполагалось также последовать проверенной дорогой и использовать алюминиевую гофру для вентиляции. На практике же обнаружилось, что это чрезвычайно одноразовое решение - гофра мгновенно мнётся от любых неосторожных движений, и при планируемых габаритах её придётся заменять при каждой транспортировке устройства.

Поэтому, после некоторого исследования вопроса, я украл идею наткнулся на один любопытный вариант в Сети, а проектировщик смоделировал его с учётом наших масштабов и выдал проект для сборки. Дело в том, что основное требование к тороиду катушки Тесла - это его «гладкость» с точки зрения электромагнитных полей, поскольку любые заострения или неровности представляют собой точки формирования коронного разряда, который вызывает пробой воздуха раньше, чем достигается максимальная мощность, а, кроме того, забирают на себя часть полезной длины молнии. Но здесь есть один нюанс, связанный с тем, что силовые линии поля как бы обтягивают тороид эквипотенциальными зонами, вследствие чего его можно собрать из составных частей, которые, будучи сложены вместе правильным образом, образуют при работе катушки Тесла поле достаточно гладкое, чтобы предотвратить появление разряда там, где не надо.

В общем, результат оказался очень необычным внешне, относительно простым в производстве, надёжным в эксплуатации и на удивление эффективным в сравнении с другими известными вариантами исполнения этой важной части катушки Тесла. Диаметр алюминиевой трубы - 50 мм, а общий размер всей получившейся штуки, напоминающей НЛО - около двух метров в диаметре. Круги-проставки для трубок вырезали из фанеры всё на том же ЧПУ-фрезере, а центральную раму я сварил из стального уголка.

На этом, в принципе, конструкционная часть была закончена.

Силовая часть

В силовом инверторе для больших катушек Тесла часто используются IGBT-модули - этакие чёрные (или белые) кирпичики с двумя-тремя (иногда до 10) силовыми клеммами и несколькими выводами для управления, штатно используемые в силовых инверторах - мощные блоки зарядки, трансформаторные подстанции, частотные преобразователи для двигателей, электротранспорт и т. п. Вследствие большого размера кристалла, эти модули оказываются способны выдержать значительную кратковременную перегрузку по рабочему току (до 10 раз от номинального), что чрезвычайно выгодно в импульсном инверторе катушки Тесла по DRSSTC-технологии, поскольку рабочий цикл (время, в течение которого происходят колебания в контурах и через транзисторы течёт ток, разогревающий их кристаллы), в нём обычно составляет около 5-10%. Но, с другой стороны, абсолютное большинство этих IGBT-модулей рассчитаны на рабочие частоты порядка единиц, реже десятков килогерц (впрочем, в последнее время ситуация улучшается и современные модули могут работать до 100 кГц). Использование их на большей частоте часто ведёт к проблемам с управлением затворами, перегреву и взрывам (куда ж без взрывов).

Стоимость одного модуля, даже б/у, может быть сравнительно велика (от единиц до сотен тысяч рублей), так что мы решили перестраховаться и поставить с запасом по импульсному току два модуля CM600DU-24NFH (600 ампер непрерывного тока, 1200 вольт, два транзистора в полумостовом включении) по схеме «полный мост» (как известно, полный мост делается из двух полумостов - К. О.), или просто «мост». Посаженные на соответствующий их габаритам радиатор через пару чайных ложек термопасты КПТ-8, они были соединены медными шинами и снабжены необходимым обвесом - силовыми электролитическими и плёночными конденсаторами.

В придумывании актуального способа соединения этих деталей между собой есть масса хитрых эмпирических ноу-хау, призванных сократить риски и максимизировать надёжность подобных конструкций, но поля этой записи слишком узки, чтобы я мог рассказать про них, если вы понимаете о чём я. Не было никаких гарантий, что получившаяся штука не взорвётся при первой же попытке её включить, но на тот момент это казалось приемлемым риском.

Автоматика и электрика

Управляющая электрика не содержала в себе ничего особенно интересного. Нужно было обеспечить плавную зарядку электролитов (чтобы они не выбивали автоматы в щитке в момент включения установки) - с этим справились автоматический пускатель (по сути, большое силовое реле) и несколько силовых резисторов.

Диодный мост на 150 ампер выпрямлял сеть (кстати, вся конструкция создавалась, конечно же, под трёхфазное питание, с чем была связана масса разных интересных открытий - раньше мы не делали ничего под три фазы, тем более такой мощности), вентиляторы обдували диодный мост и заодно радиатор силовой части, а лампочки на передней панели изображали светофор, любезно сообщая, когда можно трогать части катушки руками, когда лучше не стоит, и когда желательно оказаться от неё на максимально возможном расстоянии, чтобы не словить разряд в макушку.

Поскольку продавался пульт в виде распаянной и прошитой платы с россыпью выносных деталек, нам пришлось разработать к ней корпус, куда встали бы сама плата, питание, четыре энкодера, четыре кнопки, дисплей и многочисленные разъёмы (четыре оптопередатчика, MIDI вход, USB вход, слот для SD карты). По ходу дела обнаружилась масса разного рода недоработок автора, в частности, отсутствие какого-либо контроля питания (питать от «Кроны»? Литий-ион? не, не слышал), что пришлось исправлять и доделывать, чтобы этим можно было пользоваться по назначению. Получившаяся в итоге химера, несмотря на ряд отвратительных глюков при некоторых неудачных условиях, успешно справляется с основной задачей и по сей день. Фотографии его у меня как-то не нашлось, но его можно заметить на одном из кадров ниже, в параграфе «первичная проверка» - чёрная коробочка рядом с силовым кабелем в правой части снимка. Ещё есть кадр из видео от автора схемы и прошивки - вот он.

Конденсаторная батарея

В качестве резонансного конденсатора мы выбрали силовые плёночные конденсаторы одного из отечественных производителей, специально разрабатывавшиеся (если верить каталогу производителя) для импульсных режимов работы. Пять штук общей ёмкостью около 1.2 мкф, и максимальным напряжением 20 киловольт, соединённые медной шиной с латунными винтами. Латунного крепежа, кстати, на весь проект ушло значительное количество - из-за огромных токов в килоамперы, в сочетании с мощным магнитным полем от первичной обмотки, и стальной оцинкованный и нержавеющий крепёж моментально разогреваются докрасна, что может в итоге приводить к незапланированным спецэффектам (да-да, взрывам). Поэтому и в ошиновке конденсаторов, и вообще во всех силовых соединениях в первичном контуре пришлось использовать только медь и латунь. Первые же тесты показали наивность попыток поставить туда что-то ферромагнитное и/или недостаточно хорошо пропускающее электрический ток.

Первичная проверка

Следующим этапом была настройка драйвера. Для этого достаточно собрать в одно целое первичный контур (конденсаторную батарею, первичку и мост), подключить к транзисторам моста драйвер и плавно начать подавать напряжение, отслеживая на осциллографе формы сигналов в различных участках схемы. Если всё сделано правильно, то в первичном контуре возникает автогенерация на расчётной частоте (в нашем случае около 50 кГц). Вторичка при этом не нужна, и никаких разрядов не возникает, но собираемых данных достаточно, чтобы настроить предиктор, OCD и заметить ошибки в монтаже или выбранных параметрах деталей. Эта часть оказалась простой и лёгкой (кстати, в таком режиме первичная обмотка вполне может работать как индукционная плита для приготовления пищи - есть прецеденты жарки яичницы на сковороде, стоящей поверх первички), и мы отправились вместе с почти родившимся детищем в один большой и полузаброшенный цех заводика, чтобы проверить наконец наше творение in vivo.

Проверка оказалась быстрой, яркой и немного предсказуемой: выдав несколько четырёхметровых разрядов, катушка Тесла сказала «вы мне надоели, я ухожу» и прекратила работать с громким хлопком где-то внутри корпуса. Последующее исследование этого феномена показало, что в процессе подбора оптимальной частоты мы ошиблись на один виток первичной обмотки, и возникшего рассогласования при переключении транзисторов оказалось достаточно, чтобы они, как это говорят на профессиональном тесластроительном арго, насиланили, то есть пришли в полную негодность ввиду перехода содержащегося в них кремния в газообразное состояние (как в том анекдоте, что транзисторы работают, мол, на волшебном дыме - когда он выходит, они работать перестают). Запасной комплект транзисторов остался в лаборатории, и остаток отведённого времени мы вяло переругивались друг с другом и запускали другие взятые с собой катушки Тесла в рамках репетиции к фестивалю GEEK PICNIC (под который был приурочен релиз проекта).



Рекомендуем почитать

Наверх