Типы алгоритмов шифрования. Назначение и структура алгоритмов шифрования

Возможности 13.08.2019
Возможности
  1. Шифрование происходит с обеих сторон. Ведь если шифровать будет только одна сторона (например только сервер), значит трафик от другой стороны (от клиента) будет не зашифрован. Его можно будет подслушать или даже изменить.
  2. Формально никто не передает никому ключ. В протоколе TLS клиент и сервер должны сгенерировать общий секрет (shared secret), набор из 48 байт. Потом клиент и сервер на основании общего секрета вычисляют ключи: ключ шифрования клиента и ключ шифрования сервера. Процедура вычисления ключей из общего секрета стандартная, и задана в описании протокола TLS. Сервер и клиент знают 2 ключа шифрования, одним шифруют, вторым дешифруют. А теперь самое интересное - как клиент и сервер вычисляют общий секрет. Это зависит от выбранного набора шифров:

    • TLS_RSA_WITH_: В данном случае клиент сам создает общий секрет генерируя 48 случайных байт. Затем он шифрует их при помощи публичного RSA ключа, который находится в сертификате сервера. Сервер получает зашифрованные данные, и расшифровывает их при помощи приватного RSA ключа. Данная схема используется редко.
    • TLS_DHE_RSA_/TLS_ECDHE_RSA_/TLS_ECDHE_ECDSA_: Здесь используется криптографическая схема Диффи-Хеллмана (DHE) или ее версия на эллиптических кривих (ECDHE). Суть схемы такая: сервер и клиент генерируют случайные большие числа (приватные ключи), вычисляют на их основе другие числа (публичные ключи), и пересылают друг другу. Имея свой приватный ключ и публичный ключ другой стороны, они вычисляют общий секрет. Третья сторона, которая прослушивает канал, видит только 2 публичных ключа, и она не может вычислить общий секрет. После этого все данные, которыми обменивались клиент и сервер для получение этого ключа подписываются сертификатом сервера (RSA или ECDSA подписи). Если клиент доверяет сертификату сервера, он проверяет эту подпись, и если она правильная, начинается уже обмен данными. Это наиболее часто используемая схема.
    • Есть еще несколько схем, но они используются очень редко или не используются вообще.

    Про перехват. Как я выше описал, перехватывать сообщения здесь бесполезно, так как в первом случае его может расшифровать только сервер, а во втором используется хитрая криптографическая схема.

    Алгоритмы шифрования знает и сервер, и клиент. Ведь если клиент не знает, какой алгоритм шифрования, как он будет шифровать данные для отправки? В современной криптографии никто не использует закрытые алгоритмы. Открытые алгоритмы постоянно изучаются лучшими криптографами мира, ищутся уязвимости, и предлагаются решения для их обхода.

    В TLS мы условно можем сказать, что алгоритмы меняются, так как каждый раз генерируются другие ключи шифрования. А потом, если вы хотите использовать закрытый алгоритм, например для просмотра веб-страницы, каким образом этот алгоритм может быть закрытый, если ваш компьютер/устройство производит шифрование/дешифрование?

Я упустил/упростил некоторые детали, что бы описать только основные идеи.

Мало кто знает как именно работает асимметричное шифрование. К примеру есть люди которые не считают протокол https какой-либо адекватной защитой передаваемых данных. И как правило на попытку убедить в обратном, они отвечают что-то в духе «если мы передаем зашифрованные данные, то мы должны сказать как их расшифровывать, а эту информацию можно перехватить и, следовательно, расшифровать данные». А на аргументы, что это не так и в основу положено асимметричное шифрование, поступает ответ «Ну и что?».

Ладно, я понимаю, знать все тонкости реализации асимметричного шифрования нужно далеко не всем. Но общий принцип работы, я считаю, должен знать каждый, кто как-либо связан с компьютерами.

Хочу вынести суть данного поста в эту аннотацию: Запомните, асимметричное шифрование безопасно , естественно при выполнении всех условий. И чтобы доказать это я попробую описать алгоритм понятным языком, чтобы каждый смог понять, что он безопасен. Встречайте Алису, Боба и Еву и передачу их секретного сообщения под катом.

Кстати почему Алиса и Боб? Об этом есть кратенькая статья на википедии: Алиса, Боб и Ева . Чтобы было понятнее, Алиса и Боб хотят обменяться сообщениями, а Ева пытается эти сообщения перехватить и прочесть.

Немного истории

Криптография прошлых веков имела одну огромную проблему — проблема передачи ключей. В те времена существовали только так называемые «симметричные» шифры — шифры при котором данные шифруются и расшифровываются одним и тем же ключом.

К примеру, Алиса зашифровала некоторое сообщение и хочет отправить его Бобу. Естественно, чтобы Боб его прочитал, ему нужен ключ которым было зашифровано данное сообщение. И тут возникает проблема, как передать ключ чтобы его никто не смог перехватить. Пытливые умы предложат — пусть передают при личной встрече, а потом общаются сколько захотят. Да, не спорю, выход. А теперь представьте на секунду, что ваша интернет почта, перед тем как вы авторизируетесь в ней, потребует вашей поездки до физического местоположения сервера с почтой. Удобно? Пожалуй не очень.

Конечно ключ можно передавать по другому каналу связи. Но криптография рассматривает все незащищенные каналы связи как небезопасные. То есть передача ключа Бобу по телефону, например, считается небезопасной так, как ничто не мешает Еве прослушивать и телефон в том числе.

До 70-ых годов, эта проблема настолько стала привычной, что считался аксиомой тот факт, что для передачи сообщения нужно передавать и ключ которым сообщение зашифровано (причем некоторых люди до сих пор считают именно так). Но в 76 году Диффи и Хеллман предложили свой «метод экспоненциального обмена ключей». С этих годов и началось развитие асимметричных криптосистем.

Немножко реальной жизни

Прежде чем изучать какой либо алгоритм, нужно представить как он работает. И самый простой способ — это сравнить его с работой чего-то в реальности.

Представим что Алиса и Боб живут в стране, в которой вся почтовая система абсолютно аморальна и почтовые служащие читают всю незащищенную корреспонденцию. Алиса, девочка не глупая, прежде чем отправить сообщение Бобу, взяла железный ящик и, положив внутрь письмо и закрыв его на свой замок, отправляет этот ящик Бобу.

Естественно на почте прочитать это письмо не могут, но его не может прочитать и сам Боб, так как у него нет ключа которым закрыт замок. Алиса, конечно, может взять еще один железный ящик, положить в него ключ от предыдущего, и отправить его Бобу, но его Боб тоже не сможет открыть…

Единственный путь это все же сделать дубликат ключа и дать его Бобу при личной встрече…

И вот начинает казаться что обмен ключами является неизбежной частью шифрования — или все-таки нет?

Представим другую картину. Распишу пошагово:

  1. Алиса кладет свое письмо в железный ящик и, заперев его на замок, отправляет Бобу.
  2. Боб при получении ящика, (внимание!) берет свой замок и, дополнительно заперев им ящик, отправляет обратно.
  3. Алисе ящик приходит уже с двумя замками (напомню с первым замком Алисы от которого у нее есть ключ, и со вторым — Боба, от которого ключ есть есть только у Боба).
  4. Алиса снимает свой замок, и отправляет ящик обратно Бобу
  5. Бобу приходит ящик с уже одним его замком от которого у него есть ключ
  6. Боб отпирает оставшийся его замок своим ключом, и читает сообщение

Значение этой кратенькой истории огромно. Она показывает что два человека могут передавать секретное сообщение без обмена ключами. Вдумайтесь! Эта история фактически рушит все аксиомы на которых была построена тогдашняя криптография. Да мы получаем некоторое усложнение процесса (ящик пришлось пересылать три раза), но результат…

Вернемся к криптографии

Казалось бы решение найдено. Отправитель и принимающий шифруют свое сообщение, и затем собеседники поочередно снимают свой шифр.


Но суть в том что не существуют таких шифров, которые бы позволили снять шифр из под другого шифра. То есть этап где Алиса снимает свой шифр невозможен:


К сожалению, все имеющиеся алгоритмы до сих пор требуют снятия шифров в той очереди в которой они были применены. Боюсь назвать это аксиомой (так как история уже знает случаи когда такие аксиомы разбивались в пух и прах), но это так до сих пор.

Вернемся к математике

Идея с ящиком, о которой я описывал выше, вдохновили Диффи и Хеллмана искать способ передачи сообщения. В конце концов они пришли к использованию односторонних функций.

Что такое односторонняя функция? К примеру есть функция удвоение, т.е удвоить(4)=8 , она двухсторонняя, т.к. из результата 8 легко получить исходное значение 4. Односторонняя функция — та функция после применения которой практически невозможно получить исходное значение. К примеру смешивание желтой и синей краски — пример односторонней функции. Смешать их легко , а вот получить обратно исходные компоненты — невозможно . Одна из таких функций в математике — вычисление по модулю .

За основу алгоритма Хеллман предложил функцию Y x (mod P) . Обратное преобразование для такой функции очень сложно, и можно сказать что, по сути, заключается в полном переборе исходных значений.

К примеру вам сказали, что 5 x (mod 7) = 2 , попробуйте найдите x , а? Нашли? А теперь представьте что за Y и P взяты числа порядка 10 300 .

Кстати сказать, для повышения стойкости, число P должно являться простым числом, а Y — являться первообразным корнем по модулю P . Но так как мы все же пытаемся понять теорию, то смысла заморачиваться на этом я не вижу.

Алгоритм Диффи-Хеллмана

И вот однажды Хеллмана осенило и он смог разработать рабочий алгоритм обмена ключами. Для работы по этому алгоритму нужно выполнять шаги на обоих сторонах, поэтому я зарисую это в таблице:

Алиса Боб
Этап 1 Оба участника договариваются о значениях Y и P для общей односторонней функции. Эта информация не является секретной. Допустим были выбраны значения 7 и 11 . Общая функция будет выглядеть следующим образом: 7 x (mod 11)
Этап 2 Алиса выбирает случайное число, например 3 A Боб выбирает случайное число, например 6 , хранит его в секрете, обозначим его как число B
Этап 3 Алиса подставляет число A 7 3 (mod 11) = 343 (mod 11) = 2 a Боб подставляет число B в общую функцию и вычисляет результат 7 6 (mod 11) = 117649 (mod 11) = 4 , обозначает результат этого вычисления как число b
Этап 4 Алиса передает число a Бобу Боб передает число b Алисе
Этап 5 Алиса получает b от Боба, и вычисляет значение b A (mod 11) = 4 3 (mod 11) = 64 (mod 11) = 9 Боб получает a от Алисы, и вычисляет значение a B (mod 11) = 2 6 (mod 11) = 64 (mod 11) = 9
Этап 6 Оба участника в итоге получили число 9 . Это и будет являться ключом.

Магия? Не спорю, с первого взгляда непонятно. Но после вчитывания и вдумывания в эту таблицу становится понятно как это работает. Впрочем если понятно не стало, то пролистайте до конца главы, там я выложил поясняющее видео.

Причем обратите внимание, что для получения ключа в конечной формуле, любому человеку нужно иметь три значения:

  • Значения a и P , и секретное число Боба B
  • или значения b и P , и секретное число Алисы A

Но секретные числа по каналу не передаются! Еве не получится восстановить ключ, не имея чьего-нибудь секретного числа. Почему — я писал выше, данная функция является односторонней. Попробуйте решите уравнение 4 x (mod 11) = 2 y (mod 11) найдя x и y .

Чтобы было понятнее, как работает схема Хеллмана, представьте шифр, в котором в качестве ключа каким-то образом используется цвет:

Допустим вначале, что у всех, включая Алису, Боба и Еву, имеется трехлитровая банка, в которую налит один литр желтой краски. Если Алиса и Боб хотят договориться о секретном ключе, они добавляют в свои банки по одному литру своей собственной секретной краски.

Алиса может добавить краску фиолетового оттенка, а Боб — малинового. После этого каждый из них посылает свою банку с перемешанным содержимым другому.

И наконец, Алиса берет смесь Боба и подливает в нее один литр своей секретной краски, а Боб берет смесь Алисы и добавляет в нее один литр своей секретной краски. Краска в обеих банках теперь станет одного цвета, поскольку в каждой находится по одному литру желтой, фиолетовой и малиновой краски.

Именно этот цвет, полученный при добавлении дважды в банки красок, и будет использоваться как ключ. Алиса понятия не имеет, какую краску добавил Боб, а Боб также не представляет, какую краску налила Алиса, но оба они достигли одного и того же результата.

Между тем Ева в ярости. Даже если она и сумеет перехватить банки с промежуточным продуктом, ей не удастся определить конечный цвет, который и будет согласованным ключом. Ева может видеть цвет краски, полученной при перемешивании желтой краски и секретной краски Алисы в банке, отправленной Бобу, и она может видеть цвет краски, полученной при перемешивании желтой краски и секретной краски Боба в банке, отправленной Алисе, но чтобы найти ключ, ей, на самом деле, необходимо знать цвета исходных секретных красок Алисы и Боба. Однако, рассматривая банки с перемешанными красками, Ева не сможет определить секретные краски Алисы и Боба. Даже если она возьмет образец одной из смешанных красок, ей не удастся разделить ее на исходные краски, чтобы найти секретную, поскольку смешивание краски является односторонней функцией.

Все равно непонятно? Тогда смотрим видео:

Что же, надеюсь, вы поняли, что существует вполне реальный способ безопасного обмена ключами. Но прошу заметить, назвать этот алгоритм асимметричным шифром пока нельзя, так как по сути это всего лишь алгоритм обмена ключами.

Асимметричное шифрование

асимметричный алгоритм предполагает под собой наличие двух ключей — публичного и приватного. То есть сообщение шифруется публичным ключом, а расшифровывается приватным и ни как иначе. Собственно именно эту концепцию сформулировал Диффи.

В общем суть данного алгоритма заключается в том, что принимающая сторона перед приемкой сообщения генерирует пару ключей на основе алгоритма модульной арифметики (принцип такой же как и в алгоритме Диффи-Хеллмана), собственно приватный и публичный ключ. Отправитель перед отправкой получает публичный ключ и шифрует сообщение данным ключом, после чего данное сообщение можно расшифровать только приватным ключом, который хранится в секрете у принимающей стороны.


Если вернуться к аналогии с замками, то шифрование с открытым ключом можно представить себе следующим образом:

Любой способен запереть замок, просто защелкнув его, чтобы он закрылся, но отпереть его может только тот, у кого есть ключ. Запереть замок (зашифровывание) легко, почти все могут это сделать, но открыть его (расшифровывание) имеет возможность только владелец ключа. Понимание того, как защелкнуть замок, чтобы он закрылся, ничего не скажет вам, как его отпереть.

Можно провести и более глубокую аналогию.

Представьте, что Алиса проектирует замок и ключ. Она бдительно охраняет ключ, но при этом изготавливает тысячи дубликатов замков и рассылает их по почтовым отделениям по всему миру. Если Боб хочет послать сообщение, он кладет его в коробку, идет на местный почтамт, просит «замок Алисы» и запирает им коробку. Теперь уже ему не удастся открыть коробку, но когда коробку получит Алиса, она сможет открыть ее своим единственным ключом.

Замок и защелкивание его, чтобы он закрылся, эквивалентны общему ключу для зашифровывания, поскольку все имеют доступ к замкам и все могут воспользоваться замком, чтобы закрыть сообщение в коробке. Ключ от замка эквивалентен секретному ключу для расшифровывания, потому что он имеется только у Алисы, только она сможет открыть замок, и только она сможет получить доступ к находящемуся в коробке сообщению.

Есть несколько алгоритмов реализующих асимметричное шифрование. Самый известный из них — RSA. Расписывать его я не вижу смысла, так как понять как он работает с ходу все равно не получится, да и лучше чем написано на википедии я написать все равно не смогу.

Заключение

Что же, надеюсь что, поняв как работает асимметричное шифрование изнутри, вы станете больше ему доверять и соответственно чаще пользоваться SSL =)

Использовались материалы из книги Сингх Саймон — Книга шифров. Кстати, самая лучшая книга для тех кто хочет хотя бы чуточку разбираться в криптографии. Всем советую прочитать.

  1. tv

    Подбор такого ключа у вас займет времени ну оооочень много. Чуть больше чем существует вселенная. Даже на очень мощных компьютерах.

  2. Игорь

    Для чего нужна эта ахинея с открытыми ключами? Симметричные надёжней.
    Добрый день!
    Хороший сайт, понятно изложен материал, огромное спасибо автору. Попал сюда случайно в сентябре, когда искал информацию по практическому шифрованию.
    Пишу потому, что хочу спросить: Есть желающие узнать как найти числа для симметричного шифрования? Могу научить на пальцах как быстро проверить число Р на простоту (без поиска числа g) — но это вряд ли будет интересно. Самое интересное:
    Найти число Р любой длины и число g к нему. Никакие 2 в степени n плюс один (или минус один) при этом не использую. Естественно, это бесплатно. Есть даже сайт, где я выложил свою работу.

  • Уася Петровичъ

    Понимаю что прошло много времени, но все же отвечу для таких же как я новых читателей.

    Это не сработает, т.к. после действий 2 и 3 мы видим разницу, на которую изменилось число каждого из блоков, следовательно нам становится очевидно секретное число Боба и нам остается только перехватить сообщение после 4-го действия (т.е. уже без шифра Алисы) и воспользоваться уже известным нам числом Боба.

  • Евгений

    Огромное спасибо за статью!
    После прочтения почти все легло на свои полочки, обрело структуру, которую легко наращивать.
    Имея такую структуру легко генерировать правильные вопросы (полочка для атак MiTM, отдельное спасибо Михаилу:)).

    С точки зрения педагогики Вы сделали все идеально. Думаю Вы правы, что не добавили в эту статью атаки MiTM иначе был бы перегруз информационный.

    Видео прелестное, особенно учитывая его возраст.

    PS: использование метафор для объяснения «сложных» систем честно говоря трудно переоценить. Еще раз спасибо!

  • dbzix

    Из этой статьи я не уловил момент перехода от алгоритма Диффи-Хеллмана, где два абонента для получения секретного ключа обмениваются публичными данными и промежуточными результатами вычислений (в примере получилось целых 6 этапов) к тому этапу, где для шифрования используется некий публичный ключ, который затем дешифруется при помощи приватного (я здесь насчитываю всего 2 этапа передачи данных — отправка публичного ключа и отправка зашифрованного этим ключом сообщения).
    Т.е. я понимаю, что где-то между двумя этими объяснениями наверняка кроется много математики, и в итоге объяснение сводится к «это работает именно так, просто поверь». Но было бы наверное проще понять этот внезапный переход, если бы аналогию с красками распространили на объяснение сути шифрования публичным ключом с последующим дешифрованием приватным. А пока получается какое-то «Б работает потому-что А», в то время как между А и Б чёткой связи не прослеживается. По крайней мере для меня.
    Уважаемый автор, не будете ли вы так любезны пояснить мне сей мистический прыжок от А к Б? :) Спасибо!

  • Евгений

    Добрый день,

    Дано: есть формула Y^x (mod P).
    пример в статье основывается на формуле 7^x (mod 11)

    я взял для своего примера 4^x (mod 7)
    и у меня не получилось прийти к общему ключу.
    Вопрос: почему алгоритм в примере работает для 7^x (mod 11) и не работает для 4^x (mod 7)?

  • Jessi-jane
  • Андрей

    Спасибо, статья отличная!
    Только вот чуть не разобрался в алгоритме, в том, как высчитывать через модуль.
    Не подскажите, как высчитывать число В, если число А меньше модуля?
    Ну например:
    3(mod 13) = ?

    Я знаю, что если, например, нужно высчитать 625(mod 13), нужно 625/13, а потом наибольший возможный целый делитель (48) умножить на модуль (что здесь будет равняться 624), и наконец 625-624 = 1
    Числа 625 и 1 сравнимы по модулю 13, так как 624 делится на 13.
    Вот это я понимаю. А вот как быть если модуль больше числа а?

  • Yellow Horror

    1. Атака «человек посередине», это серьёзная проблема. Насколько я могу судить, в рамках одной только криптографии она в принципе не решается: если принять, что Ева способна перехватить и незаметно подменить ВСЕ данные, поступающие к Алисе или исходящие от неё по ЛЮБЫМ каналам связи, никакое шифрование не поможет. Как минимум один сертификат должен быть получен Алисой из абсолютно надёжного источника. Но в случае, если злоумышленник может только прослушивать канал связи, а не менять данные в нём, асимметричное шифрование вполне надёжно.
    2. Что касается возможности снимать один «слой шифра» из-под другого, этим свойством обладает банальная функция XOR, широко используемая в криптографии с древнейших времён по сей день. Не думаю, что её можно запатентовать:(

    1. Дмитрий Амиров Автор

      Да вы правы, атака mitm на сегодняшний день не решается никак если быть абсолютным параноиком. Если же им не быть то возня с сертификатами и подписями обеспечивают «необходимую и достаточную» защиту.

      Что касается функиции XOR — ее сложно назвать шифром, т.к. им она по своей сути не является.

      1. Yellow Horror

        Да ладно? Погуглите про «Шифр Вернама». Это система передачи сообщений с абсолютной криптоустойчивостью. И основана она именно на XOR. Если оставить в стороне некоторые организационные сложности (создание истинно случайных ключей с равномерным распределением, сохранение тайны шифроблокнота в недружелюбном окружении и надёжное уничтожение использованных ключей), ничего проще и надёжнее человечество ещё не придумало.

      2. Yellow Horror

        Хотя, по здравом размышлении, я понял, что метод с двойным обратимым шифрованием не работает, если злоумышленник знает алгоритм шифрования. Рассмотрим на примере идеи Михаила:

        1. Разбиваем шифруемую информацию на блоки. Каждый блок представлен числом. Размер блока (кол-во бит) определяет кол-во возможных значений блока и (соответственно?) стойкость шифрования.
        2. Алиса для шифрования сообщения выбирает секретное число (которое никому не отправляет), которое прибавляет к каждому из чисел в блоках и отправляет зашифрованное таким образом сообщение Бобу.

        Пока всё в порядке: Ева не может прочесть сообщение Алисы, т.к. не знает число-ключ. Если блоки достаточно велики, восстановить сообщение Алисы сложно, а если блок длиннее сообщения и ключ не имеет уязвимостей — невозможно. Но Ева может скопировать шифрограмму Алисы и делает это.

        3. Боб принимает зашифрованное сообщение, выбирает своё секретное число (которое также никому не отправляет), прибавляет это число к каждому из чисел в блоках зашифрованного Алисой сообщения и отправляет это двукратно зашифрованное сообщение Алисе.

        А вот тут уже начинаются проблемы: Ева всё ещё не может прочесть сообщение Алисы, но, располагая копией полученной Бобом шифрограммы и отправленной им двойной шифровкой, без проблем восстанавливает ключ Боба.

        4. Алиса вычитает своё секретное число из каждого числа в блоках этого двукратно зашифрованного сообщения и отправляет получившееся сообщение Бобу.

        Алиса сняла свой «слой» шифра и теперь пересылает Бобу своё письмо, зашифрованное только ключом Боба. Который у Евы уже есть! Ева расшифровывает письмо и читает его, а также на всякий случай может восстановить ключ Алисы, пользуясь расшифрованным текстом письма и первой перехваченной ею шифрограммой.

  • Dmitriy

    Здравствуйте. Хорошая статья, но я тоже не понял некоторые моменты, которые описали выше.
    Именно переход от алгоритма получения секретного ключа обоими собеседниками (Алиса и Боб) (без их выкладывания в публичный доступ) к асимметричному шифрованию.
    У вас написано, что сообщение кодируется на стороне Алисы публичным ключем, полученным от Боба. Но если мы зашифруем публичным ключём, то Ева сможет легко его получить и сама расшифровать, верно?
    Ещё для меня осталось непонятным, как можно зашифровать публичным ключём и расшифровать только секретным на стороне Боба. То есть зашифровали словом «Дом» , а расшифровали словом «Мир» . Для меня это какая-то несуразица.
    Исходя из этих очевидных пробелов (или у вас, или у меня) , я сделал вывод, что тут схема должна быть посложнее, чем на картинке. Скорее всего под стрелочкой от публичного ключа Боба к Алисе имеется в виду другое, а именно вся последовательность действий по получению «Y» и «P», получению промежуточных результатов и тд. Иными словами, я думаю, что при шифровке исходного сообщения якобы публичным ключем, на самом деле шифруется не публичным, а уже секретным, который вычисляется на каждой стороне по отдельности.

    Ещё у меня возник вопрос о расшифровки дважды зашифрованного сообщения. Если взять,допустим, шифр Цезаря, где каждая буква шифруется другой буквой, стоящей, скажем, на 3 позиции дальше. Если Алиса зашифрует букву А в сообщении буквой Б, а потом Боб зашифрует эту букву Б буквой Г, то получить букву А из Г будет просто, причём в любом порядке. Правда это скорее всего будет работать только в тех случаях, если оба знают тип шифрации собеседника и при достаточно простых типах шифрации (моноалфавитные/полиалфавитные). Я тоже новичок в криптографии, так что это моё имхо;)

    1. Dmitriy

      Забыл ещё спросить.
      В чём разница между симметричным и асимметричным способами?

      1. Dmitriy

        Я почитал, более менее как-то всё сгрупировал в уме.
        Отвечу на вопросы мною написаные, возможно, помогая тем самым другим читателям.
        1. По поводу

        У вас написано, что сообщение кодируется на стороне Алисы публичным ключем, полученным от Боба. Но если мы зашифруем публичным ключём, то Ева сможет легко его получить и сама расшифровать, верно?
        Ещё для меня осталось непонятным, как можно зашифровать публичным ключём и расшифровать только секретным на стороне Боба. То есть зашифровали словом «Дом» , а расшифровали словом «Мир» . Для меня это какая-то несуразица.

        В этой статье упомянут алгоритм RSA. Алгоритм симметричного шифрования. В нём действительно используется следующий алгоритм:
        1) Опираясь на некую одностороннюю функцию шифрования (функция, которую легко посчитать в одну сторону, но очень трудно в другую. А) мы создаём на получателе пару {открытый ключ;закрытый ключ}. Эта пара уникальна, то есть каждому открытому ключу соответствует уникальный закрытый ключ под эту одностороннюю функцию.

        3)Отправитель шифрует сообщение
        4)Передаёт получателю

        Как видите, отправитель не знает закрытого ключа и он не в состоянии сам расшифровать своё же зашифрованное сообщение. Потому он и называется асимметричным, что у одного есть все ключи, а у другого только лишь часть, необходимая для шифрации.

        В чём разница между симметричным и асимметричным способами?
        Если я воспользовался алгоритмом Диффи и Хеллмана для передачи секретного ключа, а потом смог безопасно передать зашифрованное сообщение, то будет ли этот способ симметричным?

        Алгоритм Дэффи-Хелмана, который служит для обмена ключами и дальнейшим симметричным шифрованием . То есть его суть в том, что сначала оба получают полный ключ для шифрации и дешифрации и потом уже начинают самое обычное симметричное шифрование.

        Асимметричный способ — у одного узла есть вся информация для шифр./дешифр., а у другого, как правило, только для шифрации

        Симметричный — оба узла знают всю информацию для шифр./дешифр.

        Надеюсь, что кому-то помог;3

        1. Dmitriy

          В этой статье упомянут алгоритм RSA. Алгоритм Асимметричного шифрования Опечатался.

        2. Дмитрий Амиров Автор

          Гм… только сейчас заметил ваши комментарии. Приношу свои извинения.

          Все вроде верно. Есть одно но по вашему последнему абзацу, а конкретно термины:

          • Алгоритм Дэффи-Хелмана — является алгоритмом позволяющим получить один общий секретный ключ и не более того
          • Ассиметричное/симметричное шифрование — в целом у Вас все верно
          • RSA — алгоритм являющий собой совокупность этих вещей. На пальцах: с помощью ассимтричного шифрования по протоколу Деффи-Хелмена устанавливается секретный ключ с помощью которого уже методом симметричного шифрования шифруются сообщения между собеседниками.
        3. Дмитрий

          Я все равно не понял утверждение:
          2)Открытый ключ передаётся отправителю.
          3) Отправитель шифрует сообщение
          4)Передаёт получателю
          5)Получатель дешифрует с помощью закрытого ключа. Это сообщение нельзя дешифровать с помощью открытого ключа.

          Получается то, что Вы и мели ввиду с самого начала. Шифруем словом Дом, а дешифруем словом Мир. Означет ли это, что присутствует еще один алгоритм связующий Мир и Дом между собой?

  • Роберт

    Спасибо огромное!!!

  • Роман

    Спасибо. Решил наконец разобраться, как это работает и понял из этой статьи. Только, я считаю, если сообщники знают друг друга и есть возможность обменяться безопасно открытыми ключами, то так и стоит сделать. Чтобы исключить пагубное воздействие возможного появления человека посередине при обмене ключами, который будет прикидываться А как Б и Б как А подменяя ключи на свои и просматривая в итоге всю информацию.

    А в видео, думаю, зря они используют вот это вот 3^(24*54), т.к. вообще не очевидно откуда оно взялось, или пояснили бы, что это условно.

  • RinswinD

    Спасибо за статью. Всё очень доступно разъясняется.

  • grigory

    Ну раздражает ведь всех эта неграмотность правописания — «одностороняя» , «примененны», «длинна», как будто уж в 5-м классе. А так, неплохо для понимания основ.

  • grigory

    Бывает, что вопрос стоит просто. Вирусы-шифровальщики используют закрытый ключ. Есть оригинальный файл, есть файл зашифрованный. Задача: найти алгоритм, сказать так, который ищет алгоритм преобразования первого файла во второй…

  • Allexys

    Благодарю за понятную и нескучную статью! Наконец-то я врубился в основы:).

  • Ярослав

    К сожалению, все имеющиеся алгоритмы до сих пор требуют снятия шифров в той очереди в которой они были применены.

    Это не совсем так. приведу пример:
    — предположим что каждой букве соответствует цифровой код А = 1, Б = 2, В = 3 и т.д.;
    — предположим что Алиса отправляет Бобу письмо, состоящее из единственной буквы А (для упрощения примера);

    Алиса: накладывает свой шифр А + 2 = В

    Боб: накладывает свой шифр В + 3 = Е
    Боб: отправляет письмо Алисе
    Алиса: снимает свой шифр Е — 2 = Г
    Алиса: отправляет письмо Бобу
    Боб: снимает свой шифр Г — 3 = А

    Здесь число 2 — секретный ключ Алисы, 3 — секретный ключ Боба. Причем он может быть и не односимвольным. В принципе его длина ничем не ограничена.

  • Дмитрий

    Я долго обходил стороной теоретические основы ассиметричного шифрования. Знал поверхностно — есть открытый ключ, которым шифруются данные, и есть закрытый, которым эти данные дешифруются. Но меня всегда напрягала мысль о реализации подобного шифрования.
    Ваша статья во многом помогла, за это огромное вам спасибо!
    Только к ее концу я опять увидел эту несуразицу — «шифруется открытым ключом». Ведь, строго говоря, шифруется сообщение не открытым ключом, а ключом, полученным на основе закрытого ключа отправителя и открытого ключа получателя (который, в свою очередь, был сгенерирован на основе закрытого ключа получателя). Ведь в таблице про Алису и Боба — они и только они смогли получить один и тот же ключ «9» — он и используется для шифрации и дешифрации сообщения. А вот получить этот ключ можно только на основе пары ключей — секретного (Алисы/Боба) и публичного(Боба/Алисы).
    Образно — да, сообщение шифруется всегда секретным ключом отправителя (он, грубо говоря, постоянен) и публичным ключом получателя (он зависит от конкретного получателя), поэтому в описании шифрация «секретным» ключом опускается — и это опущение ломает всю стройность рассуждений.

  • кларксон

    прочел статью и не очень всеравно понял, хоть и лучше чем на вики. Но одно мне не понимается только. если ктот может ответить правильно — помогите.

    если я всем посылаю вопрос «сколько будет 2+2?», рассказываю как зашифровать ответ мне (рассказываю всем публичный ключ), и все мне направят ответ на вопрос, как я узнаю того, от кого именно я жду ответа, тобиш того с кем я хотел установить связь на самом деле?

    1. Дмитрий Амиров Автор

      Тут вы немного неправильно ставите вопрос.

      Если вам надо с кем то установить связь, то нужно идти от обратного. Вы подключаетесь к собеседнику, и уже он вам предоставляет свой публичный ключ, а не вы ему.

      UPD: написал статью про , я думаю это будет правильный ответ на ваш вопрос.

      1. кларксон

        с моей тупостью придется повоевать. тема расжевана в коментариях и в вашей статье, кажется все обьяснили.

        все же. зачем мне его публик ключ? скажите если я не правильно понимаю.
        я инициатор (мне нужны ответы, в примере я — принимающая сторона), значит генерирую пару. это ему, отвечающему (отправитель в вашем примере) нужен мой публик

        Отправитель перед отправкой получает публичный ключ и шифрует сообщение данным ключем, после чего данное сообщение можно расшифровать только приватным ключем, который хранится в секрете у принимающей стороны.

  • Beshot

    Несколько раз перечитал эту статью и другие по теме, непонятен алгоритм использования ЭЦП в эл. документах. Если так как здесь: https://ru.wikipedia.org/wiki/Электронная_подпись , то возникают расхождения. Так все таки шифруем с помощью закрытого ключа или открытого?

    1. Дмитрий Амиров Автор

      Если мы что то подписываем, то подпись формируем на основе нашего закрытого ключа. А наш публичный ключ должен быть у получателя, с помощью него он сможет эту подпись расшифровать.

      Если подпись «расшифровалась», то значит публичный ключ соответствует закрытому, а т.к. закрытый ключ априори имеется только у отправителя, то значит подписал документ именно отправитель.

      1. Beshot

        Дмитрий, мне очень помогла ваша статья, у вас хороший стиль. Но есть непонятный момент, вы утверждаете, что асимметричный алгоритм предполагает под собой наличие двух ключей – публичного и приватного. То есть сообщение шифруется публичным ключем, а расшифровывается приватным и ни как иначе.

        Может быть дело в исходных задачи, например получателю нужно аутентифицировать посланника.
        Тогда не представляю как эта схема может помочь?

        1. Дмитрий Амиров Автор

          То есть сообщение шифруется публичным ключем, а расшифровывается приватным и ни как иначе.

          Не совсем верно. Сообщение шифруется одним ключом, а расшифровывается другим. Т.е. вполне можно зашифровать приватным, а расшифровать публичным.

          Давайте рассмотрим на примере. Вы хотите мне прислать сообщение, я хочу убедится что прислали его мне именно вы. Поэтапно:
          1) Вы шифруете сообщение закрытым ключом
          2) Присылаете его мне
          3) Я обращаюсь к вам, и получаю от вас Ваш публичный ключ
          4) Полученное сообщение расшифровываю Вашим публичным ключом
          5) Если сообщение расшифровалось — значит послали его именно вы

          Никто другой не сможет послать это сообщение, представившись вами, потому что приватный ключ есть только у вас.

          1. Beshot

            Ок, но как быть если требуется скрыть от любопытных глаз сообщение?

  • Аня

    Добрый день! Статья понравилась, но остались вопросы (даже нашлась пара похожих в комментариях, но без ответов).
    Если во второй части статьи всеже перейти к аналогии с Алисой и Бобом, в частности к числам А, В, а, в, Р и к полученному в примере числу 9, что из них будет закрытым ключом, а что открытым? Заранее спасибо за ответ!

    1. Аня

      Не понятно, отправился мой комментарий или нет:(

    2. Дмитрий Амиров Автор

      Правильнее будет сказать что в процессе обмена данными Алиса и Боб получают общий ключ 9 , который в дальнейшем могут использовать для шифрования своих сообщений. По сути в статье я описывал не само ассиметричное шифрование как таковое, а протокол обмена ключами, который дал толчок к развитию ассиметричного шифрования.
      Алгоритм генерации пары приватный/публичный ключ на самом деле немного сложнее, хотя и похож на выше изложенный алгоритм, но все таки наверное стоит отдельной статьи. В комментарии я не распишу тут сходу, ибо могу много чего напутать.

  • Григорий
  • В наш компьютерный век человечество все больше отказывается от хранения информации в рукописном или печатном виде, предпочитая для документы. И если раньше крали просто бумаги или пергаменты, то сейчас взламывают именно электронную информацию. Сами же алгоритмы шифрования данных были известны еще с незапамятных времен. Многие цивилизации предпочитали зашифровывать свои уникальные знания, чтобы они могли достаться только человеку сведущему. Но давайте посмотрим, как все это отображается на нашем мире.

    Что собой представляет система шифрования данных?

    Для начала следует определиться с тем, что собой представляют криптографические системы вообще. Грубо говоря, это некий специальный алгоритм записи информации, который был бы понятен только определенному кругу людей.

    В этом смысле постороннему человеку все, что он видит, должно (а в принципе, так и есть) казаться бессмысленным набором символов. Прочесть такую последовательность сможет только тот, кто знает правила их расположения. В качестве самого простого примера можно определить алгоритм шифрования с написанием слов, скажем, задом наперед. Конечно, это самое примитивное, что можно придумать. Подразумевается, что если знать правила записи, восстановить исходный текст труда не составит.

    Зачем это нужно?

    Для чего все это придумывалось, наверное, объяснять не стоит. Посмотрите, ведь какие объемы знаний, оставшиеся от древних цивилизаций, сегодня находятся в зашифрованном виде. То ли древние не хотели, чтобы мы это узнали, то ли все это было сделано, чтобы человек смог ними воспользоваться только тогда, когда достигнет нужного уровня развития - пока что об этом можно только гадать.

    Впрочем, если говорить о сегодняшнем мире, защита информации становится одной из самых больших проблем. Посудите сами, ведь сколько имеется документов в тех же архивах, о которых правительства некоторых стран не хотели бы распространяться, сколько секретных разработок, сколько новых технологий. А ведь все это, по большому счету, и является первоочередной целью так называемых хакеров в классическом понимании этого термина.

    На ум приходит только одна фраза, ставшая классикой принципов деятельности Натана Ротшильда: «Кто владеет информацией, тот владеет миром». И именно поэтому информацию приходится защищать от посторонних глаз, дабы ей не воспользовался кто-то еще в своих корыстных целях.

    Криптография: точка отсчета

    Теперь, прежде чем рассматривать саму структуру, которую имеет любой алгоритм шифрования, немного окунемся в историю, в те далекие времена, когда эта наука только зарождалась.

    Считается, что искусство сокрытия данных активно начало развиваться несколько тысячелетий назад до нашей эры. Первенство приписывают древним шумерам, царю Соломону и египетским жрецам. Только много позже появились те же рунические знаки и символы, им подобные. Но вот что интересно: иногда алгоритм шифрования текстов (а в то время шифровались именно они) был таков, что в той же один символ мог означать не только одну букву, но и целое слово, понятие или даже предложение. Из-за этого расшифровка таких текстов даже при наличии современных криптографических систем, позволяющих восстановить исходный вид любого текста, становится абсолютно невозможной. Если говорить современным языком, это достаточно продвинутые, как принято сейчас выражаться, симметричные алгоритмы шифрования. На них остановимся отдельно.

    Современный мир: виды алгоритмов шифрования

    Что касается защиты конфиденциальных данных в современно мире, отдельно стоит остановиться еще на тех временах, когда компьютеры были человечеству неизвестны. Не говоря уже о том, сколько бумаги перевели алхимики или те же тамплиеры, пытаясь скрыть истинные тексты об известных им знаниях, стоит вспомнить, что со времени возникновения связи проблема только усугубилась.

    И тут, пожалуй, самым знаменитым устройством можно назвать немецкую шифровальную машину времен Второй мировой под названием «Энигма», что в переводе с английского означает «загадка». Опять же, это пример того, как используются симметричные алгоритмы шифрования, суть которых состоит в том, что шифровщик и дешифровальщик знают ключ (алгоритм), изначально примененный для сокрытия данных.

    Сегодня такие криптосистемы используются повсеместно. Самым ярким примером можно считать, скажем, алгоритм являющийся международным стандартом. С точки зрения компьютерной терминологии, он позволяет использовать ключ длиной 256 бит. Вообще современные алгоритмы шифрования достаточно разнообразны, а разделить их условно можно на два больших класса: симметричные и асимметричные. Они, в зависимости от области назначения, сегодня применяются очень широко. И выбор алгоритма шифрования напрямую зависит от поставленных задач и метода восстановления информации в исходном виде. Но в чем же состоит разница между ними?

    Симметричные и асимметричные алгоритмы шифрования: в чем разница

    Теперь посмотрим, какое же кардинальное различие между такими системами, и на каких принципах строится их применение на практике. Как уже понятно, алгоритмы шифрования бывают связаны с геометрическими понятиями симметрии и асимметрии. Что это значит, сейчас и будет выяснено.

    Симметричный алгоритм шифрования DES, разработанный еще в 1977 году, подразумевает наличие единого ключа, который, предположительно, известен двум заинтересованным сторонам. Зная такой ключ, нетрудно применить его на практике, чтобы прочитать тот же бессмысленный набор символов, приведя его, так сказать, в читабельный вид.

    А что представляют собой асимметричные алгоритмы шифрования? Здесь применяются два ключа, то есть для кодирования исходной информации использует один, для расшифровки содержимого - другой, причем совершенно необязательно, чтобы они совпадали или одновременно находились у кодирующей и декодирующей стороны. Для каждой из них достаточно одного. Таким образом, в очень высокой степени исключается попадание обоих ключей в третьи руки. Однако, исходя из современной ситуации, для многих злоумышленников кражи такого типа особо проблемой и не являются. Другое дело - поиск именно того ключа (грубо говоря, пароля), который подойдет для расшифровки данных. А тут вариантов может быть столько, что даже самый современный компьютер будет обрабатывать их в течение нескольких десятков лет. Как было заявлено, ни одна из имеющихся в мире компьютерных систем взломать доступ к нему и получить то, что называется «прослушкой», не может и не сможет в течение ближайших десятилетий.

    Наиболее известные и часто применяемые алгоритмы шифрования

    Но вернемся в мир компьютерный. Что на сегодня предлагают основные алгоритмы шифрования, предназначенные для защиты информации на современном этапе развития компьютерной и мобильной техники?

    В большинстве стран стандартом де-факто является криптографическая система AES на основе 128-битного ключа. Однако параллельно с ней иногда используется и алгоритм который хоть и относится к шифрованию с использованием открытого (публичного) ключа, тем не менее является одним из самых надежных. Это, кстати, доказано всеми ведущими специалистами, поскольку сама система определяется не только степенью шифрования данных, но и сохранением целостности информации. Что касается ранних разработок, к коим относится алгоритм шифрования DES, то он безнадежно устарел, а попытки его замены начали проводиться еще в 1997 году. Вот тогда-то на его основе и возник новый расширенный (Advanced) стандарт шифрования AES (сначала с ключом 128 бит, потом - с ключом 256 бит).

    Шифрование RSA

    Теперь остановимся на технологии RSA которая относится к системе асимметричного шифрования. Предположим, один абонент отправляет другому информацию, зашифрованную при помощи этого алгоритма.

    Для шифрования берутся два достаточно больших числа X и Y, после чего вычисляется их произведение Z, называемое модулем. Далее выбирается некое постороннее число A, удовлетворяющее условию: 1< A < (X - 1) * (Y - 1). Оно обязательно должно быть простым, то есть не иметь общих делителей с произведением (X - 1) * (Y - 1), равным Z. Затем происходит вычисление числа B, но только так, что (A * B - 1) делится на (X - 1) * (Y - 1). В данном примере A - открытый показатель, B - секретный показатель, (Z; A) - открытый ключ, (Z; B) - секретный ключ.

    Что происходит при пересылке? Отправитель создает зашифрованный текст, обозначенный как F, с начальным сообщением M, после чего следует A и умножение на модуль Z: F = M**A*(mod Z). Получателю остается вычислить несложный пример: M = F**B*(mod Z). Грубо говоря, все эти действия сводятся исключительно к возведению в степень. По тому же принципу работает и вариант с создание цифровой подписи, но уравнения тут несколько сложнее. Чтобы не забивать пользователю голову алгеброй, такой материал приводиться не будет.

    Что же касается взлома, то алгоритм шифрования RSA ставит перед злоумышленником практически нерешаемую задачу: вычислить ключ B. Это теоретически можно было бы сделать с применением доступных средств факторинга (разложением на сомножители исходных чисел X и Y), однако на сегодняшний день таких средств нет, поэтому сама задача становится не то что трудной - она вообще невыполнима.

    Шифрование DES

    Перед нами еще один, в прошлом достаточно эффективный алгоритм шифрования с максимальной длиной блока 64 бита (символа), из которой значащими являются только 56. Как уже было сказано выше, эта методика уже устарела, хотя достаточно долго продержалась в качестве стандарта криптосистем, применяемых в США даже для оборонной промышленности.

    Суть его симметричного шифрования заключается в том, что для этого применяется некая последовательность из 48 бит. При этом для операций используется 16 циклов из выборки ключей в 48 бит. Но! Все циклы по принципу действия аналогичны, поэтому на данный момент вычислить искомый ключ труда не составляет. К примеру, один из самых мощных компьютеров в США стоимостью более миллиона долларов «ломает» шифрование в течение примерно трех с половиной часов. Для машин рангом ниже на то, чтобы вычислить даже последовательность в максимальном ее проявлении, требуется не более 20 часов.

    Шифрование AES

    Наконец, перед нами самая распространенная и, как считалось до недавнего времени, неуязвимая система - алгоритм шифрования AES. Он сегодня представлен в трех модификациях - AES128, AES192 и AES256. Первый вариант применяется больше для обеспечения информационной безопасности мобильных устройств, второй задействован на более высоком уровне. Как стандарт, эта система была официально внедрена в 2002 году, причем сразу же ее поддержка была заявлена со стороны корпорации Intel, производящей процессорные чипы.

    Суть ее, в отличие от любой другой симметричной системы шифрования, сводится к вычислениям на основе полиноминального представления кодов и операций вычисления с двумерными массивами. Как утверждает правительство Соединенных Штатов, для взлома ключа длиной 128 бит дешифратору, пусть даже самому современному, потребуется порядка 149 триллионов лет. Позволим себе не согласиться с таким компетентным источником. Компьютерная техника за последние сто лет сделала скачок, соизмеримый с так что особо обольщаться не стоит, тем более что сегодня, как оказалось, существуют системы шифрования и покруче, чем те, которые США объявили совершенно стойкими ко взлому.

    Проблемы с вирусами и дешифровкой

    Конечно же, речь идет о вирусах. В последнее время появились довольно специфичные вирусы-вымогатели, которые шифруют все содержимое жесткого диска и логических разделов на зараженном компьютере, после чего жертва получает письмо с уведомлением о том, что все файлы зашифрованы, а расшифровать их может только указанный источник после оплаты кругленькой суммы.

    При этом, что самое важное, указывается, что при шифровании данных была применена система AES1024, то есть длина ключа в четыре раза больше ныне существующей AES256, а количество вариантов при поиске соответствующего дешифратора возрастает просто неимоверно.

    А если исходить из заявления правительства США о сроке, отводимом для дешифрования ключа длиной 128 бит, то что можно сказать о времени, которое потребуется на поиск решения для случая с ключом и его вариантами длиной 1024 бита? Вот тут-то США и прокололись. Они ведь считали, что их система компьютерной криптографии совершенна. Увы, нашлись какие-то спецы (судя по всему, на постсоветском пространстве), которые превзошли «незыблемые» американские постулаты по всем параметрам.

    При всем этом даже ведущие разработчики антивирусного ПО, в том числе «Лаборатория Касперского», специалисты, создавшие «Доктора Веба», корпорация ESET и многие другие мировые лидеры просто разводят руками, дескать, на расшифровку такого алгоритма попросту нет средств, умалчивая при этом о том, что и времени не хватит. Конечно, при обращении в службу поддержки предлагается отправить зашифрованный файл и, если есть, желательно его оригинал - в том виде, в каком он был до начала шифрования. Увы, даже сравнительный анализ пока не дал ощутимых результатов.

    Мир, которого мы не знаем

    Да что там говорить, если мы гонимся за будущим, не имея возможности расшифровать прошлое. Если посмотреть на мир нашего тысячелетия, можно заметить, что тот же римский император Гай Юлий Цезарь в некоторых своих посланиях использовал симметричные алгоритмы шифрования. Ну а если взглянуть на Леонардо да Винчи, так вообще становится как-то не по себе от одного осознания того, что в области криптографии этот человек, чья жизнь покрыта неким флером тайны, на века превзошел свою современность.

    До сих пор многим не дает покоя так называемая «улыбка Джоконды», в которой есть что-то такое притягательное, чего современный человек понять не способен. Кстати сказать, на картине относительно недавно были найдены некие символы (в глазу, на платье и т. д.), которые явно свидетельствуют о том, что во всем этом содержится какая-то зашифрованная великим гением информация, которую сегодня, увы, извлечь мы не в состоянии. А ведь мы даже не упомянули о разного рода масштабных конструкциях, которые способны были перевернуть понимание физики того времени.

    Конечно, некоторые умы склоняются исключительно к тому, что в большинстве случаев было использовано так называемое «золотое сечение», однако и оно не дает ключа ко всему тому огромному хранилищу знаний, которое, как считается, либо нам непонятно, либо потеряно навеки. По всей видимости, криптографам предстоит проделать еще неимоверную кучу работы, чтобы понять, что современные алгоритмы шифрования порой не идут ни в какое сравнение с наработками древних цивилизаций. К тому же, если сегодня существуют общепринятые принципы защиты информации, то те, которые использовались в древности, к сожалению, нам совершенно недоступны и непонятны.

    И еще одно. Существует негласное мнение, что большинство древних текстов невозможно перевести только потому, что ключи к их дешифровке тщательно охраняются тайными обществами вроде масонов, иллюминатов и т. д. Даже тамплиеры оставили тут свой след. Что уж говорить о том, что до сих пор абсолютно недоступной остается библиотека Ватикана? Не там ли хранятся основные ключи к пониманию древности? Многие специалисты склоняются именно к этой версии, считая, что Ватикан намеренно утаивает эту информацию от общества. Так это или нет, пока не знает никто. Но одно можно утверждать совершенно точно - древние системы криптографии ни в чем не уступали (а может, и превосходили) тем, что используются в современном компьютерном мире.

    Вместо послесловия

    Напоследок стоит сказать, что здесь были рассмотрены далеко не все аспекты, связанные с нынешними криптографическими системами и методиками, которые они используют. Дело в том, что в большинстве случаев пришлось бы приводить сложные математические формулы и представлять вычисления, от которых у большинства пользователей просто голова кругом пойдет. Достаточно взглянуть на пример с описанием алгоритма RSA, чтобы сообразить, что все остальное будет выглядеть намного сложнее.

    Тут главное - понять и вникнуть, так сказать, в суть вопроса. Ну а если говорить о том, что представляют собой современные системы, предлагающие хранить конфиденциальную информацию таким образом, чтобы она была доступна ограниченному кругу пользователей, здесь выбор невелик. Несмотря на наличие множества криптографических систем, те же алгоритмы RSA и DES явно проигрывают специфике AES. Впрочем, и большинство современных приложений, разработанных для совершенно разнящихся между собой операционных систем, используют именно AES (естественно, в зависимости от области применения и устройства). Но вот «несанкционированная» эволюция этой криптосистемы, мягко говоря, многих, особенно ее создателей, повергла в шок. Но в целом, исходя из того, что имеется на сегодняшний день, многим пользователям нетрудно будет понять, что такое криптографические системы шифрования данных, зачем они нужны и как работают.

    Количество людей, которые активно пользуются интернетом растет, как на дрожжах: на работе для решения корпоративных целей и администрирования, дома, в общественных местах. Распространение получают Wi-Fi сети и оборудование, позволяющее беспрепятственно получать доступ к интернету.

    Вай фай сеть обладает зашитой в виде пароля, не зная который, подключиться к конкретной сети будет практически невозможно, кроме общественных сетей (кафе, рестораны, торговые центры, точки доступа на улицах) . «Практически» не стоит понимать в буквальном смысле: умельцев, способных «вскрыть» сеть и получить доступ не только к ресурсу роутера, но и к передаваемым внутри конкретной сети данным, достаточно.

    Но в этом вступительном слове мы поговорили о подключении к wi-fi — аутентификации пользователя (клиента), когда клиентское устройство и точка доступа обнаруживают друг друга и подтверждают, что могут общаться между собой.

    Варианты аутентификации :

    • Open - открытая сеть, в которой все подключаемые устройства авторизованы сразу
    • Shared - подлинность подключаемого устройства должна быть проверена ключом/паролем
    • EAP - подлинность подключаемого устройства должна быть проверена по протоколу EAP внешним сервером

    Шифрование — это алгоритм скремблирования (scramble - шифровать, перемешивать) передаваемых данных, изменение и генерация ключа шифрования

    Для оборудования wifi были разработаны различные типы шифрования, дающие возможность защищать сеть от взлома, а данные от общего доступа.

    На сегодняшний день выделяются несколько вариантов шифрования. Рассмотрим каждый из них подробнее.

    Выделяются и являются самыми распространенными следующие типы:

    • OPEN;
    • WPA, WPA2;

    Первый тип, именуемый не иначе, как OPEN, все требуемую для познания информацию содержит в названии. Зашифровать данные или защитить сетевое оборудование такой режим не позволит, потому как точка доступа будет являться при условии выбора такого типа постоянно открытой и доступной для всех устройств, которыми она будет обнаружена. Минусы и уязвимости такого типа «шифрования» очевидны.

    Если сеть открыта, это не значит, что любой может с ней работать. Чтобы пользоваться такой сетью и передавать в ней данные, нужно совпадение используемого метода шифрования. И еще одно условие пользования такой сетью отсутствие MAC-фильтра, который определяет MAC-адреса пользователей, для того, что бы распознать каким устройствам запрещено или разрешено пользоваться данной сетью

    WEP

    Второй тип, он же WEP, уходит корнями в 90-е годы прошлого века, являясь родоначальником всех последующих типов шифрования. Wep шифрование сегодня – слабейший из всех существующих вариантов организации защиты. Большинство современных роутеров, создаваемых специалистами и учитывающих интересы конфиденциальности пользователей, не поддерживают шифрование wep.

    Среди минусов, вопреки факту наличия хоть какой-то защиты (в сравнении с OPEN), выделяется ненадежность: она обусловлена кратковременной защитой, которая активируется на определенные интервалы времени. По истечении этого промежутка, пароль к вашей сети можно будет легко подобрать, а ключ wep будет взломан за время до 1 минуты. Это обусловлено битностью wep ключа, которая составляет в зависимости от характеристик сетевого оборудования от 40 до 100 бит.

    Уязвимость wep ключа заключается в факте передачи частей пароля в совокупности с пакетами данных. Перехват пакетов для специалиста – хакера или взломщика – задача, легкая для осуществления. Важно понимать и тот факт, что современные программные средства способны перехватывать пакеты данных и созданы специально для этого.

    Таким образом, шифрование wep – самый ненадежный способ защиты вашей сети и сетевого оборудования.

    WPA, WPA2

    Такие разновидности – самые современные и совершенными с точки зрения организации зашиты на данный момент. Аналогов им не существует. Возможность задать любую удобную пользователю длину и цифробуквенную комбинацию wpa ключа довольно затрудняет жизнь желающим несанкционированно воспользоваться конкретной сетью или перехватить данные этой сети.

    Данные стандарты поддерживают различные алгоритмы шифрования, которые могут передаваться после взаимодействия протоколов TKIP и AES. Тип шифрования aes является более совершенным протоколом, чем tkip, и большинством современных роутеров поддерживается и активно используется.

    Шифрование wpa или wpa2 – предпочтительный тип как для домашнего использования, так и для корпоративного. Последний дает возможность применения двух режимов аутентификации: проверка паролей для доступа определенных пользователей к общей сети осуществляется, в зависимости от заданных настроек, по режиму PSK или Enterprise.

    PSK предполагает доступ к сетевому оборудованию и ресурсам интернета при использовании единого пароля, который требуется ввести при подключении к роутеру. Это предпочтительный вариант для домашней сети, подключение которой осуществляется в рамках небольших площадей определенными устройствами, например: мобильным, персональным компьютером и ноутбуком.

    Для компаний, имеющих солидные штаты сотрудников, PSK является недостаточно удобным режимом аутентификации, потому был разработан второй режим – Enterprise. Его использование дает возможность применения множества ключей, который будут храниться на особом выделенном сервере.

    WPS

    По-настоящему современная и , делает возможным подключение к беспроводной сети при помощи одного нажатия на кнопку. Задумываться о паролях или ключах бессмысленно, но стоит выделить и учитывать ряд серьезных недостатков, касающихся допуска к сетям с WPS.

    Подключение посредством такой технологии осуществляется при использовании ключа, включающего в себя 8 символов. Уязвимость типа шифрования заключается в следующем: он обладает серьезной ошибкой, которая взломщикам или хакерам позволяет получить доступ к сети, если им доступны хотя бы 4 цифры из восьмизначной комбинации. Количество попыток подбора пароля при этом составляет порядка нескольких тысяч, однако для современных программных средств это число – смешное. Если измерять процесс форсирования WPS во времени, то процесс займет не более суток.

    Стоит отметить и тот факт, что данная уязвимость находиться на стадии совершенствования и поддается исправлению, потому в последующих моделях оборудования с режимом WPS стали внедряться ограничения на количество попыток входа, что существенно затруднило задачу несанкционированного доступа для заинтересованных в этом лиц.

    И тем не менее, чтобы повысить общий уровень безопасности, опытные пользователи рекомендуют принципиально отказываться от рассмотренной технологии.

    Подводя итоги

    Самой современной и по-настоящему надежной методикой организации защиты сети и данных, передаваемых внутри нее, является WPA или ее аналог WPA2.

    Первый вариант предпочтителен для домашнего использования определенным числом устройств и пользователей.

    Второй, обладающий функцией аутентификации по двум режимам, больше подходит для крупных компаний. Применение его оправдано тем, что при увольнении сотрудников нет необходимости в смене паролей и ключей, потому как определенное количество динамических паролей хранятся на специально выделенном сервере, доступ к которому имеют лишь текущие сотрудники компании.

    Следует отметить, что большинство продвинутых пользователей отдают предпочтение WPA2 даже для домашнего использования. С точки зрения организации защиты оборудования и данных, такой метод шифрования является самым совершенным из существующих на сегодняшний день.

    Что касается набирающего популярность WPS, то отказаться от него – значит в определенной мере обезопасить сетевое оборудование и информационные данные, передаваемые с его помощью. Пока технология не развита достаточно и не обладает всеми преимуществами, например, WPA2, от ее применения рекомендуется воздержаться вопреки кажущейся простоте применения и удобству. Ведь безопасность сети и передаваемых внутри нее информационных массивов – приоритет для большинства пользователей.

    Есть три основных метода шифрования: хеширование, симметрическая криптография и асимметричная криптография. У каждого из этих методов шифрования есть свои достоинства и недостатки. Хеширование, например, очень стойкое к вмешательству, но не столь гибкое как другие методы. Все три метода полагаются на криптографию или науку о шифровании данных.

    Основная функция

    Шифрование применяется, чтобы обычный читаемый текст, называемый открытым текстом, преобразовать в нечитаемый секретный формат, называемый зашифрованным текстом. Шифровка данных помимо конфиденциальности сообщения несет в себе и другую выгоду. Шифрация гарантирует неизменность данных во время передачи сообщения и позволяет проверить личность отправителя. Все эти преимущества могут быть получены с помощью любого метода шифрования информации.

    Метод хеширования

    При использовании кодирования по методу хеширования, создается уникальная подпись фиксированной длины для сообщения или набора данных. Хеш создается специальным алгоритмом или хеш-функцией, и используется для сравнения данных. Хеш уникален для каждого набора данных или сообщения, поэтому небольшое изменение данных приведет к разительному отличию хеша, что будет свидетельствовать об отличии двух якобы одинаковых данных.

    Метод хеширования отличается от других методов кодирования тем, что после кодирования хеш не может быть расшифрован или изменен. Это значит, что если злоумышленник получит хеш код, он не сможет его декодировать и получить исходное сообщение. Распространенные методы хеширования: Message Digest 5 (MD5) и Secure Hashing Algorithm (SHA).

    Симметрические методы

    Симметрическое шифрование, которое еще называется шифрованием с частным ключом, является одним из старейших и самым безопасным методом шифрования. Термин «частный ключ» возник потому, что при шифровании и расшифровке данных используется ключ, который должен остаться засекреченным, так как любой обладатель данного ключа может прочитать закодированное сообщение. Отправитель кодирует информацию, используя ключ, а получатель использует тот же ключ для расшифровки данных.

    Этот метод кодирования используется для кодирования потока данных или блоков данных. В зависимости от объема данных, которые нужно зашифровать или расшифровать за одни раз. В потоковом режиме кодируется каждая отдельная единица информации, тогда как при блочном методе кодируются отдельные блоки информации. Распространенные методы симметрического кодирования: Data Encryption Standard (DES), Advanced Encryption Standard (AES) и International Data Encryption Algorithm (IDEA).

    Асимметричные методы

    Асимметричный метод шифрования или метод кодирования с открытым ключом, более безопасен, чем симметрический метод шифрования. Это тип кодирования использует два ключа, частный или закрытый ключ, и открытый ключ. Открытый ключ используется для кодирования информации и передается в открытом канале, а частный ключ, используемый для расшифровки данных, имеется только у получателя. Распространенные алгоритмы, использующие асимметричный метод шифрования RSA и Diffie-Hellman.

    Шифрование данных применяется также при просмотре видео через интернет. И когда вы будете все серии сериала , знайте, что видео на сервере шифруется и передается пакетами данных, а на компьютере плеер преобразует данные в исходный вид и воспроизводит.



    Рекомендуем почитать

    Наверх