Внешняя скорость передачи данных 300 мб с. Скорость передачи данных. От чего зависит скорость интернет соединения

Для Symbian 18.03.2019

Чисто виртуальные функции

К механизму виртуальных функций обращаются в тех случаях, когда в базовый класс необходимо поместить функцию, которая должна по-разному выполняться в производных классах. Точнее, по-разному должна выполняться не единственная функция из базового класса, а в каждом производственном классе требуется свой вариант этой функции.

До объяснения возможностей виртуальных функций отметим, что классы, включающие такие функции, играют особую роль в объектно-ориентированном программировании. Именно поэтому они носят специальное название - полиморфные. .

Виртуальными могут быть не любые функции, а только нестатические компонентные функции какого-либо класса. После того как функция определена как виртуальная, ее повторное определение в производном классе (с тем же самым прототипом) создает в этом классе новую виртуальную функцию, причем спецификатор virtual может не использоваться.

В производном классе нельзя определять функцию с тем же именем и с тем же набором параметров, но с другим типом возвращаемого значения, чем у виртуальной функции базового класса. Это приводит к ошибке на этапе компиляции.

Если в производном классе ввести функцию с тем же именем и типом возвращаемого значения, что и виртуальная функция базового класса, но с другим набором параметров, то эта функция производного класса не будет виртуальной. В этом случае с помощью указателя на базовый класс при любом значении этого указателя выполняется обращение к функции базового класса (несмотря на спецификатор virtual и присутствие в производном классе похожей функции).

Методы(функции)

Виртуальные методы объявляются в базовом классе с ключевым словом virtual, а в производном классе могут быть переопределены. Прототипы виртуальных методов как в базовом, так и в производном классе должны быть одинаковы.

Применение виртуальных методов позволяет реализовывать механизм позднего связывания, при котором определение вызываемого метода происходит на этапе выполнения, а не на этапе компиляции. При этом вызываемый виртуальный метод зависит от типа объекта, для которого он вызывается. При раннем связывании, используемом для не виртуальных методов, определение вызываемого метода происходит на этапе компиляции.

На этапе компиляции строится таблица виртуальных методов, а конкретный адрес проставляется уже на этапе выполнения.

При вызове метода с использованием указателя на класс действуют следующие правила:

  • для виртуального метода вызывается метод, соответствующий типу объекта, на который указывает указатель.
  • для не виртуального метода вызывается метод, соответствующий типу самого указателя.

В следующем примере иллюстрируется вызов виртуальных методов:

Class A // Объявление базового класса{ public: virtual void VirtMetod1(); // Виртуальный метод void Metod2(); // Не виртуальный метод};void A::VirtMetod() { cout << "Вызван A::VirtMetod1\n";} void A::Metod2() { cout << "Вызван A::Metod2\n"; } class B: public A // Объявление производного класса{public: void VirtMetod1(); // Виртуальный метод void Metod2(); // Не виртуальный метод};void B::VirtMetod1() { cout << "B::VirtMetod1\n";}void B::Metod2() { cout << "B::Metod2\n"; }void main() { B aB; // Объект класса B B *pB = &aB; // Указатель на объект класса B A *pA = &aB; // Указатель на объект класса A pA->VirtMetod1(); // Вызов метода VirtMetod класса B pB->VirtMetod1(); // Вызов метода VirtMetod класса B pA->Metod2(); // Вызов метода Metod2 класса A pB->Metod2(); // Вызов метода Metod2 класса B}

Результатом выполнения этой программы будут следующие строки:

Вызван B::VirtMetod1Вызван B::VirtMetod1Вызван A::Metod2Вызван B::Metod2

Чисто виртуальной функцией называется виртуальная функция, указанная с инициализатором

Например:

Virtual void F1(int) =0;

Объявление класса может содержать виртуальный деструктор, используемый для удаления объекта определенного типа. Однако виртуального конструктора в языке С++ не существует. Некоторой альтернативой, позволяющей создавать объекты заданного типа, могут служить виртуальные методы, в которых выполняется вызов конструктора для создания объекта данного класса.

Очередная модификация базового класса приводит к неожиданным последствиям. Эта модификация состоит в изменении спецификатора функции-члена базового класса. Мы (впервые!) используем спецификатор virtual в объявлении функции. Функции, объявленные со спецификатором virtual, называются виртуальными функциями. Введение виртуальных функций в объявление базового класса (всего лишь один спецификатор) имеет столь значительные последствия для методологии объектно-ориентированного программирования, что мы лишний раз приведём модифицированное объявление класса A:

Class A { public: virtual int Fun1(int); };

Один дополнительный спецификатор в объявлении функции и больше никаких (пока никаких) изменений в объявлениях производных классов. Как всегда, очень простая функция main(). В ней мы определяем указатель на объект базового класса, настраиваем его на объект производного типа, после чего по указателю мы вызываем функцию Fun1():

Void main () { A *pObj; A MyA; AB MyAB; pObj = &MyA; pObj->Fun1(1); AC MyAC; pObj = &MyAC; pObj->Fun1(1); }

Если бы не спецификатор virtual, результат выполнения выражения вызова

PObj->Fun1(1);

был бы очевиден: как известно, выбор функции определяется типом указателя.

Однако спецификатор virtual меняет всё дело. Теперь выбор функции определяется типом объекта, на который настраивается указатель базового класса. Если в производном классе объявляется нестатическая функция, у которой имя, тип возвращаемого значения и список параметров совпадают с аналогичными характеристиками виртуальной функции базового класса, то в результате выполнения выражения вызова вызывается функция-член производного класса.

Сразу надо заметить, что возможность вызова функции-члена производного класса по указателю на базовый класс не означает, что появилась возможность наблюдения за объектом "сверху вниз" из указателя на объект базового класса. Невиртуальные функции-члены и данные по-прежнему недоступны. И в этом можно очень легко убедиться. Для этого достаточно попробовать сделать то, что мы уже однажды проделали - вызвать неизвестную в базовом классе функцию-член производного класса:

//pObj->Fun2(2); //pObj->AC::Fun1(2);

Результат отрицательный. Указатель, как и раньше, настроен лишь на базовый фрагмент объекта производного класса. И всё же вызов функций производного класса возможен. Когда-то, в разделах, посвящённых описанию конструкторов, нами был рассмотрен перечень регламентных действий, которые выполняются конструктором в ходе преобразования выделенного фрагмента памяти в объект класса. Среди этих мероприятий упоминалась инициализация таблиц виртуальных функций.

Наличие этих самых таблиц виртуальных функций можно попытаться обнаружить с помощью операции sizeof. Конечно, здесь всё зависит от конкретной реализации, но, по крайней мере, в версии Borland C++ объект-представитель класса, содержащего объявления виртуальных функций, занимает больше памяти, нежели объект аналогичного класса, в котором те же самые функции объявлены без спецификатора virtual.

Cout << "Размеры объекта: " << sizeof(MyAC) << "…" << endl;

Так что объект производного класса приобретает дополнительный элемент - указатель на таблицу виртуальных функций. Схему такого объекта можно представить следующим образом (указатель на таблицу мы обозначим идентификатором vptr, таблицу виртуальных функций - идентификатором vtbl):

MyAC::= vptr A AC vtbl::= &AC::Fun1

На нашей новой схеме объекта указатель на таблицу (массив из одного элемента) виртуальных функций не случайно отделён от фрагмента объекта, представляющего базовый класс лишь пунктирной линией. Он находится в поле зрения этого фрагмента объекта. Благодаря доступности этого указателя оператор вызова виртуальной функции Fun1

PObj->Fun1(1);

можно представить следующим образом:

(*(pObj->vptr)) (pObj,1);

Здесь только на первый взгляд всё запутано и непонятно. На самом деле, в этом операторе нет ни одного не известного нам выражения.

Здесь буквально сказано следующее:

ВЫЗВАТЬ ФУНКЦИЮ, РАСПОЛОЖЕННУЮ ПО НУЛЕВОМУ ИНДЕКСУ ТАБЛИЦЫ ВИРТУАЛЬНЫХ ФУНКЦИЙ vtbl (в этой таблице у нас всего один элемент), АДРЕС НАЧАЛА КОТОРОЙ МОЖНО НАЙТИ ПО УКАЗАТЕЛЮ vptr.

В СВОЮ ОЧЕРЕДЬ, ЭТОТ УКАЗАТЕЛЬ ДОСТУПЕН ПО УКАЗАТЕЛЮ pObj, НАСТРОЕННОМУ НА ОБЪЕКТ MyAC. ФУНКЦИИ ПЕРЕДАЁТСЯ ДВА (!) ПАРАМЕТРА, ПЕРВЫЙ ИЗ КОТОРЫХ ЯВЛЯЕТСЯ АДРЕСОМ ОБЪЕКТА MyAC (значение для this указателя!), ВТОРОЙ - ЦЕЛОЧИСЛЕННЫМ ЗНАЧЕНИЕМ, РАВНЫМ 1.

Вызов функции-члена базового класса обеспечивается посредством квалифицированного имени.

PObj->A::Fun1(1);

В этом операторе мы отказываемся от услуг таблицы виртуальных функций. При этом мы сообщаем транслятору о намерении вызвать функцию-член базового класса. Механизм поддержки виртуальных функций строг и очень жёстко регламентирован. Указатель на таблицу виртуальных функций обязательно включается в самый "верхний" базовый фрагмент объекта производного класса. В таблицу указателей включаются адреса функций-членов фрагмента самого "нижнего" уровня, содержащего объявления этой функции.

Мы в очередной раз модифицируем объявление классов A, AB и объявляем новый класс ABC.

Модификация классов A и AB сводится к объявлению в них новых функций-членов:

Class A { public: virtual int Fun1(int key); virtual int Fun2(int key); }; ::::: int A::Fun2(int key) { cout << " Fun2(" << key << ") from A " << endl; return 0; } class AB: public A { public: int Fun1(int key); int Fun2(int key); }; ::::: int AB::Fun2(int key) { cout << " Fun2(" << key << ") from AB " << endl; return 0; } Класс ABC является производным от класса AB: class ABC: public AB { public: int Fun1(int key); }; int ABC::Fun1(int key) { cout << " Fun1(" << key << ") from ABC " << endl; return 0; }

В этот класс входит объявление функции-члена Fun1, которая объявляется в косвенном базовом классе A как виртуальная функция. Кроме того, этот класс наследует от непосредственной базы функцию-член Fun2. Эта функция также объявляется в базовом классе A как виртуальная. Мы объявляем объект-представитель класса ABC:

ABC MyABC;

Его схему можно представить следующим образом:

MyABC::= vptr A AB ABC vtbl::= &AB::Fun2 &ABC::Fun1

Таблица виртуальных функций сейчас содержит два элемента. Мы настраиваем указатель на объект базового класса на объект MyABC, затем вызываем функции-члены:

PObj = &MyABC; pObj->Fun1(1); pObj->Fun2(2);

В этом случае невозможно вызвать функцию-член AB::Fun1(), поскольку её адрес не содержится в списке виртуальных функций, а с верхнего уровня объекта MyABC, на который настроен указатель pObj, она просто не видна. Таблица виртуальных функций строится конструктором в момент создания объекта соответствующего объекта. Безусловно, транслятор обеспечивает соответствующее кодирование конструктора. Но транслятор не в состоянии определить содержание таблицы виртуальных функций для конкретного объекта. Это задача времени исполнения. Пока таблица виртуальных функций не будет построена для конкретного объекта, соответствующая функция-член производного класса не сможет быть вызвана. В этом легко убедиться, после очередной модификации объявления классов.

Программа невелика, поэтому имеет смысл привести её текст полностью. Не следует обольщаться по поводу операции доступа к компонентам класса::. Обсуждение связанных с этой операцией проблем ещё впереди.

#include class A { public: virtual int Fun1(int key); }; int A::Fun1(int key) { cout << " Fun1(" << key << ") from A." << endl; return 0; } class AB: public A { public: AB() {Fun1(125);}; int Fun2(int key); }; int AB::Fun2(int key) { Fun1(key * 5); cout << " Fun2(" << key << ") from AB." << endl; return 0; } class ABC: public AB { public: int Fun1(int key); }; int ABC::Fun1(int key) { cout << " Fun1(" << key << ") from ABC." << endl; return 0; } void main () { ABC MyABC; // Вызывается A::Fun1(). MyABC.Fun1(1); // Вызывается ABC::Fun1(). MyABC.Fun2(1); // Вызываются AB::Fun2() и ABC::Fun1(). MyABC.A::Fun1(1); // Вызывается A::Fun1(). A *pObj = &MyABC; // Определяем и настраиваем указатель. cout << "==========" << endl; pObj->Fun1(2); // Вызывается ABC::Fun1(). //pObj->Fun2(2); // Эта функция через указатель недоступна!!! pObj->A::Fun1(2); // Вызывается A::Fun1(). }

Теперь в момент создания объекта MyABC

ABC MyABC;

из конструктора класса AB (а он вызывается раньше конструктора класса ABC), будет вызвана функция A::Fun1(). Эта функция является членом класса A. Объект MyABC ещё до конца не сформирован, таблица виртуальных функций ещё не заполнена, о существовании функции ABC::Fun1() ещё ничего не известно. После того, как объект MyABC будет окончательно сформирован, таблица виртуальных функций заполнится, а указатель pObj будет настроен на объект MyABC, вызов функции A::Fun1() через указатель pObj будет возможен лишь с использованием полного квалифицированного имени этой функции:

PObj->Fun1(1); // Это вызов функции ABC::Fun1()! pObj->A::Fun1(1); // Очевидно, что это вызов функции A::Fun1()!

Заметим, что вызов функции-члена Fun1 непосредственно из объекта MyABC приводит к аналогичному результату:

MyABC.Fun1(1); // Вызов функции ABC::Fun1().

А попытка вызова невиртуальной функции AB::Fun2() через указатель на объект базового класса заканчивается неудачей. В таблице виртуальных функций адреса этой функции нет, а с верхнего уровня объекта "посмотреть вниз" невозможно.

//pObj->Fun2(2); // Так нельзя!

Результат выполнения этой программки наглядно демонстрирует специфику использования виртуальных функций. Всего несколько строк…

Fun1(125) from A. Fun1(1) from ABC. Fun1(5) from ABC. Fun2(1) from AB. Fun1(1) from A. ========== Fun1(2) from ABC. Fun1(2) from A.

Один и тот же указатель в ходе выполнения программы может настраиваться на объекты-представители различных производных классов. В результате в буквальном смысле одно и то выражение вызова функции-члена обеспечивает выполнение совершенно разных функций. Впервые мы сталкиваемся с так называемым ПОЗДНИМ или ОТЛОЖЕННЫМ СВЯЗЫВАНИЕМ.

Заметим, что спецификация virtual относится только к функциям. Виртуальных данных-членов не существует. Это означает, что не существует возможности обратиться к данным-членам объекта производного класса по указателю на объект базового класса, настроенному на объект производного класса.

С другой стороны, очевидно, что если можно вызвать замещающую функцию, то непосредственно "через" эту функцию открывается доступ ко всем функциям и данным-членам членам производного класса и далее "снизу-вверх" ко всем неприватным функциям и данным-членам непосредственных и косвенных базовых классов. При этом из функции становятся доступны все неприватные данные и функции базовых классов.

И ещё один маленький пример, демонстрирующий изменение поведение объекта-представителя производного класса после того, как одна из функция базового класса становится виртуальной.

#include class A { public: void funA () {xFun();}; /*virtual*/void xFun () {cout <<"this is void A::xFun();"<< endl;}; }; class B: public A { public: void xFun () {cout <<"this is void B::xFun ();"<

В начале спецификатор virtual а определении функции A::xFun() закомментирован. Процесс выполнения программы состоит в определении объекта-представителя objB производного класса B и вызова для этого объекта функции-члена funA(). Эта функция наследуется из базового класса, она одна и очевидно, что её идентификация не вызывает у транслятора никаких проблем. Эта функция принадлежит базовому классу, а это означает, что в момент её вызова, управление передаётся "на верхний уровень" объекта objB. На этом же уровне располагается одна из функций с именем xFun(), и именно этой функции передаётся управление в ходе выполнения выражения вызова в теле функции funA(). Мало того, из функции funA() просто невозможно вызвать другую одноименную функцию. В момент разбора структуры класса A транслятор вообще не имеет никакого представления о структуре класса B. Функция xFun() - член класса B оказывается недостижима из функции funA().

Но если раскомментировать спецификатор virtual в определении функции A::xFun(), между двумя одноименными функциями установится отношение замещения, а порождение объекта objB будет сопровождаться созданием таблицы виртуальных функций, в соответствии с которой будет вызываться замещающая функция член класса B. Теперь для вызова замещаемой функции необходимо использовать её квалифицированное имя:

Void A::funA () { xFun(); A::xFun(); }

Как отмечалось ранее, виртуальные функции в комбинации с производными типами позволяют языку С++ поддерживать полиморфизм времени исполнения. Этот полиморфизм ва­жен для объектно-ориентированного программирования, поскольку он позволяет переопреде­лять функции базового класса в классах-потомках с тем, чтобы иметь их версию применительно к данному конкретному классу. Таким образом, базовый класс определяет общий интерфейс, кото­рый имеют все производные от него классы, и вместе с тем полиморфизм позволяет производным классам иметь свои собственные реализации методов. Благодаря этому полиморфизм часто опре­деляют фразой «один интерфейс - множество методов».

Успешное применение полиморфизма связано с пониманием того, что базовые и производные классы образуют иерархию, в которой переход от базового к производному классу отвечает пере­ходу от большей к меньшей общности. Поэтому при корректном использовании базовый класс обес­печивает все элементы, которые производные классы могут непосредственно использовать, плюс набор функций, которые производные классы должны реализовать путем их переопределения.

Наличие общего интерфейса и его множественной реализации является важным постольку, поскольку помогает программистам разрабатывать сложные программы. Например, доступ ко всем объектам, производным некоторого базового класса, осуществляется одинаковым способом, даже если реальные действия этих объектов отличаются при переходе от одного производного класса к другому. Это означает, что необходимо запомнить только один интерфейс, а не не­сколько. Более того, отделение интерфейса от реализации позволяет создавать библиотеки клас­сов, поставляемые независимыми разработчиками. Если эти библиотеки реализованы корректно,
то они обеспечивают общий интерфейс, и их можно использовать для вывода своих собственных специфических классов.

Чтобы понять всю мощь идеи «один интерфейс - множество методов», рассмотрим следую­щую короткую программу. Она создает базовый класс figure. Этот класс используется для хране­ния размеров различных двумерных объектов и для вычисления их площадей. Функция set_dim() является стандартной функцией-членом, поскольку ее действия являются общими для всех произ­водных классов. Однако функция show_area() объявляется как виртуальная функция, поскольку способ вычисления площади каждого объекта является специфическим. Программа использует класс figure для вывода двух специфических классов square и triangle.

#include
class figure {
protected:
double x, y;
public:
void set_dim(double i, double j) {
x = i;
у = j;
}
virtual void show_area() {
cout << "No area computation defined ";
cout << "for this class. \n";
}
};

public:
void show_area() {
cout << "Triangle with height ";
cout << x << " and base " << y;
cout << " has an area of ";
cout << x * 0.5 * у << ". \n";
}
};

public:
void show_area() {
cout << "Square with dimensions ";
cout << x << "x" << y;
cout << " has an area of ";
cout << x * у << ". \n";
}
};
int main ()
{


square s;
р = &t;
p->set_dim(10.0, 5.0);
p->show_area();
p = &s;
p->set_dim(10.0, 5.0);
p->show_area ();
return 0;
}

Как можно видеть на основе анализа этой программы, интерфейс классов square и triangle явля­ется одинаковым, хотя оба обеспечивают свои собственные методы для вычисления площади каж­дой из фигур. На основе объявления класса figure можно вывести класс circle, вычисляющий пло­щадь, ограниченную окружностью заданного радиуса. Для этого необходимо создать новый производный класс, в котором реализовано вычисление площади круга. Вся сила виртуальной функции основана на том факте, что можно легко вывести новый класс, разделяющий один и тот же общий интерфейс с другими подобными объектами. В качестве примера здесь показан один из способов реализации:


public:
void show_area() {
cout << "Circle with radius ";
cout << x;
cout << "has an area of ";
cout << 3.14 * x * x;
}
};

Прежде чем использовать класс circle, посмотрим внимательно на определение функции show_area(). Обратим внимание, что она использует только величину х, которая выражает ради­ус. Как известно, площадь круга вычисляется по формуле π R 2 . Однако функция set_dim(), опре­деленная в классе figure, требует не одного, а двух аргументов. Поскольку класс circle не нужда­ется во второй величине, то как же нам быть в данной ситуации?

Имеются два пути для решения этой проблемы. Первый заключается в том, чтобы вызвать set_dim(), используя в качестве второго параметра фиктивный параметр, который не будет ис­пользован. Недостатком такого подхода служит необходимость запомнить этот исключительный случай, что по существу нарушает принцип «один интерфейс - множество методов».

Лучшее решение данной проблемы связано с использованием параметра у в set_dim() со значе­нием по умолчанию. В таком случае при вызове set_dim() для круга необходимо указать только радиус. При вызове set_dim() для треугольника или прямоугольника укажем обе величины. Ниже показана программа, реализующая этот подход:

#include
class figure {
protected:
double x, y;
public:
void set_dim (double i, double j=0) {
x = i;
y = j;
}
virtual void show_area() {
cout << "No area computation defined ";
cout << "for this class .\n";
}
};
class triangle: public figure {
public:
void show_area() {
cout << "Triangle with height ";
cout << x << " and base " << y;
cout << " has an area of ";
cout << x * 0.5 * у << ". \n";
}
};
class square: public figure {
public:
void show_area() {
cout << "Square with dimensions ";
cout << x << "x" << y;
cout << " has an area of ";
cout << x * у << ". \n";
}
};
class circle: public figure {
public:
void show_area() {
cout << "Circle with radius ";
cout << x;
cout << has an area of ";
cout << 3.14 * x * x;
}
};
int main ()
{
figure *p; /* создание указателя базового типа */
triangle t; /* создание объектов порожденных типов */
square s;
circle с;
р = &t;
p->set_dim(10.0, 5.0);
p->show_area ();
p = &s;
p->set_dim(10.0, 5.0);
p->show_area ();
p = &c;
p->set_dim(9. 0) ;
p->show_area ();
return 0;
}

Этот пример также показывает, что при определении базового класса важно проявлять максималь­но возможную гибкость. Не следует налагать на программу какие-то ненужные ограничения.



Рекомендуем почитать

Наверх