Волновое сопротивление. Волновое сопротивление кабеля

Скачать Viber 23.07.2019
Скачать Viber

Особенности распространения ультразвука в тканях тела человека.

Диапазоне частот.

Человеческого уха воспринимать упругие колебания среды только в ограниченном

Деление на ультразвук, звук и инфразвук условно. В основе такого деления - свойство

Инфразвуковых волн, имеющих частоту ниже нижней границы слышимого звука.

Но своей природе ультразвуковые волны не отличаются от звуковых, а также

Границу слышимого звука.

Физически тело человека представляет собой неоднородную среду с участками различной плотности и акустических свойств, разделёнными фазовыми поверхностями на различные области.

При прохождении ультразвука в теле человека имеются следующие особенности:

1) Скорость ультразвука в тканях тела человека зависит от вида ткани и тканевой среды. Её значения (м/с) для отдельных тканей следующие:

печень 1570

2) Ткани тела человека сильно рассеивают и отражают ультразвук. Причина - морфологическая неоднородность тканей, наличие множественных поверхностей раздела,
различия в акустических сопротивлениях. Например, акустическое
сопротивление черепа и крови различаются в 3.5 раза.

3) В тканях тела человека происходит сильное ослабление ультразвуковой волны вследствие её поглощения. Пример: значение коэффициента поглощения черепа в 14 раз больше коэффициента поглощения мозга.

Волновое сопротивление - сопротивление, которое встречает электромагнитная волна при распространении вдоль однородной линии без отражения:

где U п и I п - напряжение и ток падающей волны;

U от и I от - то же отраженной волны.

Таким образом, величина волнового сопротивления не зависит от длины кабельной линии и постоянна в любой точке цепи.

В общем виде волновое сопротивление - комплексная величина и может быть выражена через действительную и мнимую части:

В табл. 3-1 приведены формулы для расчета Z в α θ β.

Волновое сопротивление коаксиального или одножильного кабеля в металлической оболочке

У изоляционных материалов, у которых диэлектрическая проницаемость почти не зависит от частоты,

где 3335,8 - постоянная, принятая МЭК;- коэффициент укорочения длины волны.

При расчете радиочастотных кабелей стремятся получить оптимальную конструкцию, обеспечивающую высокие электрические характеристики при наименьшем расходе материалов. Так, например, при использовании меди для внутреннего и внешнего проводников радиочастотного кабеля минимальное затухание достигается при отношении, ом, максимальная электрическая прочность - при, ом и максимум передаваемой мощности - при, ом.



Точность и стабильность параметров кабеля зависят от величины допусков диаметров внутреннего и внешнего проводников и стабильности ε.

Зависимость волнового сопротивления симметричного кабеля от частоты приведена на рис. 3-7. Модуль волнового сопротивления Z B с изменением частоты уменьшается отпри f = 0 дои остается неизменным во всей области высоких частот. Угол волнового сопротивления равен нулю при f = 0 и на высоких частотах. На тональных частотах (f ≈ 800 гц) угол волнового сопротивления - наибольший. В кабельных линиях преобладает емкостная составляющая волнового сопротивления, и поэтому угол волнового сопротивления всегда отрицателен, а по величине не превышает 45°.

В кабельной линии, однородной по электрическим характеристикам на всем протяжении от генератора до приемника, с нагрузкой по концам, имеющей сопротивление, равное волновому (Z r = Z n = Z B), вся передаваемая электромагнитная анергия полностью поглощается приемником без отражения.

В неоднородных линиях и при несогласованных нагрузках в местах электрических несогласованности возникают отраженные волны и часть энергии возвращается к началу линии. Передаваемая энергия при несогласованной нагрузке значительно меньше, чем при согласованной.

Отраженные волны искажают частотную характеристику собственного волнового сопротивления кабеля. В этом случае на входе линии не волновое, а входное сопротивление Z вх.

Соотношение между энергией, поступающей к приемнику, и энергией отраженной зависит от сопротивлений приемника Z B и волнового Z B и характеризуется коэффициентом отражения

При согласованной нагрузке (Z n = Z в) коэффициент отражения равен нулю, и энергия полностью поглощается приемником. При коротком замыкании (Z п = 0) и режиме холостого хода (Z n = ∞) коэффициенты отражения равны соответственно - 1 и + 1.

Для обеспечения хорошего качества связи и телевизионной передачи по коаксиальному кабелю необходимо, чтобы отклонение волнового сопротивления ΔZ не превышало 0,45 ом, что соответствует коэффициенту отражения

В результате деформаций или наличия эксцентриситета в расположении внутреннего проводника по отношению к внешнему параметры кабеля могут оказаться неравномерно распределенными по его длине. В местах неоднородностей происходят отклонения волнового сопротивления от номинального.

Волновое сопротивление спиральных кабелей (кабелей задержки)

Волновое сопротивление двухкоаксиальных кабелей (с индивидуальными экранами поверх изоляции) вычисляют по формулам для коаксиальных кабелей; оно равно сумме волновых сопротивлений обоих кабелей.

Волновое сопротивление симметричного кабеля в области частот f = 15 000 кгц и выше:

неэкранированного

экранированного

Входным сопротивлением Z вх называется сопротивление на входе линии при любом нагрузочном сопротивлении на ее конце и выражается отношением напряжения U 0 к току I o в начале линии:

где.

Таблица 3 - 1

Приближенные формулы для расчета вторичных параметров передачи кабелей связи

Область применения формул Соотношение между R и ωL Расчетные формулы
α, неп/км β, рад/км Z в, ом
Постоянный ток (f = 0) ωL = 0
Тональные частоты (f < 800 гц)
Высокие частоты и кабели с повышенной индуктивностью
Промежуточные частоты

Волново́е сопротивле́ние

в акустике, в газообразной или жидкой среде - отношение звукового давления р в бегущей плоской волне (См. Волны) к скорости v колебания частиц среды. В. с. характеризует степень жёсткости среды (т. е. способность среды сопротивляться образованию деформаций) в режиме бегущей волны. В. с. не зависит от формы волны и выражается формулой: p/v = ρc ,где ρ - плотность среды, с - скорость звука. В. с. представляет собой Импеданс акустический среды для плоских волн. Термин «В. с.» введён по аналогии с В. с. в теории электрических линий; при этом давление соответствует напряжению, а скорость смещения частиц - электрическому току.

В. с. - важнейшая характеристика среды, определяющая условия отражения и преломления волн на её границе. При нормальном падении плоской волны на плоскую границу раздела двух сред коэффициент отражения определяется только отношением В. с. этих сред; если В. с. сред равны, то волна проходит границу без отражения. Понятием В. с. можно пользоваться и для твёрдого тела (для продольных и поперечных упругих волн в неограниченном твёрдом теле и для продольных волн в стержне), определяя В. с. как отношение соответствующего механического напряжения (См. Напряжение), взятого с обратным знаком, к скорости частиц среды.

Отраже́ние - физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

В акустике отражение является причиной эха и используется в гидролокации. Вгеологии оно играет важную роль в изучении сейсмических волн. Отражение наблюдается на поверхностных волнах в водоёмах. Отражение наблюдается со многими типами электромагнитных волн, не только для видимого света. Отражение УКВ и радиоволн более высоких частот имеет важное значение для радиопередач и радиолокации. Даже жёсткое рентгеновское излучение и гамма-лучи могут быть отражены на малых углах к поверхности специально изготовленными зеркалами. В медицине отражение ультразвука на границах раздела тканей и органов используется при проведении УЗИ-диагностики.

Количественно коэффициент отражения равен отношению потока излучения, отраженного телом, к потоку, упавшему на тело :

Сумма коэффициента отражения и коэффициентов поглощения, пропускания и рассеяния равна единице. Это утверждение следует из закона сохранения энергии.

В тех случаях, когда спектр падающего излучения настолько узок, что его можно считать монохроматическим, говорят омонохроматическом коэффициенте отражения. Если спектр падающего на тело излучения широк, то соответствующий коэффициент отражения иногда называют интегральным .

В общем случае значение коэффициента отражения тела зависит как от свойств самого тела, так и от угла падения, спектрального состава и поляризации излучения. Вследствие зависимости коэффициента отражения поверхности тела от длины волны падающего на него света визуально тело воспринимается как окрашенное в тот или иной цвет.

1. Падающий луч, отраженный луч и перпендикуляр в точке падения лежат в одной плоскости

2. Угол падения равен углу отражения

Волновое сопротивление

Зная комплексные амплитуды электрического и магнитного полей в коаксиальной линии передачи, можно вычислить мощность электромагнитного поля, переносимую вдоль оси :

Подставляя сюда выражения для комплексных амплитуд поля и проводя интегрирование, получаем

, Вт

Эту формулу можно рассматривать как выражение для мощности, выделяемой на некотором резисторе при подаче на него синусоидального напряжения . Поскольку , можно записать

.

Величина носит название волнового сопротивления коаксиальной линии передачи и имеет большое значение при решении вопросов ее реализации. Это объясняется тем, что часто используют последовательное включение линий передачи, обладающих различающимися параметрами, например, диаметрами проводников. Естественным требованием, предъявляемым к стыку двух линий, является согласование, т. е. отсутствие отражений от данной сосредоточенной неоднородности. Поскольку в плоскости стыка напряжение есть непрерывная функция координаты , мощность может быть целиком передана из одной линии в другую лишь при условии согласования:

Данная формула во многих случаях служит критерием согласования с достаточной для инженерных целей точностью. Приближенность ее заключается в том, что здесь не учитывается изменения структуры поля в непосредственной близости от плоскости скачка геометрических размеров, происходящее за счет возбуждения нераспространяющихся колебаний высших типов.

Возможность использования понятия волнового сопротивления для линий передачи с волнами ТЕМ объясняется тем, что здесь напряжение , в отличие от волноводов, может быть введено однозначным образом. Поэтому волновое сопротивление полностью характеризуется геометрическими параметрами поперечного сечения, а также диэлектрической проницаемостью использованного материала.

Отметим также, что волновое сопротивление линии можно выразить через ее погонную емкость. В случае ТЕМ-волны в любой однородной идеальной линии текут только продольные поверхностные токи. Их плотность связана с плотностью поверхностных зарядов уравнением непрерывности

,

которое можно записать в виде

.

Интегрируя последнее равенство по контуру поперечного сечения проводника, по которому течет рассматриваемый ток, получим

где − комплексная амплитуда заряда на единицу длины проводника. Учитывая общее выражение для волнового сопротивления и определение понятия емкости конденсатора , получим

,

где − погонная емкость линии. В случае коаксиальной линии определяется выражением для емкости цилиндрического конденсатора, которое получается при рассмотрении задач электростатики в курсе общей физики.

ВОЛНОВОЕ СОПРОТИВЛЕНИЕ

Наименование параметра Значение
Тема статьи: ВОЛНОВОЕ СОПРОТИВЛЕНИЕ
Рубрика (тематическая категория) Математика

РАСПРОСТРАНЕНИЕ ЗВУКОВЫХ ВОЛН В СРЕДЕ

Фазовая скорость звуковых волн зависит только от упругости и плотности среды, а значит и от температуры, но не зависит от частоты.

где γ показатель адиабаты – отношение молярной теплоемкости газа при постоянном давлении к молярной теплоемкости при постоянном объёме, γ = с р / с v . Из формулы (25) вытекает, что u не зависит от давления, но растет с ростом температуры и уменьшается с ростом молярной массы газа. К примеру, в воздухе при t = 0 o C – , при t = 20 o C – ; в водороде при t = 0 o C – u = 1260 м/с, при t = 20 o C – u = 1305 м/с.

В твёрдых и жидких средах скорость звука больше, чем в газах. Для воды она равна 1550 м/с. Примерно такое же значение имеет средняя скорость звука в мягких тканях человека. В твёрдых телах акустические волны бывают как продольными, так и поперечными. Скорость продольных звуковых волн больше скорости поперечных и составляет 2 ÷ 6 км /с.

На границе раздела двух сред звуковые волны испытывают отражение и преломление. Законы отражения и преломления механических волн аналогичны законам отражения и преломления для света Переход волны из одной среды в другую ведет к изменению условий её распространения, т.к. меняются плотность среды и скорость волны. По этой причинœе, перераспределœение энергии между отражённой и преломленной частями волны определяется значениями волновых сопротивлений сред ω 1 = ρ 1 u 1 и ω 2 = ρ 2 u 2 . Коэффициент проникновения β волны из среды 1 в среду 2 при нормальном падении на границу раздела определяется соотношением:

. (26)

Из этого соотношения видно, что звуковые волны полностью, не испытывая отражения, проникают из среды 1 в среду 2 (β = 1), в случае если ρ 1 u 1 = ρ 2 u 2 . В случае если же ρ 2 u 2 >> ρ 1 u 1 , то β << 1. К примеру, волновые сопротивления воздуха и бетона соответственно равны: 400 кг·м -1 ·с -1 и 4 800 000 кг·м -1 ·с -1 . Расчёт коэффициента проникновения звуковой волны из воздуха в бетон даёт – β = 0,037%.

Любая реальная среда обладает вязкостью, в связи с этим по мере распространения звука наблюдается затухание, ᴛ.ᴇ. уменьшение амплитуды звуковых колебаний. Затухание обусловлено: поглощением энергии звуковых волн средой, ᴛ.ᴇ. необратимым превращением механической энергии в другие формы (в основном в тепловую); отражением волн от границ раздела слоёв вещества с разным акустическим сопротивлением; а также рассеянием на элементах микроструктуры среды. Эти факторы играют особенно важную роль при распространении механических волн в биологических объектах.

Уменьшение интенсивности звука при проникновении в среду происходит по экспоненциальному закону:

где I и I 0 – интенсивности волны на поверхности вещества и на глубинœе l от неё. Коэффициент затухания для однородной среды –

где λ – длина звуковой волны; u – её скорость в данной среде; ρ – плотность вещества; η – коэффициент вязкости.

Явление постепенного затухания звука в закрытых помещениях (в процессе многочисленных отражений от стен и других препятствий) принято называть реверберацией звука. Время, в течение которого интенсивность звука уменьшается в миллион раз (амплитуда в 1000), принято называть временем реверберации. Помещение имеет хорошую акустику, в случае если время реверберации составляет 0,5 – 1,5 с.

9. ХАРАКТЕРИСТИКИ СЛУХОВОГО ОЩУЩЕНИЯ

ИХ СВЯЗЬ С ФИЗИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ ЗВУКОВЫХ ВОЛН

ЗАКОН ВЕБЕРА-ФЕХНЕРА

Звук, как объект слухового восприятия, оценивается человеком субъективно. Т.е. звук имеет физиологические характеристики, которые являются отражением его физических параметров. Одна из задач акустики установить соответствие между объективными параметрами звуковых волн и субъективной оценкой слухового ощущения, ĸᴏᴛᴏᴩᴏᴇ эти волны вызывают в ухе человека. Решение этой задачи даёт возможность объективно судить о состоянии слухового аппарата конкретного человека по результатам физических измерений.

В слуховом ощущении различают три базовых характеристики: высота звука, тембр и громкость.

Частота колебаний звуковой волны оценивается ухом как высота звука (высота тона ) . Чем больше частота колебаний, тем более высоким (ʼʼтонкимʼʼ) воспринимается звук.

Тембр – физиологическая характеристика сложных тонов. Имея одинаковые основные частоты, сложные колебания могут отличаться наборами обертонов. Это различие в спектрах воспринимается как тембр (окраска звука). К примеру, по тембру звука легко различить один и тот же тон, воспроизведённый на разных музыкальных инструментах.

Громкость характеризует уровень слухового ощущения (силу слухового ощущения). Эта субъективная величина, связанная с чувствительностью уха, зависит, прежде всœего, от интенсивности, а так же от частоты звуковой волны. Зависимость громкости от частоты имеет сложный характер.
Размещено на реф.рф
При постоянной силе звука (интенсивности) чувствительность вначале растёт по мере увеличения частоты, достигая максимума в области частот 2000 ÷ 3000 Гц, затем снова уменьшается, обращаясь в ноль при 20 кГц. С возрастом ухудшается способность восприятия высокочастотных колебаний. Уже в среднем возрасте человек, как правило, не способен воспринимать звуки с частотой выше 12-14 кГц. Зависимость чувствительности уха от частоты означает, что диапазон интенсивностей, способных вызвать слуховое ощущение, для разных частот тоже будет разным (рис.6). Верхняя кривая на графике соответствует болевому порогу. Нижний график называют кривой порогового уровня громкости, ᴛ.ᴇ. I 0 = f(ν) при уровне громкости равном нулю.

Человек с нормальным слухом ощущает изменение громкости только в том случае, в случае если интенсивность волны изменится, примерно на 26%. При этом, он достаточно точно улавливает разницу при сравнении двух ощущений различной интенсивности. Эта особенность лежит

в базе сравнительного метода измерения громкости. Громкость оценивают количественно путём сравнения слухового ощущения от двух источников звука. При этом, определяют не абсолютную величину громкости, а её соотношение с громкостью, значение которой принято за начальное (или нулевое). Т.е. определяют уровень громкости Е: на сколько данный звук громче в сравнении со звуком, громкость которого принята за начальную. Громкость, как и уровень интенсивности, измеряют в белах (Б). При этом, 0,1Б громкости принято называть фоном (фон), а не децибелом.

Условились при сравнении громкостей звуков исходить из тона частотой 1000 Гц. Т.е. громкости тона частотой 1000 Гц приняты за эталонные для шкалы громкости. При этом, энергетические затраты, выраженные уровнем интенсивности, на частоте 1000 Гц численно равны громкости: уровню интенсивности L = 1Б (10 дБ) соответствует громкость Е = 1 Б (10 фон), уровню интенсивности L = 2Б (20 дБ) соответствует громкость Е = 2 Б (20 фон) и т.д.

Т.к. диапазон энергий звуковых волн разбит на 13 уровней в белах (или 130 уровней в дБ), то, соответственно, и шкала громкости будет иметь 13 уровней в белах (или 130 уровней в фонах).

В корне создания шкалы уровней громкости лежит психофизический закон Вебера-Фехнера. Согласно этому закону, для всœех видов ощущений справедливо: если последовательно увеличивать силу раздражителя в геометрической прогрессии (ᴛ.ᴇ. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (ᴛ.ᴇ. на одинаковую величину). Математически это означает, что громкость звука прямо пропорциональна логарифму интенсивности.

В случае если действует звуковой раздражитель с интенсивностью I, то на основании закона Вебера-Фехнера уровень громкости Е связан с уровнем интенсивности следующим образом:

Е = kL = k lg, (27)

где I / I 0 относительная сила раздражителя, k – некоторый коэффициент пропорциональности, зависящий от частоты и интенсивности (k = 1 для частоты 1000 Гц). Зависимость громкости от интенсивности и частоты колебаний в системе звуковых измерений определяется на основании экспериментальных данных при помощи графиков (рис.7), которые называются кривыми равной громкости, ᴛ.ᴇ. I = f(ν) при

Е= const. При исследовании остроты слуха обычно строят кривую нулевого уровня громкости, ᴛ.ᴇ. зависимость порога слышимости от частоты – I 0 = f (ν). Эта кривая является основнойв системе аналогичных кривых, построенных для различных уровней громкостей, к примеру, ступенями через 10 фонов (рис.7). Эта система графиков отражает взаимосвязь частоты, уровня интенсивности и громкости, а так же позволяет определить любую из этих трёх величин, в случае если известны две другие.

ВОЛНОВОЕ СОПРОТИВЛЕНИЕ - понятие и виды. Классификация и особенности категории "ВОЛНОВОЕ СОПРОТИВЛЕНИЕ" 2017, 2018.

Любое средство массовой информации передает сигнал на большие расстояния с помощью электромагнитных волн. Одним из свойств такой волны и является волновое сопротивление. Хотя характерные единицы измерения сопротивления - Омы, это не «настоящее» сопротивление, которое можно измерить с помощью специального оборудования, такого как омметр или мультиметр.

Лучший способ понять, волновое сопротивление – это представить себе бесконечно длинный провод, который не создает отраженных или обратных волн при нагрузке. Создание переменного напряжения (V) в такой цепи приведет к появлению тока (I). Волновое сопротивление (Z) в этом случае будет численно равно соотношению:
Z = V/I
Эта справедлива для вакуума. Но если речь идет о «реальном пространстве», где нет бесконечно длинного провода, уравнение принимает вид закона Ома для участка цепи:
R = V/I

Эквивалентная схема расчета линии передач

Для СВЧ инженеров общим выражением, определяющим волновое сопротивление, является:
Z = R+j*w*L/G+j*w*C
Здесь R, G, L и С – номинальные длины волн модели линии передач. Следует отметить, что в общем виде волновое сопротивление может быть комплексным числом. Важным уточнением является то, что такой случай возможен только, если R или G не равны нулю. На практике всегда стараются достичь минимальных потерь на линии передачи сигнала. Поэтому обычно игнорируют вклад R и G в уравнение и, в конечном итоге, количественное значение волнового сопротивления принимает очень маленькое значение.

Внутреннее сопротивление

Волновое сопротивление присутствует даже если нет линии передачи. Оно связано с распространением волн в любой однородной среде. Внутреннее сопротивление является мерой отношения электрического поля к магнитному. Оно рассчитывается так же, как и в линиях передачи. Предполагая, что нет «реальной» проводимости или сопротивления в среде, уравнение сводится к простой квадратичной форме:
Z = SQRT(L/C)
В этом случае индуктивность на единицу длины сводится к проницаемости среды, а емкость на единицу длины – к диэлектрической проницаемости.

Сопротивление вакуума

В пространстве относительная проницаемость среды и диэлектрическая проницаемость всегда постоянны. Таким образом, уравнение внутреннего сопротивления упрощается до уравнения для волнового сопротивления вакуума:
n = SQRT(m/e)
Здесь m – проницаемость вакуума, а е – диэлектрическая проницаемость среды.
Значение волнового сопротивления вакуума является постоянной величиной и приблизительно равно 120 пикоОм.

Модель линии передачи

На рисунке показана эквивалентная схема бесконечно малого участка коаксиального кабеля. Все элементы схемы нормализованы к единице длины (омы на метр, фарады на метр, сименсы на метр, генри на метр в системе СИ или омы на фут, фарады на фут, сименсы на фут, генри на фут в британской и американской системах единиц). Эта эквивалентная схема повторяется бесконечное множество раз на всей длине коаксиального кабеля.

Диэлектрическая и магнитная проницаемость диэлектрического материала кабеля

Абсолютная диэлектрическая проницаемость используемого в коаксиальном кабеле диэлектрика определяет скорость распространения сигнала в кабеле. Обычно эта величина обозначается греческой буквой ε (эпсилон) и представляет собой меру сопротивления электрическому полю в данном материале. В диэлектрике электрическое поле уменьшается. В системе СИ диэлектрическая проницаемость измеряется в фарадах на метр (Ф/м). Вакуум имеет наименьшую диэлектрическую проницаемость. В связи с этим диэлектрическая проницаемость вакуума была выбрана в качестве константы - электрической постоянной ε 0 = 8,854187817...×10 −12 Ф/м. Ранее она носила название диэлектрической постоянной или диэлектрической проницаемости вакуума. Эта постоянная не имеет какого-либо физического смысла, это просто размерный коэффициент и именно поэтому он теперь называется электрической постоянной.

Для конкретного диэлектрического материала диэлектрическая проницаемость обычно выражается в виде отношения его диэлектрической проницаемости к диэлектрической проницаемости вакуума, то есть

Скорость света в вакууме c 0 связана с магнитной постоянной μ 0 и электрической постоянной следующей формулой:

Магнитная проницаемость - мера способности материала поддерживать в нем магнитное поле. Обычно она обозначается греческой буквой μ и измеряется в СИ. Относительная магнитная проницаемость, обычно обозначаемая как μ r (от англ. relative - относительный), представляет собой отношение магнитной проницаемости данного материала к магнитной проницаемости вакуума (магнитной постоянной). Относительная магнитная проницаемость абсолютного большинства используемых в коаксиальных кабелях диэлектриков равна μ r = 1.

Магнитная постоянная, ранее называемая магнитной проницаемостью вакуума, численное значение которой вытекает из определения силы тока ампера с учетом образования магнитного поля при протекании тока по проводнику или при движении электрического заряда. Она равна

μ 0 = 4π × 10 −7 ≈ 1,256637806 × 10 –6 Гн/м

Магнитная проницаемость μ и диэлектрическая проницаемость ε определяют фазовую скорость распространения электромагнитного излучения в диэлектрике

В вакууме эта формула изменяется на

Для немагнитных материалов (то есть для диэлектриков, используемых в коаксиальных кабелях), формула для фазовой скорости упрощается:

Как мы видим, чем выше диэлектрическая и магнитная проницаемость, тем ниже фазовая скорость распространения электромагнитного излучения в диэлектриках.

Погонная емкость коаксиального кабеля (С")

Погонная емкость коаксиального кабеля, то есть его емкость на единицу длины, является одной из важных характеристик коаксиальных кабелей. Коаксиальный кабель можно представить в форме коаксиального конденсатора, у которого обязательно будет отличная от нуля емкость между внутренним и внешним проводниками. Эта емкость пропорциональна длине кабеля и зависит от его размеров, формы и диэлектрической постоянной диэлектрика, заполняющего пространство между внутренним и экранным проводниками.

Погонная емкость C" в фарадах на метр (Ф/м) определяется по формуле:

D

d D и d

ε 0 ≈ 8,854187817620...×10 −12 Ф/м - диэлектрическая проницаемость вакуума,

ε r - относительная диэлектрическая проницаемость изоляционного материала. Относительная диэлектрическая проницаемость материалов, обычно используемые в коаксиальных кабелях: полипропилен - 2,2–2,36, политетрафторэтилен (ПТФЭ или тефлон) - 2,1, полиэтилен - 2,25.

Приведенная выше формула и используется в нашем калькуляторе.

В англоязычных странах используется погонная емкость на 1 фут. Учитывая, что 1 фут = 0,3045 м, ln(x) = 2,30259 lg(x), и ε 0 ≈ 8,854187817620... × 10 −12 Ф/м, эту формулу для C" в фарадах на фут (Ф/фут) можно переписать в виде

или в пикофарадах на фут:

Погонная индуктивность коаксиального кабеля (L")

Для коаксиального кабеля это индуктивность на единицу длины L" в генри на метр (Гн/м), определяемая по формуле

D - внутренний диаметр экранирующего проводника коаксиального кабеля,

d - диаметр внутреннего проводника коаксиального кабеля; величины D и d должны быть в одинаковых единицах,

c

ε 0 = 8,854187817620... × 10 −12 Ф/м - электрическая постоянная.

Электрическую постоянную ранее называли диэлектрической постоянной или диэлектрической проницаемостью вакуума. Сейчас эти названия считаются устаревшими, но пока еще широко используются.

Учитывая, что 1 фут = 0,3045 м и ln(x) = 2,30259 lg (x), имеем:

или в мГн/фут

Электрическая постоянная ε 0 по определению связана со скоростью света в вакууме c и магнитной постоянной μ 0 следующей формулой:

где μ 0 = 4π × 10 −7 ≈ 1,256637806×10 –6 Гн/м - магнитная постоянная, называемая также магнитной проницаемостью вакуума (устаревшее название).

С учетом этого определения можно переписать формулу для погонной индуктивности L" в Гн/м в виде

Эта формула и используется в нашем калькуляторе.

Волновое сопротивление коаксиального кабеля (Z 0)

Одной из наиболее важных характеристик коаксиального кабеля является его волновое сопротивление, которое можно представить как импеданс со стороны источника сигнала, подключенного к бесконечно длинному отрезку кабеля. Волновое сопротивление Z 0 коаксиального кабеля представляет собой отношение напряжения к току одиночной волны, распространяющейся по кабелю (без отражений). Оно определяется геометрией кабеля и материалом диэлектрика между внутренним проводником и наружным экраном и не зависит от длины кабеля. В СИ волновое сопротивление измеряется в омах (Ом). Волновое сопротивление можно рассматривать как импеданс линии передачи бесконечной длины, так как в такой линии нет сигнала, отраженного от ее конца. Обычно коаксиальные кабели выпускаются с волновым сопротивлением 50 или 75 Ом, хотя иногда можно встретить и другие значения.

Почему 50 и 75 Ом? Существует несколько версий. По одной из них 50 Ом было выбрано в связи с тем, что коаксиальный кабель с полиэтиленовым диэлектриком с относительной диэлектрической проницаемостью ε r = 2,25 обеспечивает минимальные потери сигнала именно при волновом сопротивлении 50 Ом; при этом по нему может передаваться значительная для данных геометрических размеров кабеля мощность. Стандарт 75 Ом используется для недорогих кабелей кабельного телевидения, которые не передают сигналов большой мощности и обеспечивают лучшие характеристики по потерям. Почему 75 Ом? Есть несколько объяснений. Некоторые считают, что 75 Ом - это компромисс между малыми потерями в кабеле и его хорошей гибкостью. Другие считают, что эти значения были выбраны достаточно произвольно.

Волновое сопротивление Z 0 коаксиального кабеля с потерями определяется так:

R" - погонное сопротивление (на единицу длины),

L" - погонная индуктивность (на единицу длины),

G" - погонная проводимость материала диэлектрика (на единицу длины),

C" - погонная емкость (на единицу длины),

j - мнимая единица, и

ω - угловая частота.

Для кабеля без потерь, у которого нулевое сопротивление проводников и отсутствуют диэлектрические потери (R" = 0 и G" = 0), эта формула упрощается:

Здесь величина Z 0 (в омах) не зависит от частоты и является действительно величиной, то есть, чисто резистивной величиной. Такое приближение в форме линии передачи без потерь является удобной моделью для описания коаксиальных кабелей с малыми потерями, особенно в тех случаях, когда они используются для передачи высокочастотных сигналов.

Заменяя L" и C" их определениями, приведенными выше, получаем:

D - внутренний диаметр экранирующего проводника коаксиального кабеля,

d - диаметр внутреннего проводника коаксиального кабеля; величины D и d должны быть в одинаковых единицах,

c - скорость света в вакууме, равная 299 792 458 м⋅с −1 ,

ε 0 = 8,854187817620...×10 −12 Ф/м - электрическая постоянная.

ε r - относительная диэлектрическая проницаемость материала изолятора кабеля.

Подставляя значения электрической постоянной ε 0 и скорости света, получаем:

Учитывая, что ln(x) = 2,30259 lg (x), получаем практическую формулу для волнового сопротивления в омах, которая и используется в нашем калькуляторе:

Максимальная рабочая частота коаксиального кабеля

Основным типом волны в коаксиальном кабеле является TEM-волна (от англ. transverse electromagnetic mode - поперечная электромагнитная волна). В этом режиме распространения силовые линии электрического и магнитного поля перпендикулярны между собой и с направлением распространения волны. Силовые линии электрического поля расположены радиально, а силовые линии магнитного поля имеют вид концентрических окружностей вокруг центральной жилы кабеля. На более высоких частотах в коаксиальных кабелях могут возбуждаться поперечные электрические TE-волны (от англ. transverse electric - поперечные электрические), в которых только силовые линии магнитного поля расположены в направлении распространения, и поперечные магнитные TM-волны (от англ. transverse magnetic), в которых только силовые линии электрического поля расположены в направлении распространения волн. Однако эти два режима являются нежелательными.

В коаксиальном кабеле самая низкая частота, при которой образуются волны типа TE 11 , и является максимальной рабочей частотой f c . Это верхняя частота использования коаксиального кабеля. Сигнал может распространяться в виде TE 11 -волны, если длина волны в диэлектрике кабеля короче, чем средняя длина окружности диэлектрика; для воздушного диэлектрика формула будет выглядеть как

λ c - самая короткая допустимая длина волны в кабеле в метрах и

D and d - диаметры внешнего (экрана) и внутреннего проводников кабеля в метрах.

Если в кабеле в качестве диэлектрика используется не воздух, а другой немагнитный материал (магнитные диэлектрики вроде феррита не используются в конструкции коаксиальных кабелей), его рабочая частота может быть от 0 до максимальной, определяемой по формуле

D - диаметр внешнего проводника в метрах,

d - диаметр внутреннего проводника в метрах,

f c - максимальная рабочая частота в герцах,

ε r - относительная диэлектрическая проницаемость материала диэлектрика.

Для более практических величин в мм и ГГц, формула будет иметь вид

Именно эта формула и используется в нашем калькуляторе. На практике коаксиальные кабели работают на частотах менее 90% этой частоты.

Коэффициент укорочения длины волны и коэффициент замедления скорости

В коаксиальном кабеле, где пространство между внутренним проводником и экраном заполнено диэлектриком, сигнал распространяется через этот диэлектрик. Фазовая скорость волны, которая распространяется в диэлектрике, уменьшается, однако ее частота не изменяется. Скорость распространения v p (индекс p от англ. propagation -распространение), частота f и длины волны λ в диэлектрике связаны соотношением

Из этого соотношения видно, что длина волны сигнала, который распространяется в диэлектрике, также уменьшается пропорционально уменьшению скорости. Для сравнения такого уменьшения скорости (и соответствующего пропорционального уменьшения длины волны) со скоростью света, во многих странах (но не в России) используется коэффициент замедления скорости VF (от англ. Velocity Factor - фактор скорости), которая всегда меньше единицы или меньше 100%, если он выражен в процентах.

В России и других странах бывшего СССР традиционно используется обратная величина - коэффициент укорочения, но об этом чуть ниже. В англоязычной литературе, если речь идет о компьютерных сетях, а не об общей физике, скорость распространения сигнала в линии передачи v p обычно выражают не в виде величины в единицах скорости, а в виде процентного отношения к скорости света. Правильнее было бы называть эту величину коэффициентом замедления скорости VF. Например, в линии передачи с типичным значением VF = 66%, что соответствует диэлектрической постоянной 2,25 (сплошной полиэтилен) сигнал будет передаваться со скоростью, составляющей 66% от скорости света. Формула:

VF - коэффициент замедления скорости в процентах,

v P - скорость распространения в линии передачи (в м/с или футах/с),

c - скорость света в вакууме (приблизительно 3,0×10 8 м/с, или 9,8×10 8 футов/с).

Отметим, что в англоязычной научной и физической литературе, не относящейся к компьютерным сетям, термин скорость распространения действительно означает скорость, то есть расстояние в единицу времени.

Предположим, что нам нужно отмерить короткий полуволновый отрезок кабеля с коэффициентом замедления скорости 66% (что соответствует коэффициенту укорочения длины волны 1,52) для сигнала с частотой 30 МГц. Длина волны в вакууме, соответствующая этой частоте будет равна λ = c/f = 10 m. Следовательно для обеспечения задержки в половину волны нужна электрическая длина 5 метров. Однако, поскольку сигнал распространяется в кабеле со скоростью в 1,52 (на 66%) меньше, нам нужно только 5 × 0,66 = 3,3 м физической длины коаксиального кабеля. То есть, нам понадобится кабель, который в k = 1/0.66 = 1.52 раза короче, чем расчетная электрическая длина. Здесь k - тот самый коэффициент укорочения, который показывает во сколько раз скорость распространения меньше скорости света в вакууме.

Если у вас еще не заболела голова от этих рассуждений, то сейчас точно заболит! Отметим, что в Белоруссии, России, на Украине и в других странах на постсоветском пространстве этот коэффициент укорочения длины , который всегда больше единицы, традиционно используется вместо коэффициента замедления скорости, привычного англоязычным специалистам. Кстати, на немецком языке этот коэффициент называется Verkürzungsfaktor, что тоже означает коэффициент укорочения.

Подведем итог. Коэффициент замедления скорости, величина, обратная коэффициенту укорочения длины волны, показывающему во сколько раз фазовая или групповая скорость волны в коаксиальном кабеле меньше скорости света в вакууме. Именно этот коэффициент указывается в характеристиках коаксиальных кабелей зарубежного производства. Коэффициент замедления показывает во сколько раз скорость света больше скорости распространения волн в коаксиальном кабеле и обычно (но не всегда) выражается в процентах. В характеристиках коаксиальных кабелей российского производства указывается коэффициент укорочения длины волны, который всегда больше единицы. Как и с случае волн оптического диапазона, при прохождении волн в диэлектрике их длина волны уменьшается (сравните с преломлением!) с сохранением частоты. Поскольку скорость равна произведению частоты на длину волны, скорость также уменьшается.

Обычно в коаксиальных кабелях используются немагнитные диэлектрики, относительная магнитная проницаемость которых μ r = 1. В таких диэлектриках коэффициент замедления скорости VF равен величине, обратной квадратному корню из относительной диэлектрической проницаемости материала, по которому передается сигнал:

В общем случае, который включает, например, такие диэлектрики как феррит, коэффициент замедления скорости определяется по формуле

Для распространения света в оптоволокне коэффициент замедления скорости равен величине, обратной коэффициенту преломления n материала (обычно кварцевого стекла), из которого изготовляют сердцевину волокна:



Рекомендуем почитать

Наверх