Тип переменной long. Типы данных в «Си». Программирование на языке «Си

Для Windows 19.08.2019
Для Windows

В данном разделе будут рассмотрены основные типы данных в С++, эти типы данных ещё называются встроенными. Язык программирования С++ является расширяемым языком программирования. Понятие расширяемый означает то, что кроме встроенных типов данных, можно создавать свои типы данных. Поэтому в С++ существует огромное количество типов данных. Мы будем изучать только основные из них.

Таблица 1 — Типы данных С++
Тип байт Диапазон принимаемых значений

целочисленный (логический) тип данных

bool 1 0 / 255

целочисленный (символьный) тип данных

char 1 0 / 255

целочисленные типы данных

short int 2 -32 768 / 32 767
unsigned short int 2 0 / 65 535
int 4
unsigned int 4 0 / 4 294 967 295
long int 4 -2 147 483 648 / 2 147 483 647
unsigned long int 4 0 / 4 294 967 295

типы данных с плавающей точкой

float 4 -2 147 483 648.0 / 2 147 483 647.0
long float 8
double 8 -9 223 372 036 854 775 808 .0 / 9 223 372 036 854 775 807.0

В таблице 1 представлены основные типы данных в С++. Вся таблица делится на три столбца. В первом столбце указывается зарезервированное слово, которое будет определять, каждое свой, тип данных. Во втором столбце указывается количество байт, которое отводится под переменную с соответствующим типом данных. В третьем столбце показан диапазон допустимых значений. Обратите внимание на то, что в таблице все типы данных расположены от меньшего к большему.

Тип данных bool

Первый в таблице — это тип данных bool целочисленный тип данных, так как диапазон допустимых значений — целые числа от 0 до 255. Но как Вы уже заметили, в круглых скобочках написано — логический тип данных, и это тоже верно. Так как bool используется исключительно для хранения результатов логических выражений. У логического выражения может быть один из двух результатов true или false . true — если логическое выражение истинно, false — если логическое выражение ложно.

Но так как диапазон допустимых значений типа данных bool от 0 до 255, то необходимо было как-то сопоставить данный диапазон с определёнными в языке программирования логическими константами true и false . Таким образом, константе true эквивалентны все числа от 1 до 255 включительно, тогда как константе false эквивалентно только одно целое число — 0. Рассмотрим программу с использованием типа данных bool .

// data_type.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include using namespace std; int main(int argc, char* argv) { bool boolean = 25; // переменная типа bool с именем boolean if (boolean) // условие оператора if cout << "true = " << boolean << endl; // выполнится в случае истинности условия else cout << "false = " << boolean << endl; // выполнится в случае, если условие ложно system("pause"); return 0; }

В строке 9 объявлена переменная типа bool , которая инициализирована значением 25. Теоретически после строки 9 , в переменной boolean должно содержаться число 25, но на самом деле в этой переменной содержится число 1. Как я уже говорил, число 0 — это ложное значение, число 1 — это истинное значение. Суть в том, что в переменной типа bool могут содержаться два значения — 0 (ложь) или 1 (истина). Тогда как под тип данных bool отводится целый байт, а это значит, что переменная типа bool может содержать числа от 0 до 255. Для определения ложного и истинного значений необходимо всего два значения 0 и 1. Возникает вопрос: «Для чего остальные 253 значения?».

Исходя из этой ситуации, договорились использовать числа от 2 до 255 как эквивалент числу 1, то есть истина. Вот именно по этому в переменной boolean содержится число 25 а не 1. В строках 10 -13 объявлен , который передает управление оператору в строке 11 , если условие истинно, и оператору в строке 13 , если условие ложно. Результат работы программы смотреть на рисунке 1.

True = 1 Для продолжения нажмите любую клавишу. . .

Рисунок 1 — Тип данных bool

Тип данных char

Тип данных char — это целочисленный тип данных, который используется для представления символов. То есть, каждому символу соответствует определённое число из диапазона . Тип данных char также ещё называют символьным типом данных, так как графическое представление символов в С++ возможно благодаря char . Для представления символов в C++ типу данных char отводится один байт, в одном байте — 8 бит, тогда возведем двойку в степень 8 и получим значение 256 — количество символов, которое можно закодировать. Таким образом, используя тип данных char можно отобразить любой из 256 символов. Все закодированные символы представлены в .

ASCII (от англ. American Standard Code for Information Interchange) - американский стандартный код для обмена информацией.

Рассмотрим программу с использованием типа данных char .

// symbols.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include using namespace std; int main(int argc, char* argv) { char symbol = "a"; // объявление переменной типа char и инициализация её символом "a" cout << "symbol = " << symbol << endl; // печать символа, содержащегося в переменной symbol char string = "сайт"; // объявление символьного массива (строки) cout << "string = " << string << endl; // печать строки system("pause"); return 0; }

Итак, в строке 9 объявлена переменная с именем symbol , ей присвоено значение символа "a" (ASCII код ). В строке 10 оператор cout печатает символ, содержащийся в переменной symbol . В строке 11 объявлен строковый массив с именем string , причём размер массива задан неявно. В строковый массив сохранена строка "сайт" . Обратите внимание на то, что, когда мы сохраняли символ в переменную типа char , то после знака равно мы ставили одинарные кавычки, в которых и записывали символ. При инициализации строкового массива некоторой строкой, после знака равно ставятся двойные кавычки, в которых и записывается некоторая строка. Как и обычный символ, строки выводятся с помощью оператора cout , строка 12 . Результат работы программы показан на рисунке 2.

Symbol = a string = сайт Для продолжения нажмите любую клавишу. . .

Рисунок 2 — Тип данных char

Целочисленные типы данных

Целочисленные типы данных используются для представления чисел. В таблице 1 их аж шесть штук: short int , unsigned short int , int , unsigned int , long int , unsigned long int . Все они имеют свой собственный размер занимаемой памяти и диапазоном принимаемых значений. В зависимости от компилятора, размер занимаемой памяти и диапазон принимаемых значений могут изменяться. В таблице 1 все диапазоны принимаемых значений и размеры занимаемой памяти взяты для компилятора MVS2010. Причём все типы данных в таблице 1 расположены в порядке возрастания размера занимаемой памяти и диапазона принимаемых значений. Диапазон принимаемых значений, так или иначе, зависит от размера занимаемой памяти. Соответственно, чем больше размер занимаемой памяти, тем больше диапазон принимаемых значений. Также диапазон принимаемых значений меняется в случае, если тип данных объявляется с приставкой unsigned — без знака. Приставка unsigned говорит о том, что тип данных не может хранить знаковые значения, тогда и диапазон положительных значений увеличивается в два раза, например, типы данных short int и unsigned short int .

Приставки целочисленных типов данных:

short приставка укорачивает тип данных, к которому применяется, путём уменьшения размера занимаемой памяти;

long приставка удлиняет тип данных, к которому применяется, путём увеличения размера занимаемой памяти;

unsigned (без знака)— приставка увеличивает диапазон положительных значений в два раза, при этом диапазон отрицательных значений в таком типе данных храниться не может.

Так, что, по сути, мы имеем один целочисленный тип для представления целых чисел — это тип данных int . Благодаря приставкам short , long , unsigned появляется некоторое разнообразие типов данных int , различающихся размером занимаемой памяти и (или) диапазоном принимаемых значений.

Типы данных с плавающей точкой

В С++ существуют два типа данных с плавающей точкой: float и double . Типы данных с плавающей точкой предназначены для хранения чисел с плавающей точкой. Типы данных float и double могут хранить как положительные, так и отрицательные числа с плавающей точкой. У типа данных float размер занимаемой памяти в два раза меньше, чем у типа данных double , а значит и диапазон принимаемых значений тоже меньше. Если тип данных float объявить с приставкой long , то диапазон принимаемых значений станет равен диапазону принимаемых значений типа данных double . В основном, типы данных с плавающей точкой нужны для решения задач с высокой точностью вычислений, например, операции с деньгами.

Итак, мы рассмотрели главные моменты, касающиеся основных типов данных в С++. Осталось только показать, откуда взялись все эти диапазоны принимаемых значений и размеры занимаемой памяти. А для этого разработаем программу, которая будет вычислять основные характеристики всех, выше рассмотренных, типов данных.

// data_types.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include // библиотека манипулирования вводом/выводом #include // заголовочный файл математических функций #include using namespace std; int main(int argc, char* argv) { cout << " data type " << "byte" << " " << " max value " << endl // заголовки столбцов << "bool = " << sizeof(bool) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных bool*/ << (pow(2,sizeof(bool) * 8.0) - 1) << endl << "char = " << sizeof(char) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных char*/ << (pow(2,sizeof(char) * 8.0) - 1) << endl << "short int = " << sizeof(short int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных short int*/ << (pow(2,sizeof(short int) * 8.0 - 1) - 1) << endl << "unsigned short int = " << sizeof(unsigned short int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных unsigned short int*/ << (pow(2,sizeof(unsigned short int) * 8.0) - 1) << endl << "int = " << sizeof(int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных int*/ << (pow(2,sizeof(int) * 8.0 - 1) - 1) << endl << "unsigned int = " << sizeof(unsigned int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных unsigned int*/ << (pow(2,sizeof(unsigned int) * 8.0) - 1) << endl << "long int = " << sizeof(long int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных long int*/ << (pow(2,sizeof(long int) * 8.0 - 1) - 1) << endl << "unsigned long int = " << sizeof(unsigned long int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных undigned long int*/ << (pow(2,sizeof(unsigned long int) * 8.0) - 1) << endl << "float = " << sizeof(float) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных float*/ << (pow(2,sizeof(float) * 8.0 - 1) - 1) << endl << "double = " << sizeof(double) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных double*/ << (pow(2,sizeof(double) * 8.0 - 1) - 1) << endl; system("pause"); return 0; }

Данная программа выложена для того, чтобы Вы смогли просмотреть характеристики типов данных в своей системе. Не стоит разбираться в коде, так как в программе используются управляющие операторы, которые Вам, вероятнее всего, ещё не известны. Для поверхностного ознакомления с кодом программы, ниже поясню некоторые моменты. Оператор sizeof() вычисляет количество байт, отводимое под тип данных или переменную. Функция pow(x,y) возводит значение х в степень y , данная функция доступна из заголовочного файла . Манипуляторы fixed и setprecision() доступны из заголовочного файла . Первый — fixed , передаёт в поток вывода значения в фиксированной форме. Манипулятор setprecision(n) отображает n знаков после запятой. Максимальное значение некоторого типа данных вычисляется по такой формуле:

Max_val_type = 2^(b * 8 - 1) - 1; // для типов данных с отрицательными и положительными числами // где, b - количество байт выделяемое в памяти под переменную с таким типом данных // умножаем на 8, так как в одном байте 8 бит // вычитаем 1 в скобочках, так как диапазон чисел надо разделить надвое для положительных и отрицательных значений // вычитаем 1 в конце, так как диапазон чисел начинается с нуля // типы данных с приставкой unsigned max_val_type = 2^(b * 8) - 1; // для типов данных только с положительными числами // пояснения к формуле аналогичные, только в скобочка не вычитается единица

Пример работы программы можно увидеть на рисунке 3. В первом столбце показаны основные типы данных в С++, во втором столбце размер памяти, отводимый под каждый тип данных и в третьем столбце — максимальное значение, которое может содержать соответствующий тип данных. Минимальное значение находится аналогично максимальному. В типах данных с приставкой unsigned минимальное значение равно 0.

Data type byte max value bool = 1 255.00 char = 1 255.00 short int = 2 32767.00 unsigned short int = 2 65535.00 int = 4 2147483647.00 unsigned int = 4 4294967295.00 long int = 4 2147483647.00 unsigned long int = 4 4294967295.00 float = 4 2147483647.00 double = 8 9223372036854775808.00 Для продолжения нажмите любую клавишу. . .

Рисунок 3 — Типы данных С++

Если, например, переменной типа short int присвоить значение 33000, то произойдет переполнение разрядной сетки, так как максимальное значение в переменной типа short int это 32767. То есть в переменной типа short int сохранится какое-то другое значение, скорее всего будет отрицательным. Раз уж мы затронули тип данных int ,стоит отметить, что можно опускать ключевое слово int и писать, например, просто short . Компилятор будет интерпретировать такую запись как short int . Тоже самое относится и к приставкам long и unsigned . Например:

// сокращённая запись типа данных int short a1; // тоже самое, что и short int long a1; // тоже самое, что и long int unsigned a1; // тоже самое, что и unsigned int unsigned short a1; // тоже самое, что и unsigned short int

Типы данных в Си — класс данных, значения которых имеют схожие характеристики. Тип определяет внутреннее представление данных в памяти. Самые основные типы данных: логический, целочисленный, числа с плавающей точкой, строковые, указатели.

При динамической типизации переменная связывается с типом на момент инициализации. Получается, что переменная в разных участках кода может иметь разные типы. Динамическую типизацию поддерживают Java Script, Python, Ruby, PHP.

Статическая типизация является противоположностью динамической. При объявлении переменная получает тип, который не меняется в дальнейшем. Языки Си и Си++ являются именно такими. Этот способ наиболее удобный для написания сложного кода, а на стадии компиляции исключается много ошибок.

Языки неформально делятся на сильнотипизированный и слаботипизированный. Сильная типизация подразумевает, что компилятор выдаст ошибку при несовпадении ожидаемого и фактического типов.

x = 1 + “2”; //ошибка — нельзя прибавить к числу символьный знак

Пример слабой типизации.

Проверка согласования типов осуществляется системой типобезопасности. Ошибка типизации возникает, например, при попытке использовать число как функцию. Существуют нетипизированные языки. В противоположность типизированным, они позволяют осуществлять любые операции над каждым объектом.

Классы памяти

Переменные, независимо от их типа, имеют свою область видимости и время существования.

Классы памяти:

  • auto;
  • static;
  • extern;
  • register.

Все переменные в языке Си по умолчанию являются локальными. Они могут использоваться только внутри функции или блока. По завершении функции их значение уничтожается.

Статическая переменная также является локальной, но вне своего блока может иметь другое значение, а между вызовами функции значение сохраняется.

Внешняя переменная является глобальной. Она доступна в любой части кода и даже в другом файле.

Спецификаторы типов данных в Си могут не указываться в таких случаях:

  1. Все переменные внутри блока не являются переменными, соответственно, если предполагается использование именно этого класса памяти, то спецификатор auto не указывается.
  2. Все функции, объявленные вне блока или функции, являются по умолчанию глобальными, поэтому спецификатор extern не обязателен.

Для указания простых типов указываются спецификаторы int, char, float или double. К переменным могут подставляться модификаторы unsigned (беззнаковый), signed (знаковый), short, long, long long.

По умолчанию все числа являются знаковыми, соответственно, могут находиться в диапазоне только положительных чисел. Чтобы определить переменную типа char как знаковую, пишется signed char. Long, long long и short указывают, как много места в памяти отводится для хранения. Наибольшее — long long, наименьшее — short.

Char — самый маленький тип данных в Си. Для хранения значений выделяется всего 1 байт памяти. Переменной типа character обычно присваиваются символы, реже — цифры. Символьные значения берутся в кавычки.

Тип int хранит целые числа, его размер не определен — занимает до 4 байт памяти, в зависимости от архитектуры компьютера.

Явное преобразование беззнаковой переменной задается так:

Неявное выглядит так:

Float и double определяют числа с точкой. Числа float представляются в виде -2.3 или 3.34. Double используется для большей точности — после разделителя целой и дробной части указывается больше цифр. Этот тип занимает больше места в памяти, чем float.

Void имеет пустое значение. Он определяет функции, которые ничего не возвращают. С помощью этого спецификатора указывается пустое значение в аргументах методов. Указатели, которые могут принимать любой тип данных, также определяются как void.

Логический тип Bool

Применяется в проверках условий и циклах. Имеет всего два значения:

  • истина;
  • ложь.

Булевые значения могут преобразовываться в значение типа int. True эквивалентно единице, false — нулю. Преобразование типов предусмотрено только между bool и int, в противном случае компилятор выдаст ошибку.

if (x) { //Error: «Cannot implicitly convert type ‘int’ to ‘bool"»

if (x != 0) // The C# way

Строки и массивы

Массивы относятся к сложными типам даным в Си. ЯП не работает со строками так же, как это делает Джаваскрипт или Руби. В Си все строки являются массивами элементов символьного значения. Строки оканчиваются нулевым байтом “

В языке Си различают понятия “тип данных” и “модификатор типа”. Тип данных – это целый, а модификатор – со знаком или без знака. Целое со знаком будет иметь как положительные, так и отрицательные значения, а целое без знака – только положительные значения. В языке Си можно выделить пять базовых типов.

  • char – символьный.
  • Переменная типа char имеет размер 1 байт, ее значениями являются различные символы из кодовой таблицы, например: ‘ф’, ‘:’, ‘j’ (при записи в программе они заключаются в одинарные кавычки).

  • int – целый.
  • Размер переменной типа int в стандарте языка Си не определен. В большинстве систем программирования размер переменной типа int соответствует размеру целого машинного слова. Например, в компиляторах для 16-разрядных процессоров переменная типа int имеет размер 2 байта. В этом случае знаковые значения этой переменной могут лежать в диапазоне от -32768 до 32767.

  • float – вещественный.
  • Ключевое слово float позволяет определить переменные вещественного типа. Их значения имеют дробную часть, отделяемую точкой, например: -5.6, 31.28 и т.п. Вещественные числа могут быть записаны также в форме с плавающей точкой, например: -1.09e+4. Число перед символом “е” называется мантиссой, а после “е” – порядком. Переменная типа float занимает в памяти 32 бита. Она может принимать значения в диапазоне от 3.4е-38 до 3.4e+38.

  • double – вещественный двойной точности;
  • Ключевое слово double позволяет определить вещественную переменную двойной точности. Она занимает в памяти в два раза больше места, чем переменная типа float. Переменная типа double может принимать значения в диапазоне от 1.7e-308 до 1.7e+308.

  • void – не имеющий значения.
  • Ключевое слово void используется для нейтрализации значения объекта, например, для объявления функции, не возвращающей никаких значений.

Типы переменных:

Программы оперируют с различными данными, которые могут быть простыми и структурированными. Простые данные – это целые и вещественные числа, символы и указатели (адреса объектов в памяти). Целые числа не имеют, а вещественные имеют дробную часть. Структурированные данные – это массивы и структуры; они будут рассмотрены ниже.

Переменная – это ячейка в памяти компьютера, которая имеет имя и хранит некоторое значение. Значение переменной может меняться во время выполнения программы. При записи в ячейку нового значения старое стирается.

Хорошим стилем является осмысленное именование переменных. Имя переменной может содержать от одного до 32 символов. Разрешается использовать строчные и прописные буквы, цифры и символ подчёркивания, который в Си считается буквой. Первым символом обязательно должна быть буква. Имя переменной не может совпадать с зарезервированными словами.

Тип char

char – является самым экономным типом. Тип char может быть знаковым и беззнаковым. Обозначается, как “signed char” (знаковый тип) и “unsigned char” (беззнаковый тип). Знаковый тип может хранить значения в диапазоне от -128 до +127. Беззнаковый – от 0 до 255. Под переменную типа char отводится 1 байт памяти (8 бит).

Ключевые слова signed и unsigned указывают, как интерпретируется нулевой бит объявляемой переменной, т.е., если указано ключевое слово unsigned, то нулевой бит интерпретируется как часть числа, в противном случае нулевой бит интерпретируется как знаковый.

Тип int

Целочисленная величина int может быть short (короткой) или long (длинной). Ключевое слово short ставится после ключевых слов signed или unsigned. Таким образом, есть типы: signed short int, unsigned short int, signed long int, unsigned long int.

Переменная типа signed short int (знаковая короткая целая) может принимать значения от -32768 до +32767, unsigned short int (беззнаковая короткая целая) – от 0 до 65535. Под каждую из них отводится ровно по два байта памяти (16 бит).

При объявлении переменной типа signed short int ключевые слова signed и short могут быть пропущены, и такой тип переменной может быть объявлен просто int. Допускается и объявление этого типа одним ключевым словом short.

Переменная unsigned short int может быть объявлена как unsigned int или unsigned short.

Под каждую величину signed long int или unsigned long int отводится 4 байта памяти (32 бита). Значения переменных этого типа могут находиться в интервалах от -2147483648 до 2147483647 и от 0 до 4294967295 соответственно.

Существуют также переменные типа long long int, для которых отводится 8 байт памяти (64 бита). Они могут быть знаковыми и беззнаковыми. Для знакового типа диапазон значений лежит в пределах от -9223372036854775808 до 9223372036854775807, для беззнакового – от 0 до 18446744073709551615. Знаковый тип может быть объявлен и просто двумя ключевыми словами long long.

Тип Диапазон Шестнадцатеричный диапазон Размер
unsigned char 0 … 255 0x00 … 0xFF 8 bit
signed char
или просто
char
-128 … 127 -0x80 … 0x7F 8 bit
unsigned short int
или просто
unsigned int или unsigned short
0 … 65535 0x0000 … 0xFFFF 16 bit
signed short int или signed int
или просто
short или int
-32768 … 32767 0x8000 … 0x7FFF 16 bit
unsigned long int
или просто
unsigned long
0 … 4294967295 0x00000000 … 0xFFFFFFFF 32 bit
signed long
или просто
long
-2147483648 … 2147483647 0x80000000 … 0x7FFFFFFF 32 bit
unsigned long long 0 … 18446744073709551615 0x0000000000000000 … 0xFFFFFFFFFFFFFFFF 64 bit
signed long long
или просто
long long
-9223372036854775808 … 9223372036854775807 0x8000000000000000 … 0x7FFFFFFFFFFFFFFF 64 bit

Объявление переменных

Переменные объявляют в операторе описания. Оператор описания состоит из спецификации типа и списка имён переменных, разделённых запятой. В конце обязательно должна стоять точка с запятой.

[модификаторы] спецификатор_типа идентификатор [, идентификатор] ...

Модификаторы – ключевые слова signed, unsigned, short, long.
Спецификатор типа – ключевое слово char или int, определяющее тип объявляемой переменной.
Идентификатор – имя переменной.

Char x; int a, b, c; unsigned long long y;

При объявлении переменную можно проинициализировать, то есть присвоить ей начальное значение.

Int x = 100;

В переменную x при объявлении сразу же будет записано число 100. Инициализируемые переменные лучше объявлять в отдельных строках.

В этой записи-шпаргалке приведены сведения об основных типах данных языка программирования C++ и особенности их реализации. Также, в конце записи составлена таблица с диапазонами значений этих типов.

Концепция типа данных

Основная цель любой программы состоит в обработке данных. Данные различного типа хранятся и обрабатываются по-разному. В любом алгоритмическом языке каждая константа, переменная, результат вычисления выражения или функции должны иметь определенный тип.

Тип данных определяет:

  • внутреннее представление данных в памяти компьютера;
  • множество значений, которые могут принимать величины этого типа;
  • операции и функции, которые можно применять к величинам этого тина.

Исходя из этих характеристик, программист выбирает тип каждой величины, используемой в программе для представления реальных объектов. Обязательное описание типа позволяет компилятору производить проверку допустимости различных конструкций программы. От типа величины зависят машинные команды, которые будут использоваться для обработки данных.

Все типы языка C++ можно разделить на основные и составные . В языке C++ определено шесть основных типов данных для представления целых, вещественных, символьных и логических величин. На основе этих типов программист может вводить описание составных типов. К ним относятся массивы, перечисления, функции, структуры, ссылки, указатели, объединения и классы.

Основные типы данных в C++

Основные (стандартные) типы данных часто называют арифметическими, поскольку их можно использовать в арифметических операциях. Для описания основных типов определены следующие :

  1. int (целый);
  2. char (символьный);
  3. wchar_t (расширенный символьный);
  4. bool (логический);
  5. float (вещественный);
  6. double (вещественный с двойной точностью).

Первые четыре тина называют целочисленными (целыми ), последние два - типами с плавающей точкой . Код, который формирует компилятор для обработки целых величин, отличается от кода для величин с плавающей точкой.

Существует четыре спецификатора типа , уточняющих внутреннее представление и диапазон значений стандартных типов:

  • short (короткий);
  • long (длинный);
  • signed (знаковый);
  • unsigned (беззнаковый).

Целый тип (int)

Размер типа int не определяется стандартом, а зависит от компьютера и компилятора. Для 16-разрядного процессора под величины этого типа отводится 2 байта, для 32-разрядного - 4 байта.

Спецификатор short перед именем типа указывает компилятору, что под число требуется отвести 2 байта независимо от разрядности процессора. Спецификатор long означает, что целая величина будет занимать 4 байта. Таким образом, на 16-разрядном компьютере эквиваленты int и short int, а на 32-разрядном - int и long int.

Внутреннее представление величины целого типа - целое число в двоичном коде. При использовании спецификатора signed старший бит числа интерпретируется как знаковый (0 - положительное число, 1 - отрицательное). Спецификатор unsigned позволяет представлять только положительные числа, поскольку старший разряд рассматривается как часть кода числа. Таким образом, диапазон значений типа int зависит от спецификаторов. Диапазоны значений величин целого типа с различными спецификаторами для IBM PC-совместимых компьютеров приведены в таблице «Диапазоны значений простых типов данных» в конце записи.

По умолчанию все целочисленные типы считаются знаковыми, то есть спецификатор signed можно опускать.

Константам, встречающимся в программе, приписывается тот или иной тип в соответствии с их видом. Если этот тип по каким-либо причинам не устраивает программиста, он может явно указать требуемый тип с помощью суффиксов L, l (long) и U, u (unsigned). Например, константа 32L будет иметь тип long и занимать 4 байта. Можно использовать суффиксы L и U одновременно, например, 0x22UL или 05Lu.

Примечание

Типы short int, long int, signed int и unsigned int можно сокращать до short, long, signed и unsigned соответственно.

Символьный тип (char)

Под величину символьного типа отводится количество байт, достаточное для размещения любого символа из набора символов для данного компьютера, что и обусловило название типа. Как правило, это 1 байт. Тип char, как и другие целые типы, может быть со знаком или без знака. В величинах со знаком можно хранить значения в диапазоне от -128 до 127. При использовании спецификатора unsigned значения могут находиться в пределах от О до 255. Этого достаточно для хранения любого символа из 256-символьного набора ASCII. Величины типа char применяются также для хранения целых чисел, не превышающих границы указанных диапазонов.

Расширенный символьный тип (wchar_t)

Тип wchar_t предназначен для работы с набором символов, для кодировки которых недостаточно 1 байта, например, Unicode. Размер этого типа зависит от реализации; как правило, он соответствует типу short. Строковые константы типа wchar_t записываются с префиксом L, например, L»Gates».

Логический тип (bool)

Величины логического типа могут принимать только значения true и false, являющиеся зарезервированными словами. Внутренняя форма представления значения false - 0 (нуль). Любое другое значение интерпретируется как true. При преобразовании к целому типу true имеет значение 1.

Типы с плавающей точкой (float, double и long double)

Стандарт C++ определяет три типа данных для хранения вещественных значений: float, double и long double.

Типы данных с плавающей точкой хранятся в памяти компьютера иначе, чем целочисленные. Внутреннее представление вещественного числа состоит из двух частей - мантиссы и порядка. В IBM PC-совместимых компьютерах величины типа float занимают 4 байта, из которых один двоичный разряд отводится под знак мантиссы, 8 разрядов под порядок и 23 под мантиссу. Мантисса - это число, большее 1.0, но меньшее 2.0. Поскольку старшая цифра мантиссы всегда равна 1, она не хранится.

Для величин типа double, занимающих 8 байт, под порядок и мантиссу отводится 11 и 52 разряда соответственно. Длина мантиссы определяет точность числа, а длина порядка - его диапазон. Как можно видеть из таблицы в конце записи, при одинаковом количестве байт, отводимом под величины типа float и long int, диапазоны их допустимых значений сильно различаются из-за внутренней формы представления .

Спецификатор long перед именем типа double указывает, что под его величину отводится 10 байт.

Константы с плавающей точкой имеют по умолчанию тип double. Можно явно указать тип константы с помощью суффиксов F, f (float) и L, l (long). Например, константа 2E+6L будет иметь тип long double, а константа 1.82f - тип float.

Для написания переносимых на различные платформы программ нельзя делать предположений о размере типа int. Для его получения необходимо пользоваться операцией sizeof, результатом которой является размер типа в байтах. Например, для операционной системы MS-DOS sizeof (int) даст в результате 2, а для Windows 98 или OS/2 результатом будет 4.

В стандарте ANSI диапазоны значений для основных типов не задаются, определяются только соотношения между их размерами, например:

sizeof(float) ≤ slzeof(double) ≤ sizeof(long double)
sizeof(char) ≤ slzeof(short) ≤ sizeof(int) ≤ sizeof(long)

Примечание

Минимальные и максимальные допустимые значения для целых типов зависят от реализации и приведены в заголовочном файле (), характеристики вещественных типов - в файле (), а также в шаблоне класса numeric_limits

Тип void

Кроме перечисленных, к основным типам языка относится тип void, но множество значений этого типа пусто. Он используется для определения функций, которые не возвращают значения, для указания пустого списка аргументов функции, как базовый тип для указателей и в операции приведения типов.

Диапазоны значений простых типов данных в C++ для IBM PC-совместимых компьютеров

Q: Что означает термин IBM PC-совместимый компьютер?
A: IBM PC-совместимый компьютер (англ. IBM PC compatible) - компьютер, архитектурно близкий к IBM PC, XT и AT. IBM PC-совместимые компьютеры построены на базе микропроцессоров, совместимых с Intel 8086 (а, как известно, все выпущенные позднее процессоры Intel имеют полную обратную совместимость с 8086). По сути это практически все современные компьютеры.

Различные виды целых и вещественных типов, различающиеся диапазоном и точностью представления данных, введены для того, чтобы дать программисту возможность наиболее эффективно использовать возможности конкретной аппаратуры, поскольку от выбора типа зависит скорость вычислений и объем памяти. Но оптимизированная для компьютеров какого-либо одного типа программа может стать не переносимой на другие платформы, поэтому в общем случае следует избегать зависимостей от конкретных характеристик типов данных.

Тип Диапазон значений Размер (байт)
bool true и false 1
signed char -128 … 127 1
unsigned char 0 … 255 1
signed short int -32 768 … 32 767 2
unsigned short int 0 … 65 535 2
signed long int -2 147 483 648 … 2 147 483 647 4
unsigned long int 0 … 4 294 967 295 4
float 3.4e-38 … 3.4e+38 4
double 1.7e-308 … 1.7C+308 8
long double 3.4e-4932 … 3.4e+4932 10

Для вещественных типов в таблице приведены абсолютные величины минимальных и максимальных значений.

Пожалуйста, приостановите работу AdBlock на этом сайте.

Чтобы хранить в своей программе какие-либо данные, вам понадобятся переменные. Прежде всего, нужно научиться эти переменные в программе создавать. Другими словами, вспоминая нашу аналогию с коробками, чтобы в коробку что-то положить, её, эту самую коробку, хорошо бы сначала где-нибудь раздобыть.

В книжках по программированию процесс создания переменной называют объявлением переменной . Это словосочетание хорошо бы знать, чтобы понимать профессиональную литературу и речь других программистов. Но ещё более важно понимать, что за этим словосочетанием скрывается.

Как объявить переменную?

Для того чтобы объявить переменную, необходимо указать её тип и записать её имя. Ну и не забыть поставить ";". Общая стуктура объявления переменной показана на следующем рисунке.

Рис.1. Общий синтаксис объявления переменной.".

В примере на рисунке мы создаём переменную с именем num, в которой можно будет хранить целые числа. На то, что мы собираемся использовать переменную для хранения целых чисел, указывает тип данных int.

Ещё парочка примеров:

Листинг 1. Объявление переменных

Int z; // переменная z целого типа char w; // переменная w символьного типа

Для имён переменных есть одно правило, которое надо будет запомнить.

В качестве имени переменной может выступать любая последовательность символов латинского алфавита, цифр и знака нижнего подчеркивания "_", которая начинается с буквы.

На самом деле, на имя переменной есть дополнительные ограничения, но мы пока в такие детали вдаваться не будем. Давайте лучше посмотрим на примеры правильных и неправильных имён.

Правильные имена переменных

Peremennaya, flag, f3, var4, KolichestvoBukv, fd4s, FLaG, key_number

Неправильные имена переменных

2num – начинается с цифры
num flat – содержит пробел в имени
nomer-telefona – содержит дефис

И ещё один важный момент. В языке программирования Си регистр букв очень важен. Например, переменные с именами flag, FLAG, FlAg, fLAg -- это всё различные переменные. Кроме того, есть ряд слов, которые нельзя использовать для названия переменных. Например, int, void, return и другие. Это специальные ключевые слова , которые зарезервированы для нужд самого языка и нигде в другом месте не могу быть использованы.

Кстати, за одно объявление можно создать сразу несколько переменных одного типа.

Листинг 2. Объявление нескольких переменных

Int a,c; // объявляем переменные a и c целого типа double x, y, z; // объявляем сразу три вещественные переменные

Всё просто и логично. Сначала указывает тип переменных, а потом их имена, разделённые запятой.

Переменная в памяти компьютера.

Пару слов о том, как выглядит объявление переменной с точки зрения компьютера.

Можно считать, что при объявлении мы сообщаем компьютеру, чтобы он выделил под переменную место в памяти и связал это место определенным именем. Количество места, которое будет выделено в памяти для хранения переменной, зависит от типа этой переменной. Проиллюстрируем эту мысль следующим рисунком.

Листинг 3. Объявление двух переменных

Int w; // объявляем целочисленной переменной w double z; // объявляем вещественной переменной z

Рис.3. Переменные в памяти компьютера.

На рисунке условно изображена память компьютера как набор ячеек, в каждой из которых может что-то храниться. При этом вещественная переменная занимает две ячейки, а целочисленная всего одну. Это соотношение (два к одному) условное. На самом деле, в вашем компьютере переменная вещественного типа может занимать, например, в четыре раза больше места в памяти, чем целочисленная переменная.

Практика

Решите предложенные задачи: Для удобства работы сразу переходите в полноэкранный режим

Исследовательские задачи для хакеров

  1. Объявите в программе переменную с неправильным именем и попробуйте скомпилировать программу. Посмотрите, какую ошибку выдаст компилятор.
  2. Найдите список всех ключевых слов языка Си. Можно искать в стандарте языка(подсказка: "keywords"), а можно в интернете. Запоминать наизусть их не нужно, но разок посмотреть на них стоит.


Рекомендуем почитать

Наверх