В каком году появился первый микропроцессор. История появления и развития процессоров для компьютеров

На iOS - iPhone, iPod touch 10.07.2019
На iOS - iPhone, iPod touch

), начиная от первых графических адаптеров MDA и CGA и заканчивая новейшими архитектурами AMD и NVIDIA. Теперь настала очередь проследить за тем, как развивались центральные процессоры - не менее важная составляющая любого компьютера. В этой части материала речь пойдет о 1970-х годах, а следовательно, первых 4- и 8-битных решениях.

Первые центральные процессоры были многоножками

1940–1960-е годы

Прежде чем углубляться в историю развития центральных процессоров, необходимо сказать несколько слов о развитии компьютеров в целом. Первые CPU появились еще в 40-х годах XX века. Тогда они работали с помощью электромеханических реле и вакуумных ламп, а применяемые в них ферритовые сердечники выполняли роль запоминающих устройств. Для функционирования компьютера на базе таких микросхем требовалось огромное количество процессоров. Подобный компьютер представлял собой огромный корпус размером с достаточно большую комнату. При этом он выделял большое количество энергии, а его быстродействие оставляло желать лучшего.

Компьютер, использующий электромеханические реле

Однако уже в 1950-х годах в конструкции процессоров стали применяться транзисторы. Благодаря их применению инженерам удалось добиться более высокой скорости работы чипов, а также снизить их энергопотребление, но повысить надежность.

В 1960-х годах получила свое развитие технология изготовления интегральных схем, что позволило создавать микрочипы с расположенными на них транзисторами. Сам процессор состоял из нескольких таких схем. С течением времени технологии позволили размещать все большее количество транзисторов на кристалле, в связи с чем количество используемых в CPU интегральных схем сокращалось.

Тем не менее архитектура процессоров была всё ещё очень и очень далека от того, что мы видим сегодня. Но выход в 1964 году IBM System/360 немного приблизил дизайн тогдашних компьютеров и CPU к современному - прежде всего в плане работы с программным обеспечением. Дело в том, что до появления этого компьютера все системы и процессоры работали лишь с тем программным кодом, который был написан специально для них. В своих ЭВМ компания IBM впервые использовала иную философию: вся линейка разных по производительности CPU поддерживала один и тот же набор инструкций, что позволяло писать ПО, которое работало бы под управлением любой модификации System/360.

Компьютер IBM System/360

Возвращаясь к теме совместимости System/360, нужно подчеркнуть, что IBM уделила очень много внимания данному аспекту. Например, современные компьютеры линейки zSeries до сих пор поддерживают работу программного обеспечения, написанного для платформы System/360.

Не стоит забывать и о компании DEC (Digital Equipment Corporation), а именно о ее линейке компьютеров PDP (Programmed Data Processor). Фирма была основана в 1957 году, и в 1960 году выпустила свой первый миникомпьютер PDP-1. Устройство представляло собой 18-битную систему и по размерам было меньше, чем мейнфреймы того времени, занимая «всего лишь» комнатный угол. В компьютер был интегрирован ЭЛТ-монитор. Интересно, что первая в мире компьютерная игра под названием Spacewar! была написана именно под платформу PDP-1. Стоимость компьютера в 1960 году составляла 120 тысяч долларов США, что было значительно ниже цены других мейнфреймов. Тем не менее PDP-1 не пользовался особой популярностью.

Компьютер PDP-1

Первым коммерчески успешным устройством DEC стал компьютер PDP-8, выпущенный в 1965 году. В отличие от PDP-1, новая система была 12-битной. Стоимость PDP-8 составляла 16 тысяч долларов США – это был самый дешевый миникомпьютер того времени. Благодаря столь низкой цене устройство стало доступно промышленным предприятиям и научным лабораториям. В итоге было продано около 50 тысяч таких компьютеров. Отличительной архитектурной особенностью процессора PDP-8 стала его простота. Так, в нем было всего четыре 12-битных регистра, которые использовались для задач различного типа. При этом PDP-8 содержал всего 519 логических вентилей.

Компьютер PDP-8. Кадр из фильма «Три дня Кондора»

Архитектура процессоров PDP напрямую повлияла на устройство 4- и 8-битных процессоров, о которых и пойдет речь далее.

Intel 4004

1971 год вошел в историю как год появления первых микропроцессоров. Да-да, таких решений, которые используются сегодня в персональных компьютерах, ноутбуках и других устройствах. И одной из первых заявила о себе тогда еще только-только основанная компания Intel, выпустив на рынок модель 4004 - первый в мире коммерчески доступный однокристальный процессор.

Прежде чем перейти непосредственно к процессору 4004, стоит сказать пару слов о самой компании Intel. Её в 1968 году создали инженеры Роберт Нойс и Гордон Мур, которые до того момента трудились на благо компании Fairchild Semiconductor, и Эндрю Гроувом. Кстати, именно Гордон Мур опубликовал всем известный «закон Мура», согласно которому количество транзисторов в процессоре удваивается каждый год.

Уже в 1969-ом, спустя всего лишь год после основания, компания Intel получила заказ от японской компании Nippon Calculating Machine (Busicon Corp.) на производство 12 микросхем для высокопроизводительных настольных калькуляторов. Первоначальный дизайн микросхем был предложен самой Nippon. Однако такая архитектура не приглянулась инженерам Intel, и сотрудник американской компании Тед Хофф предложил сократить число микросхем до четырех за счет использования универсального центрального процессора, который бы отвечал за арифметические и логические функции. Помимо центрального процессора, архитектура микросхем включала оперативную память для хранения данных пользователя, а также ПЗУ для хранения программного обеспечения. После утверждения окончательной структуры микросхем продолжилась работа над дизайном микропроцессора.

В апреле 1970 года к команде инженеров Intel присоединился итальянский физик Федерико Фаджин, который до этого также работал в компании Fairchild. У него был большой опыт работы в области логического проектирования компьютеров и технологий МОП (металл-оксид-полупроводник) с кремниевыми затворами. Именно благодаря вкладу Федерико инженерам Intel удалось объединить все микросхемы в один чип. Так увидел свет первый в мире микропроцессор 4004.

Процессор Intel 4004

Что касается технических характеристик Intel 4004, то, по сегодняшним меркам, конечно, они были более чем скромные. Чип производился по 10-мкм техпроцессу, содержал 2300 транзисторов и работал на частоте 740 кГц, что означало возможность выполнения 92 600 операций в секунду. В качестве форм-фактора использовалась упаковка DIP16. Размеры Intel 4004 составляли 3x4 мм, а по бокам располагались ряды контактов. Изначально все права на чип принадлежали компании Busicom, которая намеревалась использовать микропроцессор исключительно в калькуляторах собственного производства. Однако в итоге они позволили Intel продавать свои чипы. В 1971 году любой желающий мог приобрести процессор 4004 по цене примерно 200 долларов США. К слову, чуть позже Intel выкупила все права на процессор у Busicom, предрекая важную роль чипа в последующей миниатюризации интегральных схем.

Несмотря на доступность процессора, его область применения ограничилась калькулятором Busicom 141-PF. Также долгое время ходили слухи, что Intel 4004 применялся в конструкции бортового компьютера беспилотного космического аппарата «Пионер-10», который стал первым межпланетным зондом, совершившим пролет вблизи Юпитера. Эти слухи напрямую опровергаются тем, что бортовые компьютеры «пионера» имели 18- или 16-битную разрядность, тогда как Intel 4004 был 4-битным процессором. Впрочем, стоит отметить, что инженеры NASA рассматривали возможность его использования в своих аппаратах, однако посчитали чип недостаточно испытанным для таких целей.

Процессор Intel 4040

Спустя три года после выхода процессора Intel 4004 увидел свет его преемник - 4-битный Intel 4040. Чип производился по тому же 10-мкм техпроцессу и работал на той же тактовой частоте 740 кГц. Тем не менее, процессор стал немного «сложнее» и получил более богатый набор функций. Так, 4040 содержал 3000 транзисторов (на 700 больше, чем у 4004). Форм-фактор процессора остался прежним, однако вместо 16-пинового стали использовать 24-пиновый DIP. Среди улучшений 4040 стоит отметить поддержку 14 новых команд, увеличенную до 7 уровней глубину стека, а также поддержку прерываний. «Сороковой» использовался в основном в тестовых устройствах и управлении оборудованием.

Intel 8008

Помимо 4-битных процессоров, в начале 70-х годов в арсенале Intel появилась и 8-битная модель - 8008. По своей сути чип представлял собой 8-битную версию процессора 4004 с меньшей тактовой частотой. Не стоит этому удивляться, потому как разработка модели 8008 велась параллельно с разработкой 4004. Так, в 1969 году компания Computer Terminal Corporation (впоследствии Datapoint) поручила Intel создание процессора для терминалов Datapoint, предоставив им схему архитектуры. Как и в случае с моделью 4004, Тэд Хофф предложил интегрировать все микросхемы в один чип, и в CTC согласились с таким предложением. Разработка плавно шла к своему завершению, но в 1970 году CTC отказались как от чипа, так и от дальнейшего сотрудничества с Intel. Причины были банальны: инженеры Intel не вложились в установленные сроки разработки, а функциональность предоставленного «камня» не соответствовала запросам CTC. Договор между двумя компаниями был разорван, права на все наработки остались у Intel. Новым чипом заинтересовалась японская компания Seiko, инженеры которой хотели использовать новый процессор в своих калькуляторах.

Процессор Intel 8008

Так или иначе, но после прекращения сотрудничества с CTC Intel переименовала разрабатываемый чип в 8008. В апреле 1972 года этот процессор стал доступен для заказа по цене 120 долларов США. После того как Intel осталась без поддержки CTC, в стане компании осторожно относились к коммерческим перспективам нового чипа, однако сомнения были напрасны - процессор хорошо продавался.

Технические характеристики 8008 были во многом схожи с 4004. Процессор производился в 18-пиновом форм-факторе DIP по 10-мкм технологическим нормам и содержал 3500 транзисторов. Внутренний стек поддерживал 8 уровней, а объем поддерживаемой внешней памяти составлял до 16 Кбайт. Тактовая частота 8008 была установлена на отметке 500 кГц (на 240 кГц ниже, чем у 4004). За счет этого 8-битный процессор Intel зачастую проигрывал в скорости 4-битному.

На основе 8008 было построено несколько компьютерных систем. Первой из них стал не очень известный проект под названием The Sac State 8008. Эта система разрабатывалась в стенах университета Сакраменто под руководством инженера Билла Пентца. Несмотря на то, что долгое время первым созданным микрокомпьютером считалась система Altair 8800, именно The Sac State 8008 является таковым. Проект был завершен в 1972 году и представлял полностью полноценный компьютер для обработки и хранения медицинских записей пациентов. Компьютер включал в себя непосредственно процессор 8008, жесткий диск, 8 Кбайт оперативной памяти, цветной дисплей, интерфейс для подключения к мейнфреймам, а также собственную операционную систему. Стоимость такой системы была крайне высокой, поэтому The Sac State 8008 так и не смог получить должного распространения, хотя довольно продолжительное время конкурентов в плане производительности у него не было.

Примерно так выглядел The Sac State 8008

Тем не менее, The Sac State 8008 - не единственный компьютер, построенный на базе процессора 8008. Были созданы и другие системы, такие как американская SCELBI-8H, французская Micral N и канадская MCM/70.

Intel 8080

Как и в случае с процессором 4004, спустя некоторое время 8008 также получил обновление в лице чипа 8080. Однако в случае с 8-битным решением изменения, внесенные в архитектуру процессора, были намного более существенные.

Intel 8080 был представлен в апреле 1974 года. Прежде всего, нужно отметить, что производство процессора перевели на новый 6-мкм техпроцесс. Более того, при производстве использовалась технология N-МОП (n-канальные транзисторы) - в отличие от 8008, который производился с помощью P-МОП-логики. Использование нового техпроцесса позволило разместить на кристалле 6000 транзисторов. В качестве форм-фактора использовался DIP с 40 контактами.

Модель 8080 получила более богатый набор команд, который включал 16 команд передачи данных, 31 команду для их обработки, 28 команд для перехода с прямой адресацией, а также 5 команд управления. Тактовая частота процессора составила 2 МГц - в 4 раза больше, чем у предшественника. Также 8080 имел 16-разрядную адресную шину, которая позволяла производить адресацию 64 Кбайт памяти. Эти нововведения обеспечили высокую производительность нового чипа, которая примерно в 10 раз превышала таковую у 8008.

Процессор Intel 8080

Процессор 8080 в своей первой ревизии содержал серьезную ошибку, которая могла приводить к зависанию. Ошибка была исправлена в обновленной ревизии чипа, получившей название 8080А и выпущенной только спустя полгода.

Благодаря высокой производительности процессор 8080 стал очень популярным. Его применяли даже в системах управления уличным освещением и светофорами. Однако в основном его использовали в компьютерных системах, самой известной из которых являлась разработка компании MITS Altair-8800, представленная в 1975 году.

Altair-8800 работал на базе операционной системы Altair BASIC, а в качестве шины использовался интерфейс S-100, который спустя несколько лет стал стандартом для всех персональных компьютеров. Технические характеристики компьютера были более чем скромные. Он обладал всего лишь 256 байт оперативной памяти, у него отсутствовали клавиатура и монитор. Пользователь работал с компьютером путем ввода программ и данных в двоичной форме, щелкая набором маленьких ключей, которые могли занимать два положения: верхнее и нижнее. Результат считывался также в двоичной форме - по погасшим и светящимся лампочкам. Тем не менее, Altair-8800 стал настолько популярным, что такая маленькая компания, как MITS, попросту не успевала удовлетворять спрос на компьютеры. Популярности компьютера напрямую посодействовала его невысокая стоимость - 621 доллар США. При этом за 439 долларов США можно было приобрести компьютер в разобранном виде.

Компьютер Altair-8800

Возвращаясь к теме 8080, нужно отметить, что на рынке присутствовало множество его клонов. Тогдашняя маркетинговая ситуация в корне отличалась от того, что мы наблюдаем сегодня, и Intel было выгодно предоставлять сторонним компаниям лицензии на производство копий 8080. Производством клонов занималось множество крупных компаний, таких как National Semiconductor, NEC, Siemens и AMD. Да, в 70-е годы у AMD еще не было собственных процессоров - фирма занималась исключительно выпуском «ремейков» других кристаллов на собственных мощностях.

Интересно, что существовала и отечественная копия процессора 8080. Она была разработана Киевским НИИ микроприборов и носила название КР580ВМ80А. Было выпущено несколько вариантов этого процессора, в том числе и для применения в военных объектах.

«Незалежный» КР580ВМ80А

В 1976 году появилась обновленная версия чипа 8080, получившая индекс 8085. Новый кристалл изготавливался по 3 мкм техпроцессу, что позволило разместить на чипе 6500 транзисторов. Максимальная тактовая частота процессора составляла 6 МГц. Набор поддерживаемых инструкций содержал 79 команд, среди которых были две новые команды для управления прерываниями.

Zilog Z80

Главным событием после выхода 8080 стало увольнение Федерико Фаджина. Итальянец не был согласен с внутренней политикой компании и решил уйти. Вместе с бывшим менеджером Intel Ральфом Унгерманном и японским инженером Масатоши Шимой он основал компанию Zilog. Сразу после этого началась разработка нового процессора, похожего по своей архитектуре на 8080. Так, в июле 1976 года появился процессор Zilog Z80, бинарно совместимый с 8080.

Федерико Фаджин (слева)

В сравнении с Intel 8080 Zilog Z80 имел много улучшений, например, расширенный набор команд, новые регистры и инструкции для них, новые режимы прерываний, два отдельных блока регистров, а также встроенную схему регенерации динамической памяти. Кроме этого, стоимость Z80 была намного ниже, чем 8080.

Что касается технических характеристик, то процессор производился по 3-мкм технологическим нормам с применением технологий N-МОП и КМОП. Z80 содержал 8500 транзисторов, а его площадь равнялась 22,54 мм 2 . Тактовая частота Z80 варьировалась в пределах от 2,5 до 8 МГц. Разрядность шины данных составляла 8 бит. Процессор обладал 16-битной адресной шиной, а объем адресуемой памяти составлял 64 Кбайт. Z80 производился в нескольких форм-факторах: DIP40 или 44-контактных PLCC и PQFP.

Процессор Zilog Z80

Z80 очень быстро превзошел в популярности все конкурирующие решения, в том числе и 8080. Процессор применялся в компьютерах таких компаний, как Sharp, NEC и других. Также Z80 «прописался» в консолях Sega и Nintendo. Кроме этого, процессор использовался в игровых автоматах, модемах, принтерах, промышленных роботах и многих других устройствах.

ZX Spectrum

Отдельного упоминания достойно устройство под названием ZX Spectrum, несмотря на то, что наше сегодняшнее повествование не касается решений 80-х годов прошлого столетия. Компьютер разрабатывался британской компанией Sinclair Research и был выпущен в 1982 году. ZX Spectrum был далеко не первой разработкой SR. В начале 1970-х годов глава компании и ее главный инженер Клайв Синклейр (Clive Sinclair) занимались тем, что продавали радиодетали по почте. Ближе к середине 70-х Клайв создал карманный калькулятор, который стал первым успешным изобретением фирмы. Отметим, что в компании не занимались непосредственно разработкой калькулятора. Им удалось найти удачное сочетание дизайна, функциональности и стоимости, благодаря которому устройство отлично продавалось. Следующим устройством Sinclair также стал калькулятор, но с более богатым набором функций. Устройство предназначалось для более «продвинутой» аудитории, но снискать особого успеха ему не удалось.

Клайв Синклейр - «отец» ZX Spectrum

После калькуляторов Синклейр решил сосредоточиться на разработке полноценных компьютеров, и в промежутке между 1980 и 1981 годами появились домашние компьютеры линейки ZX: ZX80 и ZX81. Но самым популярным решением стала выпущенная в 1982 году система под названием ZX Spectrum. Изначально она должна была выйти на рынок под названием ZX83, но в последний момент было принято решение переименовать девайс, чтобы подчеркнуть поддержку компьютером цветного изображения.

ZX Spectrum стал популярным, прежде всего, благодаря своей простоте и дешевизне. Компьютер внешне напоминал игровую приставку. К нему через внешние интерфейсы подключались телевизор, который использовался в качестве монитора, и кассетный магнитофон, выполняющий функцию накопителя. На корпусе «Спектрума» располагалась многофункциональная клавиатура на 40 резиновых клавиш. Каждая кнопка имела до семи значений при работе в разных режимах.

Компьютер ZX Spectrum

Внутренняя архитектура ZX Spectrum также была довольно простой. Благодаря использованию технологии ULA (Uncommitted Logic Array) основную часть схемы компьютера удалось разместить на одной микросхеме. В качестве центрального процессора использовался Zilog Z80 с тактовой частотой 3,5 МГц. Объем оперативной памяти составлял 16 или 48 Кбайт. Правда, некоторые сторонние производители выпускали модули памяти объемом 32 Кбайт, которые вставлялись в один из портов расширения «Спектрума». Объем ПЗУ составлял 16 Кбайт, причем в память был вшит диалект языка BASIC под названием Sinclair BASIC. ZX Spectrum поддерживал вывод лишь однобитного звука через встроенный динамик. Компьютер работал лишь в графическом режиме (8 цветов и 2 уровня яркости). Следовательно, поддержки текстового режима не было. Максимальное разрешение при этом составляло 256x192 пикселов.

Начальная цена на ZX Spectrum была установлена на отметке 125 фунтов стерлингов. Интересно, что Sinclair Research всё ещё продавали свои устройства с помощью почты. За первые 17 месяцев после выхода «Спектрума» было продано более миллиона компьютеров.

Многие при покупке flash-накопителя задаются вопросом: «как правильно выбрать флешку». Конечно, флешку выбрать не так уж и трудно, если точно знать для каких целей она приобретается. В этой статье я постараюсь дать полный ответ на поставленный вопрос. Я решил писать только о том, на что надо смотреть при покупке.

Flash-накопитель (USB-накопитель) – это накопитель, предназначенный для хранения и переноса информации. Работает флешка очень просто без батареек. Всего лишь нужно ее подключить к USB порту Вашего ПК.

1. Интерфейс флешки

На данный момент существует 2 интерфейса это: USB 2.0 и USB 3.0. Если Вы решили купить флешку, то я рекомендую брать флешку с интерфейсом USB 3.0. Данный интерфейс был сделан недавно, его главной особенностью является высокая скорость передачи данных. О скоростях поговорим чуть ниже.


Это один из главных параметров, на который нужно смотреть в первую очередь. Сейчас продаются флешки от 1 Гб до 256 Гб. Стоимость флеш-накопителя напрямую будет зависеть от объема памяти. Тут нужно сразу определиться для каких целей покупается флешка. Если вы собираетесь на ней хранить текстовые документы, то вполне хватит и 1 Гб. Для скачивания и переноски фильмов, музыки, фото и т.д. нужно брать чем больше, тем лучше. На сегодняшний день самыми ходовыми являются флешки объемом от 8Гб до 16 Гб.

3. Материал корпуса



Корпус может быть сделан из пластика, стекла, дерева, метала и т.д. В основном флешки делают из пластика. Тут я советовать нечего не могу, все зависит от предпочтений покупателя.

4. Скорость передачи данных

Ранее я писал, что существует два стандарта USB 2.0 и USB 3.0. Сейчас объясню, чем они отличаются. Стандарт USB 2.0 имеет скорость чтения до 18 Мбит/с, а записи до 10 Мбит/с. Стандарт USB 3.0 имеет скорость чтения 20-70 Мбит/с, а записи 15-70 Мбит/с. Тут, я думаю, объяснять ничего не надо.





Сейчас в магазинах можно найти флешки разных форм и размеров. Они могут быть в виде украшений, причудливых животных и т.д. Тут я бы посоветовал брать флешки, у которых есть защитный колпачок.

6. Защита паролем

Есть флешки, которые имеют функцию защиты паролем. Такая защита осуществляется при помощи программы, которая находится в самой флешке. Пароль можно ставить как на всю флешку, так и на часть данных в ней. Такая флешка в первую очередь будет полезна людям, которые переносят в ней корпоративную информацию. Как утверждают производители, потеряв ее можно не беспокоиться о своих данных. Не все так просто. Если такая флешка попадет в руки понимающего человека, то ее взлом это всего лишь дело времени.



Такие флешки внешне очень красивы, но я бы не рекомендовал их покупать. Потому что они очень хрупкие и часто ломаются пополам. Но если Вы аккуратный человек, то смело берите.

Вывод

Нюансов, как Вы заметили, много. И это только вершина айсберга. На мой взгляд, самые главные параметры при выборе: стандарт флешки, объем и скорость записи и чтения. А все остальное: дизайн, материал, опции – это всего лишь личный выбор каждого.

Добрый день, мои дорогие друзья. В сегодняшней статье я хочу поговорить о том, как правильно выбрать коврик для мыши. При покупке коврика многие не придают этому никакого значения. Но как оказалось, этому моменту нужно уделять особое внимание, т.к. коврик определяют один из показателей комфорта во время работы за ПК. Для заядлого геймера выбор коврика это вообще отдельная история. Рассмотрим, какие варианты ковриков для мыши придуманы на сегодняшний день.

Варианты ковриков

1. Алюминиевые
2. Стеклянные
3. Пластиковые
4. Прорезиненные
5. Двухсторонние
6. Гелиевые

А теперь я бы хотел поговорить о каждом виде поподробнее.

1. Сначала хочу рассмотреть сразу три варианта: пластиковые, алюминиевые и стеклянные. Такие коврики пользуются большой популярностью у геймеров. Например, пластиковые коврики легче найти в продаже. По таким коврикам мышь скользит быстро и точно. И самое главное такие коврики подходят как для лазерных, так и для оптических мышей. Алюминиевые и стеклянные коврики найти будет немного сложнее. Да и стоить они будут немало. Правда есть за что – служить они будут очень долго. Коврики данных видов имеют маленькие недостатки. Многие говорят, что при работе они шуршат и наощупь немного прохладные, что может вызывать у некоторых пользователей дискомфорт.


2. Прорезиненные (тряпичные) коврики имеют мягкое скольжение, но при этом точность движений у них хуже. Для обычных пользователей такой коврик будет в самый раз. Да и стоят они намного дешевле предыдущих.


3. Двухсторонние коврики, на мой взгляд, очень интересная разновидность ковриков для мыши. Как понятно из названия у таких ковриков две стороны. Как правило, одна сторона является скоростной, а другая высокоточной. Бывает так, что каждая сторона рассчитана на определенную игру.


4. Гелиевые коврики имеют силиконовую подушку. Она якобы поддерживает руку и снимает с нее напряжение. Лично для меня они оказались самыми неудобными. По назначению они рассчитаны для офисных работников, поскольку те целыми днями сидят за компьютером. Для обычных пользователей и геймеров такие коврики не подойдут. По поверхности таких ковриков мышь скользит очень плохо, да и точность у них не самая хорошая.

Размеры ковриков

Существует три вида ковриков: большие, средние и маленькие. Тут все в первую очередь зависит от вкуса пользователя. Но как принято считать большие коврики хорошо подходят для игр. Маленькие и средние берут в основном для работы.

Дизайн ковриков

В этом плане, нет ни каких ограничений. Все зависит от того что Вы хотите видеть на своем коврике. Благо сейчас на ковриках что только не рисуют. Наиболее популярными являются логотипы компьютерных игр, таких как дота, варкрафт, линейка и т.д. Но если случилось, что Вы не смогли найти коврик с нужным Вам рисунком, не стоит огорчаться. Сейчас можно заказать печать на коврик. Но у таких ковриков есть минус: при нанесении печати на поверхность коврика его свойства ухудшаются. Дизайн в обмен на качество.

На этом я хочу закончить статью. От себя желаю сделать Вам правильный выбор и быть им довольным.
У кого нет мышки или хочет её заменить на другую советую посмотреть статью: .

Моноблоки компании Microsoft пополнились новой моделью моноблока под названием Surface Studio. Свою новинку Microsoft представил совсем недавно на выставке в Нью-Йорке.


На заметку! Я пару недель назад писал статью, где рассматривал моноблок Surface. Этот моноблок был представлен ранее. Для просмотра статьи кликайте по .

Дизайн

Компания Microsoft свою новинку называет самым тонким в мире моноблоком. При весе в 9,56 кг толщина дисплея составляет всего лишь 12,5 мм, остальные габариты 637,35х438,9 мм. Размеры дисплея составляют 28 дюймов с разрешением больше чем 4К (4500х3000 пикселей), соотношение сторон 3:2.


На заметку! Разрешение дисплея 4500х3000 пикселей соответствует 13,5 млн пикселей. Это на 63% больше, чем у разрешения 4К.

Сам дисплей моноблока сенсорный, заключенный в алюминиевый корпус. На таком дисплее очень удобно рисовать стилусом, что в итоге открывает новые возможности использования моноблоком. По моему мнению эта модель моноблока будет по нраву творческим людям (фотографы, дизайнеры и т. д.).


На заметку! Для людей творческих профессий я советую посмотреть статью, где я рассматривал моноблоки подобного функционала. Кликаем по выделенному: .

Ко всему выше написанному я бы добавил, что главной фишкой моноблока будет его возможность мгновенно превращаться в планшет с огромной рабочей поверхностью.


На заметку! Кстати, у компании Microsoft есть еще один удивительный моноблок. Чтобы узнать о нем, переходите по .

Технические характеристики

Характеристики я представлю в виде фотографии.


Из периферии отмечу следующее: 4 порта USB, разъем Mini-Display Port, сетевой порт Ethernet, card-reader, аудио гнездо 3,5 мм, веб-камера с 1080р, 2 микрофона, аудиосистема 2.1 Dolby Audio Premium, Wi-Fi и Bluetooth 4.0. Так же моноблок поддерживает беспроводные контроллеры Xbox.





Цена

При покупке моноблока на нем будет установлена ОС Windows 10 Creators Update. Данная система должна выйти весной 2017 года. В данной операционной системе будет обновленный Paint, Office и т. д. Цена на моноблок будет составлять от 3000 долларов.
Дорогие друзья, пишите в комментариях, что вы думаете об этом моноблоке, задавайте интересующие вопросы. Буду рад пообщаться!

Компания OCZ продемонстрировала новые SSD-накопители VX 500. Данные накопители будут оснащаться интерфейсом Serial ATA 3.0 и сделаны они в 2.5-дюймовом форм-факторе.


На заметку! Кому интересно, как работает SSD-диски и сколько они живут, можно прочитать в ранее мною написанной статье: .
Новинки выполнены по 15-нанометровой технологии и будут оснащаться микрочипами флеш-памяти Tochiba MLC NAND. Контроллер в SSD-накопителях будет использоваться Tochiba TC 35 8790.
Модельный ряд накопителей VX 500 будет состоять из 128 Гб, 256 Гб, 512 Гб и 1 Тб. По заявлению производителя последовательна скорость чтения будет составлять 550 Мб/с (это у всех накопителей этой серии), а вот скорость записи составит от 485 Мб/с до 512 Мб/с.


Количество операций ввода/вывода в секунду (IOPS) с блоками данных размером 4 кбайта может достигать 92000 при чтении, а при записи 65000 (это все при произвольном).
Толщина накопителей OCZ VX 500 будет составлять 7 мм. Это позволит использовать их в ультрабуках.




Цены новинок будут следующими: 128 Гб — 64 доллара, 256 Гб — 93 доллара, 512 Гб — 153 доллара, 1 Тб — 337 долларов. Я думаю, в России они будут стоить дороже.

Компания Lenovo на выставке Gamescom 2016 представила свой новый игровой моноблок IdeaCentre Y910.


На заметку! Ранее я писал статью, где уже рассматривал игровые моноблоки разных производителей. Данную статью можно посмотреть, кликнув по этой .


Новинка от Lenovo получила безрамочный дисплей размером 27 дюймов. Разрешение дисплея составляет 2560х1440 пикселей (это формат QHD), частота обновлений равна 144 Гц, а время отклика 5 мс.


У моноблока будет несколько конфигураций. В максимальной конфигурации предусмотрен процессор 6 поколения Intel Core i7, объем жесткого диска до 2 Тб или объемом 256 Гб. Объем оперативной памяти равен 32 Гб DDR4. За графику будет отвечать видеокарта NVIDIA GeForce GTX 1070 либо GeForce GTX 1080 с архитектурой Pascal. Благодаря такой видеокарте к моноблоку можно будет подключить шлем виртуальной реальности.
Из периферии моноблока я бы выделил аудиосистему Harmon Kardon с 5-ваттными динамиками, модуль Killer DoubleShot Pro Wi-Fi, веб-камеру, USB порты 2.0 и 3.0, разъемы HDMI.


В базовом варианте моноблок IdeaCentre Y910 появиться в продаже в сентябре 2016 года по цене от 1800 евро. А вот моноблок с версией «VR-ready» появится в октябре по цене от 2200 евро. Известно, что в этой версии будет стоять видеокарта GeForce GTX 1070.

Компания MediaTek решила модернизировать свой мобильный процессор Helio X30. Так что теперь разработчики из MediaTek проектируют новый мобильный процессор под названием Helio X35.


Я бы хотел вкратце рассказать о Helio X30. Данный процессор имеет 10 ядер, которые объединены в 3 кластера. У Helio X30 есть 3 вариации. Первый - самый мощный состоит из ядер Cortex-A73 с частотой до 2,8 ГГц. Так же есть блоки с ядрами Cortex-A53 с частотой до 2,2 ГГц и Cortex-A35 с частотой 2,0 ГГц.


Новый процессор Helio X35 тоже имеет 10 ядер и создается он по 10-нанометровой технологии. Тактовая частота в этом процессоре будет намного выше, чем у предшественника и составляет от 3,0 Гц. Новинка позволит задействовать до 8 Гб LPDDR4 оперативной памяти. За графику в процессоре скорее всего будет отвечать контроллер Power VR 7XT.
Саму станцию можно увидеть на фотографиях в статье. В них мы можем наблюдать отсеки для накопителей. Один отсек с разъемом 3,5 дюймов, а другой с разъемом 2,5 дюймов. Таким образом к новой станции можно будет подключить как твердотельный диск (SSD), так и жесткий диск (HDD).


Габариты станции Drive Dock составляют 160х150х85мм, а вес ни много ни мало 970 граммов.
У многих, наверное, возникает вопрос, как станция Drive Dock подключается к компьютеру. Отвечаю: это происходит через USB порт 3.1 Gen 1. По заявлению производителя скорость последовательного чтения будет составлять 434 Мб/сек, а в режиме записи (последовательного) 406 Мб/с. Новинка будет совместима с Windows и Mac OS.


Данное устройство будет очень полезным для людей, которые работают с фото и видео материалами на профессиональном уровне. Так же Drive Dock можно использовать для резервных копий файлов.
Цена на новое устройство будет приемлемой — она составляет 90 долларов.

На заметку! Ранее Рендучинтала работал в компании Qualcomm. А с ноября 2015 года он перешел в конкурирующую компанию Intel.


В своем интервью Рендучинтала не стал говорить о мобильных процессорах, а лишь сказал следующее, цитирую: «Я предпочитаю меньше говорить и больше делать».
Таким образом, топ-менеджер Intel своим интервью внес отличную интригу. Нам остается ждать новых анонсов в будущем.

Начиная с 70-х гг. прошлого века процессоры для ПК выпускались довольно большим количеством различных компаний, причем каждая из них вносила в разработку устройств новые технологии. Но далеко не у всех получилось завоевать мировой рынок, так, как у Intel или AMD: одни компании начинали выпускать иную продукцию, другие – просто прекратили свое существование. Но сначала – обо всем по порядку.

История создания процессора

Первые процессоры компьютеров 50-х гг. прошлого века работали на основе механического реле, позже появлялись модели, задействовавшие электронные лампы, затем — транзисторы. Сами же компьютеры, использующие данные виды процессоров, представляли собой огромные, очень дорогие и сложные устройства.

Компоненты процессора, отвечающие за производимые вычисления, необходимо было соединить в одну микросхему. Этого удалось достигнуть лишь после появления интегральных полупроводниковых схем. Хотя в первое время разработчики даже и не догадывались, что данная технология может принести пользу, поэтому устройства еще довольно продолжительное время изготавливались как набор отдельных микросхем.

В 1969 г. компанией Busicom было заказано 12 микросхем у Intel , предназначенных для их собственной разработки – настольного калькулятора. Уже тогда у разработчиков Intel возникла мысль – соединить несколько микросхем в одну. Идея была одобрена руководством корпорации, так как технология позволяла хорошо сэкономить на производстве микросхем, к тому же, специалисты смогли сделать процессор универсальным и использовать его во многих других устройствах, производящих вычисления.

Так появился первый микропроцессор, который получил название . Он мог выполнять 60000 операций в секунду, обрабатывать двоичные числа. Но процессор так и не смогли применить в ПК – их тогда попросту не выпускали.

«Mark 8» — первый ПК на земле

Разработал американский студент Джонатан Титус. Известный журнал «Электроника» назвал его ПК «Mark 8» (с англ. «Модель 8»). В издании также было дано описание компьютера, показана детальная конструкция. Титус хотел заработать, продавая печатные платы тем, кому нужно было собрать свой собственный ПК. Остальные устройства клиентам приходилось покупать в магазинах.

Естественно, «Модель 8» не принесла много прибыли своему создателю, но Джонатан оказал человечеству бесценную услугу, создав полноценный ПК.

История процессоров Intel

После Intel 4004 на свет появился процессор Intel 8008, который работал с частотой 600-800 кГц, содержал 3500 транзисторов, он сильно отличался от своего предшественника. Intel 8008 применялся в различных цифровых устройствах и калькуляторах. В то время на рынке высоких технологий стали появляться персональные компьютеры, поэтому корпорация Intel вскоре решила, что для ПК будут нужны куда более мощные процессоры. Вскоре был разработан производительный Intel 8080, который по своим характеристикам превосходил «808-ого» примерно в десять раз.

По тем временам устройство стоило достаточно дорого, но, как считали специалисты Intel, цена была оптимальной для использования процессора в ПК. Финансовое положение корпорации стремительно улучшалось благодаря его удачным продажам.

В скором времени вышел Altair-8800, персональный компьютер, выпущенный компанией MITS, (который, кстати, работал на чипе Intel 8800). Он начал эру ПК, что побудило многие компании начать разрабатывать собственные микропроцессоры.

Тем временем в СССР

Отечественная вычислительная техника быстро развивалась вплоть до начала 70-х гг., в то время разрабатывались различные ЭВМ, которые не уступали в производительности зарубежным образцам. В 1970 году правительство нашей страны издало указ «об аппаратной и программной совместимости ЭВМ», который способствовал появлению новой концепции вычислительных машин. В их основу легла американская технология IBM 360, а позже ее место заняла архитектура PDP-11.

Советские разработки стали не нужны, компьютерное производство включало в себя лишь копирование импортных образцов, что привело к неизбежному отставанию СССР от Америки в плане электронного производства. Полностью исчезла технология PDP-11, все компьютеры, выпущенные в 80-е гг. работали на аналогах процессоров Zilog и Intel. Американские технологии опережали отечественные более чем на 10 лет.

История развития процессоров

В 1974 г. Компания Motorola выпустила свою первую разработку — процессор MC6800 , который был достаточно производителен (частота 1-2 МГц, 64 кб обрабатываемой памяти, 4500 транзисторов), оперировал 16-битными числами и имел такую же цену, как и Intel 8080, но очень плохо продавался, из-за чего не нашел применения в ПК. Позже, потерпевшая неудачу компания распустила более 4 тыс. сотрудников.

В 1975 г. бывшие сотрудники компании Motorola образовали свою собственную компанию под названием MOS Technology, первым процессором которой стал MOS Technology 6501 , по характеристикам схожий с MC6800. Но угрозы судом от Motorola за плагиат вынудили компанию устранить все сходства с их процессором, поэтому вскоре вышла новая модель – чип версии 6502, который стоил относительно дешево, вследствие чего широко применялся на различных ПК, в числе которых были компьютеры компании Apple. Процессор отличался от предыдущей версии более современной технологией вычислений и высокой тактовой частотой.

Бывшие сотрудники Intel тоже решились на создание собственного проекта – в 1976 г. они выпустили процессор Zilog Z80, который не особо отличался от Intel 8080. У устройства была всего одна линия питания, довольно низкая цена, на нем работали все те же самые программы, что и на чипе от Intel. Мало того, процессор можно было разогнать, т. е. увеличить его производительность, не задействовав при этом оперативную память – все это привело к успеху компании Zilog на рынке.

В нашей стране процессор Z80 долгое время использовался как микроконтроллер в военной технике, пультах дистанционного управления, а также как процессор игровых приставок и различных электронных играх. Z80 широко применялся в России в 80-х – 90-х годах.

«Устаревший» терминатор

В фильме «Терминатор» есть сцены, в которых робот глазами сканирует окрестности, а в это время на его экране постоянно бегают строчки неизвестного программного кода. Спустя несколько лет выяснилось, что эти строчки принадлежат программе процессора MOS Technology 6502. Сей факт выглядит очень забавно, ведь действие фильма происходит в далеком будущем, где, однако, до сих пор используются процессоры 70-х годов.

История развития процессоров Intel, Motorola, Zilog

В 1979 году корпорация Intel снова совершила технологический прорыв, разработав новый процессор Intel 8086 , который все эксперты сразу же окрестили «убийцей» Zilog и MOS Technology. Новый чип был гораздо мощнее своих конкурентов, но ожидаемого успеха он так и не достиг, так как для 16-разрядной шины процессора требовались соответствующие дорогостоящие микросхемы для материнских плат. Это послужило образованию высоких цен на ПК с Intel 8086, которые впоследствии плохо продавались. Но это не отменяет больших заслуг нового процессора — он задал очень высокую планку производительности, а потомки Intel 8086 прочно занимают лидирующие позиции на рынке микропроцессоров для ПК.

Следующий чип — Intel 8088 — был работой над ошибками и имел успехи в продажах. Он содержал 30000 транзисторов, работал на частоте 10 МГц. Небезызвестный IBM PC работал именно с этим процессором.

Motorola в 1979 году выпустила чип MC68000 , который по тем временам был мощнейшим – 24-разрядная шина памяти, частота 10-16 МГц. Процессор был очень дорогим, требовал соответствующие микросхемы, но все равно имел значительный успех, подкупая пользователей своими широкими возможностями.

В этом же году компанией Zilog был выпущен весьма спорный процессор – Z8000 . Он был довольно производительным, но в то же время не был совместим аппаратно и программно с Z80, из-за чего новый процессор почти никто не хотел покупать.

Процессоры и числа

Первые модели микропроцессоров могли обрабатывать целые и дробные числа, но для вычисления последних нужно было сначала преобразовать дробь в несколько целых чисел и после операций привести полученное число к начальному виду. Но такие постоянные преобразования – довольно затратный процесс, в смысле памяти ПК, поэтому нужно было как-то улучшить технологию процессоров. Вскоре многие компании начали разрабатывать дополнительные чипы, специально предназначенные для расчетов с дробями. Сначала их продажу осуществляли отдельно от основных процессоров, но позже производители смогли соединить два чипа в один, интегрировав дополнительный процессор в основной. Проблема была решена.

Компания Intel стала лидером среди производителей процессоров

В 1982 году вышел процессор Intel 80286, который разгромил конкурентов в лице Motorola и Zilog. Он был намного мощнее и быстрее своего предшественника Intel 8086, работал с большими объемами памяти и не имел проблем с аппаратной и программной совместимостью. Значит, пользователям больше не нужно было обновлять дорогостоящее программное обеспечение. Все это было достигнуто с помощью введения нового режима работы процессора, благодаря которому обеспечивалась работа сразу нескольких программ. Защищенный режим повышал производительность чипа в разы – в этом был секрет успеха Intel 80286.

Новое поколение процессоров Intel

Процессор P5 от Intel вышел в марте 1993 года, он стал называться Pentium. Технологии чипа были переработаны до неузнаваемости – появилась возможность выполнять сразу две команды, процесс кэширования информации радикально изменился, пропускная способность 64-разрядной шины повысилась в 2 раза. Но процессоры, которые работали на частоте 60 МГц, не были успешны, так как они требовали новую материнскую плату с гнездом Socket 4, а старые не могли полноценно использовать Pentium. Поэтому в конце 1993 года вышел Pentium II, еще более производительный процессор, ситуацию удалось исправить.

Таким образом, чипы от компании Intel обошли своих конкурентов на рынке ПК и прочно заняли лидирующую позицию в стремительной гонке развития процессоров.

Бюджетные версии процессоров Intel

Для успешной конкуренции с AMD компания Intel должна была возглавить рынок бюджетных версий процессоров. Руководство компании приняло решение не снижать цены, а выпускать не слишком мощные процессоры, которые стали называться Intel Celeron.

Первая подобная модель вышла 1998 году. Celeron работал на ядре процессора Pentium II, но в нем отсутствовал кэш, да и сам процессор имел довольно среднюю производительность, хотя был совместим с новыми технологиями. Именно такое устройство и нужно было Intel, чтобы заполнить бюджетный рынок, при этом избежав снижения цен на свои главные разработки.

Cyrix и IDT – производители процессоров версии x86

Компания Cyrix была основана в 1988 году. Ее разработчики создавали процессоры, использующие все те же технологии, что и Intel. Cyrix выпускала вспомогательные чипы для процессоров Intel 80286 и Intel 80386. Последний продукт, кстати, даже смог перегнать по продажам сопроцессор Intel той же версии.

Свои же собственные процессоры – 486DLC и 486SLC – Cyrix выпустили только в 1991 году. Они были совместимы с Socket Intel 80386. Разработки Cyrix ничуть не уступали чипам Intel в плане производительности и были довольно популярны среди пользователей, желающих сделать апгрейд своего ПК.

Еще через четыре года компания выпустила два новых процессора – Cx5x86, с помощью которого можно было перейти с версии 80486 на Intel Pentium, а также Cyrix версии 6×86. Он стал первым чипом, сумевшим превзойти аналог Intel – процессор под маркой Pentium. Но и 6х86 не был лишен недостатков: по тактовой частоте и производительности в трехмерных играх Pentium все же его превосходил.

Преимущество на рынке процессоров закончилось для Cyrix ближе к концу 90-х гг., так как производимым компанией процессорам недоставало мощности и скорости работы. Вскоре Cyrix была куплена тайваньской компанией VIA Technologies.

История компании IDT началась в 1997 году, когда она выпустила Win Chip – этот процессор был разработан по технологиям Pentium. Он продавался по низкой цене, потреблял мало электроэнергии и слабо нагревался, но вместе с тем имел низкую производительность, если сравнивать с конкурентами. Такие особенности Win Chip приобрел с помощью хитрой технологии – несложный набор команд сочетался со специальным устройством, преобразующим команды х86 в свои собственные.

Сейчас, даже более мене продвинутые мобильные телефоны не обходятся без микропроцессора, что уже говорить о планшетных, переносных и настольных персональных компьютерах. Что же такое микропроцессор и как развивалась история его создания? Если говорить на понятном языке, то микропроцессор – это более сложная и многофункциональная интегральная схема.

История микросхемы (интегральной схемы) начинается с 1958 года , когда сотрудник американской фирмы Texas Instruments Джек Килби изобрел некое полупроводниковое устройство, содержащее в одном корпусе несколько транзисторов, соединенных между собой проводниками. Первая микросхема – прародительница микропроцессора – содержала всего лишь 6 транзисторов и представляла собой тонкую пластину из германия с нанесёнными на неё дорожками, выполненными из золота, Расположено всё это было на стеклянной подложке. Для сравнения, сегодня счет идет на единицы и даже десятки миллионов полупроводниковых элементов.

К 1970 году достаточно много производителей занимались разработкой и созданием интегральных схем различной емкости и разной функциональной направленности. Но именно этот год можно считать датой рождения первого микропроцессора. Именно в этом году фирма Intel создает микросхему памяти емкостью всего лишь 1 Кбит – ничтожно мало для современных процессоров, но невероятно велико для того времени. На то время это было огромнейшее достижение – микросхема памяти способна была хранить до 128 байт информации – намного выше подобных аналогов. Кроме этого примерно в тоже время японский производитель калькуляторов Busicom заказала той же Intel 12 микросхем различной функциональной направленности. Специалистам Intel удалось реализовать все 12 функциональных направленностей в одной микросхеме. Более того, созданная микросхема оказалась многофункциональной, поскольку позволяла программно менять свои функции, не меняя при этом физической структуры. Микросхема выполняла определенные функции в зависимости от подаваемых на ее управляющие выводы команд.

Уже через год в 1971 Intel выпускает первый 4-разрядный микропроцессор под кодовым именем 4004. По сравнению с первой микросхемой в 6 транзисторов, он содержал аж 2,3 тыс. полупроводниковых элементов и выполнял 60 тыс. операций в секунду. На то время – это был огромнейший прорыв в области микроэлектроники. 4-разрядный означало то, что 4004 мог обрабатывать сразу 4-х битные данные. Еще через два года в 1973 фирма выпускает 8-ми разрядный процессор 8008, который работал уже с 8-ми битными данными. Начиная с 1976 года , компания начинает разрабатывать уже 16-разрадную версию микропроцессора 8086. Именно он начал применяться в первых персональных компьютерах IBM и, по сути заложил один из кирпичиков в историю ЭВМ.

Типы микропроцессоров

По характеру исполняемого кода и организации устройства управления выделяется несколько типов архитектур:

    Процессор со сложным набором инструкций. Эту архитектуру характеризует большое количество сложных инструкций, и как следствие сложное устройство управления. В ранних вариантах CISC-процессоров и процессоров для встроенных приложений характерны большие времена исполнения инструкций (от нескольких тактов до сотни), определяемые микрокодом устройства управления. Для высокопроизводительных суперскалярных процессоров свойственны глубокий анализ программы, внеочередное исполнение операций.

    Процессор с упрощённым набором инструкций. В этой архитектуре значительно более простое устройство управления. Большинство инструкций RISC-процессора сожержат одинаковое малое число операций (1, иногда 2-3), а сами командные слова в подавляющем числе случаев имеют одинаковую ширину (PowerPC, ARM), хотя бывают исключения (Coldfire). У суперскалярных процессоров - простейшая группировка инструкций без изменения порядка исполнения.

    Процессор с явным параллелизмом. Отличается от прочих прежде всего тем, что последовательность и параллельность исполнения операций и их распределение по функциональным устройствам явно определены программой. Такие процессоры могут обладать большим количеством функциональных устройств без особого усложнения устройства управления и потерь эффективности. Обычно такие процессоры используют широкое командное слово, состоящее из нескольких слогов, определяющих поведение каждого функционального устройства в течение такта.

    Процессор с минимальным набором инструкций. Эта архитектура определяется прежде всего свехмалым количеством инструкций (несколько десятков), и почти все они нуль-операндные. Такой подход даёт возможность очень плотно упаковать код, выделив под одну инструкцию от 5 до 8 бит. Промежуточные данные в таком процессоре обычно хранятся на внутреннем стеке, и операции производятся над значениям на вершине стека. Эта архитектура тесно связана с идеологией программирования на языке Forth и обычно используется для исполнения программ, написанных на этом языке.

    Процессор с изменяемым набором инструкций. Архитектура, позволяющая перепрограммировать себя, изменяя набор инструкций, подстраивая его под решаемую задачу.

    Транспорт-управляемый процессор. Архитектура изначально ответвилась от EPIC, но принципиально отличающаяся от остальных тем, что инструкции такого процессора кодируют функциональные операции, а так называемые транспорты - пересылки данных между функциональными устройствами и памятью в произвольном порядке.

По способу хранения программ выделяется две архитектуры:

    Архитектура фон Неймана . В процессорах этой архитектуры используется одна шина и одно устройство ввода-вывода для обращения к программе и данным.

    Гарвардская архитектура. В процессорах этой архитектуры для выборки программ и обмена данным существуют отдельные шины и устройства ввода-вывода. Во встроенных микропроцессорах, микроконтроллерах и ПЦОС это также определяет существование двух независимых запоминающих устройств для хранения программ и данных. В центральных процессорах это определяет существование отдельного кэша инструкций и данных. За кэшем шины могут быть объединены в одну посредством мультиплексирования.

История развития процессоров

Характеристики МП

Контрольные вопросы

История развития процессоров с 1971 года до наших дней

Интересен тот факт, что первый процессор был выпущен на 10 лет раньше первого ком­пьютера IBM PC. Компания Intel создала свой первый процессор в 1971 году, а компания IBM свой первый ПК - в 1981 году. Но даже теперь, спустя более четверти века, мы продол­жаем использовать системы, в той или иной мере сходные по архитектуре с первым ПК. Про­цессоры, установленные в наших компьютерах сегодня, большей частью имеют обратную совместимость с процессором 8088, который компания IBM выбрала для своего первого персо­нального компьютера в 1981 году.

15 ноября 2001 года микропроцессор отпраздновал свое 30-летие. За эти годы его быстро­действие увеличилось более чем в 18500 раз (с 0,108 МГц до 2 ГГц). Процессор 4004 был представлен 15 ноября 1971 года; он работал на частоте 108 кГц (108000 тактов в секунду, или всего 0,1 МГц). Про­цессор 4004 содержал 2300 транзисторов и производился с использованием 10-микронной технологии. Это означает, что все линии, дорожки и транзисторы располагались от других элементов на расстоянии около 10 микрон (миллионная часть метра). Данные передавались блоками по 4 бит за такт, а максимальный адресуемый объем памяти составлял 640 байт. Процессор 4004 предназначался для использования в калькуляторах, однако в конечном ито­ге нашел и другие применения в связи с широкими возможностями программирования. На­пример, процессор 4004 использовался для управления светофорами, при анализе крови и даже в исследовательской ракете Pioneer 10, запущенной NASA!

В апреле 1972 года Intel выпустила процессор 8008, который работал на частоте 200 кГц. Он содержал 3500 транзисторов и производился все по той же 10-микронной технологии. Шина данных была 8-разрядной, что позволяло адресовать 16 Кбайт памяти. Этот процессор предназначался для использования в терминалах и программируемых калькуляторах.

Следующая модель процессора, 8080, была анонсирована в апреле 1974 года. Этот процессор содержал 6000 транзисторов и мог адресовать уже 64 Кбайт памяти. На нем был собран первый персональный компьютер (не PC) Altair 8800. В этом компьютере использовалась операционная система CP/M, а Microsoft разработала для него интерпретатор языка BASIC. Это была первая массовая модель компьютера, для которого были написаны тысячи программ.

Со временем процессор 8080 стал настолько известен, что его начали копировать. В конце 1975 года несколько бывших инженеров Intel, занимавшихся разработкой процессора 8080, создали компанию Zilog. В июле 1976 года эта компания выпустила процессор Z-80, который представлял собой значительно улучшенную версию 8080. Этот процессор был несовместим с 8080 по контактным выводам, но сочетал в себе множество различных функций, например интерфейс памяти и схему обновления ОЗУ (RAM), что давало возможность разрабатывать более дешевые и простые компьютеры. В Z-80 был также включен расширенный набор ко­манд процессора 8080, позволяющий использовать его программное обеспечение. В этот про­цессор вошли новые команды и внутренние регистры, поэтому программное обеспечение, разработанное для Z-80, могло использоваться практически со всеми версиями 8080. Перво­начально процессор Z-80 работал на частоте 2,5 МГц (более поздние версии работали уже на частоте 10 МГц), содержал 8500 транзисторов и мог адресовать 64 Кбайт памяти.


Компания Intel не остановилась на достигнутом, и в марте 1976 года выпустила процессор 8085, который содержал 6500 транзисторов, работал на частоте 5 МГц и производился по 3-микронной технологии. Несмотря на то что он обогнал процессор Z-80 на несколько меся­цев, ему так и не удалось достичь популярности последнего. Он использовался в основном в качестве управляющей микросхемы различных компьютеризованных устройств.

В этом же году компания MOS Technologies выпустила процессор 6502, который был аб­солютно не похож на процессоры Intel. Он был разработан группой инженеров компании Mo­torola. Эта же группа работала над созданием процессора 6800, который в будущем трансфор­мировался в семейство процессоров 68000. Цена первой версии процессора 8080 достигала 300 долларов, в то время как 8-разрядный процессор 6502 стоил всего около 25 долларов. Та­кая цена была вполне приемлема для Стива Возняка (Steve Wozniak), и он встроил процессор- 6502 в новые модели Apple I и Apple II. Процессор 6502 использовался также в системах, соз­данных компанией Commodore и другими производителями. Этот процессор и его преемники с успехом работали в игровых компьютерных системах, в число которых вошла приставка Nintendo Entertainment System (NES). Компания Motorola продолжила работу над созданием серии процессоров 68000, которые впоследствии были использованы в компьютерах Apple Macintosh. Второе поколение компьютеров Mac использовало процессор PowerPC, являю­щийся преемником 68000. Сегодня компьютеры Mac снова перешли на архитектуру PC и ис­пользуют с ними одни процессоры, микросхемы системной логики и прочие компоненты.

В июне 1978 года Intel выпустила процессор 8086, который содержал набор команд под ко­довым названием х86. Этот же набор команд до сих пор поддерживается в самых современных процессорах Core 2 и AMD Athlon 64 X2. Процессор 8086 был полностью 16-разрядным - внут­ренние регистры и шина данных. Он содержал 29000 транзисторов и работал на частоте 5 МГц. Благодаря 20-разрядной шине адреса он мог адресовать 1 Мбайт памяти. При создании про­цессора 8086 обратная совместимость с 8080 не предусматривалась. Но в то же время значи­тельное сходство их команд и языка позволили использовать более ранние версии программ­ного обеспечения. Это свойство впоследствии сыграло важную роль для быстрого перевода программ системы CP/M (8080) на рельсы PC.

Несмотря на высокую эффективность процессора 8086 его цена была все же слишком вы­сока по меркам того времени и, что гораздо важнее, для его работы требовалась дорогая мик­росхема поддержки 16-разрядной шины данных. Чтобы уменьшить себестоимость процессо­ра, в 1979 году Intel выпустила процессор 8088 - упрощенную версию 8086. Процессор 8088 использовал те же внутреннее ядро и 16-разрядные регистры, что и 8086, мог адресовать 1 Мбайт памяти, но в отличие от предыдущей версии использовал внешнюю 8-разрядную шину данных. Это позволило обеспечить обратную совместимость с ранее разработанным 8-разрядным процессором 8085 и тем самым значительно снизить стоимость создаваемых системных плат и компьютеров. Именно поэтому IBM выбрала для своего первого ПК "урезанный" процессор 8088, а не 8086.

Это решение имело далеко идущие последствия для всей компьютерной индустрии. Про­цессор 8088 был полностью программно-совместимым с 8086, что позволяло использовать 16-разрядное программное обеспечение. В процессорах 8085 и 8080 использовался очень по­хожий набор команд, поэтому программы, написанные для процессоров предыдущих версий, можно было легко преобразовать для процессора 8088. Это, в свою очередь, позволяло разра­батывать разнообразные программы для IBM РС, что явилось залогом его будущего успеха. Не желая останавливаться на полпути, Intel была вынуждена обеспечить поддержку обратной совместимости 8088/8086 с большинством процессоров, выпущенных в то время.

В те годы еще поддерживалась обратная совместимость процессоров, что ничуть не меша­ло вводить различные новшества и дополнительные возможности. Одним из основных изме­нений стал переход от 16-разрядной внутренней архитектуры процессора 286 и более ранних версий к 32-разрядной внутренней архитектуре 386-го и последующих процессоров, относя­щихся к категории IA-32 (32-разрядная архитектура Intel). Эта архитектура была представ­лена в 1985 году, однако потребовалось еще 10 лет, чтобы на рынке появились такие операци­онные системы, как Windows 95 (частично 32-разрядные) и Windows NT (требующие ис­пользования исключительно 32-разрядных драйверов). И только еще через шесть лет появилась операционная система Windows XP, которая была 32-разрядной как на уровне драйверов, так и на уровне всех компонентов. Итак, на адаптацию 32-разрядных вычислений потребовалось 16 лет. Для компьютерной индустрии это довольно длительный срок.

Теперь наблюдается очередной "скачок" в развитии архитектуры ПК - компании Intel и AMD представили 64-разрядные расширения 32-разрядной архитектуры Intel IA-64 (Intel Archi­tecture, 64-bit - 64-разрядная архитектура Intel), выпустив процессоры Itanium и Itanium 2. Од­нако данная архитектура была абсолютно несовместима с существовавшей 32-разрядной. Архи­тектура IA-64 была анонсирована в 1994 году в рамках проекта по разработке компаниями Intel и HP нового процессора с кодовым именем Merced; первые технические детали были опубликованы в октябре 1997 года. В результате в 2001 году был выпущен процессор Itanium, поддерживающий архитектуру IA-64.

К сожалению, IA-64 не являлась расширением архитектуры IA-32, а была совершенно но­вой архитектурой. Это хорошо для рынка серверов (собственно, для этого IA-64 и разрабаты­валась), однако совершенно неприемлемо для мира ПК, который всегда требовал обратной совместимости. Хотя архитектура IA-64 и поддерживает эмуляцию IA-32, при этом обеспечи­вается очень низкая производительность.

Компания AMD пошла по другому пути и разработала 64-разрядные расширения для архи­тектуры IA-32. В результате появилась архитектура AMD64 (которая также называется x86-64). Через некоторое время Intel представила собственный набор 64-разрядных расширений, кото­рый назвала EM64T (IA-32e). Расширения Intel практически идентичны расширениям AMD, что означает их совместимость на программном уровне. В результате впервые в истории сложи­лась ситуация, когда Intel следовала за AMD в разработке архитектуры ПК, а не наоборот.

Для того чтобы 64-разрядные вычисления стали реальностью, необходимы 64-разрядные операционные системы и драйверы. В апреле 2005 года компания Microsoft начала распро­странять пробную версию Windows XP Professional x64 Edition, поддерживающую дополни­тельные инструкции AMD64 и EM64T. Основные производители компьютеров уже постав­ляют готовые системы с предустановленной Windows XP Professional x64 и с 64-разрядной системой Windows Vista; они также разработали 64-разрядные драйверы для достаточно со­временных моделей устройств. Выпускаются и 64-разрядные версии Linux, благодаря чему каких-либо серьезных препятствий для перехода к 64-разрядным вычислениям нет.

Последним достижением можно считать выпуск компаниями Intel и AMD двух- и четы-рехъядерных процессоров. Они содержат два или четыре полноценных ядра на одной под­ложке; в результате один процессор теоретически может выполнять работу двух или четырех процессоров. Хотя многоядерные процессоры не обеспечивают значительного увеличения быстродействия в играх (которые в основном предполагают выполнение данных в один по­ток), они просто незаменимы в многозадачной среде. Если вы когда-нибудь пытались одно­временно выполнять проверку компьютера на наличие вирусов, работать с электронной по­чтой, а также запускать какие-то другие приложения, то наверняка знаете, что такая нагрузка может "поставить на колени" даже самый быстрый одноядерный процессор. Поскольку двухъядерные процессоры сейчас выпускаются обеими компаниями, Intel и AMD, шансы на то, что вам удастся выполнить работу гораздо быстрее благодаря многозадачности, значи­тельно возрастают. Современные двухъядерные процессоры также поддерживают 64-разряд­ные расширения AMD64 или EM64T, что позволяет воспользоваться преимуществами как двухъядерности, так и 64-разрядных вычислений.

Персональные компьютеры прошли долгий путь развития. Первый используемый в ПК процессор 8088 содержал 29 тыс. транзисторов и работал с частотой 4,77 МГц. Процессор AMD Athlon 64 FX содержит больше 105 млн. транзисторов, процессор Pentium 4 670 (ядро Prescott) работает с частотой 3,8 ГГц и содержит 169 млн. транзисторов, преимущественно благодаря наличию кэш-памяти второго уровня L2 объемом 2 Мбайт. Двухъядерные процес­соры, содержащие два ядра и кэш-память на одной подложке, характеризуются еще большим количеством транзисторов. Процессор Intel Pentium D содержит 230 млн. транзисторов, а AMD Athlon 64 X2 - более 233 млн. Последние процессоры Core 2 Duo и Core 2 Quad содер­жат 291 и 582 млн. транзисторов соответственно; при этом в последний интегрирована кэш­память второго уровня объемом 8 Мбайт. Многоядерная архитектура и постоянно растущий объем кэш-памяти второго уровня приводят к постоянному росту количества транзисторов. Скоро эта отметка перевалит за один миллиард. Все это является практическим подтвержде­нием закона Мура, в соответствии с которым быстродействие процессоров и количество со­держащихся в них транзисторов удваивается каждые 1,5-2 года.

ПРИМЕЧАНИЕ В сфере выпуска микропроцессоров с фирмой Intel постоянно конкурирует фирма AMD. Микропроцессоры фирмы AMD выпуска 2003- 2004 годов (Athlon ХР, Athlon 64) мало в чем уступают процессорам Pentium 4, а в некоторых режимах работы даже превосходят последние по быстродействию. Но, как и прежде, МП AMD сильнее греются (их штатная температура - 55-80 °С, в то время, как у МП Pentium 30-60 °С), поэтому для них необходим мощный вентилятор и надежная система защиты от катастрофического перегрева. Все МП Pentium такой системой снабжены: у них имеется датчик, который при превышении температуры 120-130 °С мгновенно выключает МП, спасая его от «сгорания». У МП Pentium есть еще более совершенная система - Thermal Monitor, принудительно замедляющая работу микропроцессора при превышении допустимой температуры



Рекомендуем почитать

Наверх