Технология Wimax – что это такое. Сопоставление Wi-Fi и WiMAX

Новости 07.05.2019
Новости

Все известный под аббревиатурой Wi-Fi этот стандарт носит официальное имя IEEE 802.11 и является первым в своем роде международным стандартом передачи данных с помощью радиочастот в диапазоне 2,4 ГГц. Разрабатываться учеными начал в далеком 1990 году с требованием к скорости передающего потока 1..2 Мбит/с.

К 1997 году, когда технология была закончена, заявленная скорость уже была не столь велика, и стандарт был признан морально устаревшим. Но техника не стоит на месте, поэтому спустя несколько лет на свет ученые выдали усовершенствованный стандарт Wi-Fi, а точнее его модификации: IEEE 802.11b (скорость около 11 Мбит/с), IEEE 802.11g, IEEE 802.11a (пропускная способность до 54 Мбит/с с передающей частотой 5 ГГц).

Стандарты являются модификациями, поэтому, сегодня почти все продаваемое оборудование поддерживает все перечисленные форматы Wi-Fi. Работать Wireless-устройства способны в двух режимах: Ad Hoc и Infrastructure.

Работа в первом режиме также известна в мире, как Peer-to-Peer (точка-точка) технология. При работе в данном режиме беспроводные устройства соединяются между собой напрямую.

В режиме работы Infrastrucure все элементы беспрводной сети взаимодействуют через единый центр, играющий роль концентратора. При этом работа организуется либо простым способом (BSS), либо сложная (ESS). При простом способе организации сети вся аппаратура соединена с одной точкой доступа, а при сложной организации сети одновременно функционирует несколько соединенных точек доступа и wi-fi контроллер может выбрать любую. При перемещении в пространстве wi-fi адаптер выбирает наиболее мощную точку доступа и присоединяется к ней. При этом переход между точками пользователю будет даже не заметен.

WiMAX – Worldwide Interoperability for Microwave Access

Под таким сложным названием скрывается беспроводная сеть, разработанная учеными для сетей в масштабе целых городов и предназначенная для передачи данных на скорости около 70 Мбит/с на расстояние до нескольких километров. WiMAX сети организуются в крупных населенных пунктах Интернет-провайдерами по типу сотовой сети, для wi-fi сетей это скорее не конкурент, а дополнение. Объясняется это тем, что разработанный стандарт 802.16а для работы требует громоздкого и дорогого оборудования, да и передачу данных осуществляет на частотах от 2 до 11 ГГц.

Совсем недавняя спецификация 802.11е позволяет организовывать сеть подобной технологии динамическим способом, так что пользователь сможет передвигаться между базовыми станциями. В отличие от wi-fi стандарта, WiMAX обладает рядом преимуществ: защита сети от коллизий (базовая станция распределяет права доступа к сети между абонентами), наличие механизма обеспечения качества трафика (резервирование канала данных для передачи отдельного потока данных, например IP-телефонии или видео).

Характеристики представленного стандарта являются далеко неполными, но уже сейчас можно говорить о том, что в ближайшем будущем формат WiMAX может стать серьезным конкурентом для сотовых операторов, предоставляя похожий перечень услуг сетей 3G, но более качественно, дешевле и функциональнее.

Беспроводные технологии (Wi-Fi, Bluetooth, WiMAX)

Информатика, кибернетика и программирование

В настоящее время существует множество беспроводных технологий наиболее часто известных пользователям по их маркетинговым названиям таким как WiFi WiMAX Bluetooth.4 GHz работает множество устройств таких как устройства поддерживающие Bluetooth и др и даже микроволновые печи что ухудшает электромагнитную совместимость.

Беспроводные технологии — подкласс информационных технологий , служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение , радиоволны , оптическое или лазерное излучение.

В настоящее время существует множество беспроводных технологий, наиболее часто известных пользователям по их маркетинговым названиям, таким как Wi-Fi , WiMAX , Bluetooth . Каждая технология обладает определёнными характеристиками, которые определяют её область применения.

1) Wi-Fi — торговая марка Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11 . Под аббревиатурой Wi-Fi (от английского словосочетания Wireless Fidelity, которое можно дословно перевести как «высокая точность беспроводной передачи данных») в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Любое оборудование, соответствующее стандарту IEEE 802.11 , может быть протестировано в Wi-Fi Alliance и получить соответствующий сертификат и право нанесения логотипа Wi-Fi.

История

Wi-Fi был создан в 1991 году NCR Corporation / AT&T (впоследствии — Lucent Technologies и Agere Systems ) в Ньивегейн , Нидерланды . Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с. Создатель Wi-Fi — Вик Хейз (Vic Hayes) находился в команде, участвовавшей в разработке таких стандартов, как IEEE 802.11b , IEEE 802.11a и IEEE 802.11g . В 2003 году Вик ушёл из Agere Systems . Agere Systems не смогла конкурировать на равных в тяжёлых рыночных условиях, несмотря на то, что её продукция занимала нишу дешёвых Wi-Fi решений. 802.11abg all-in-one чипсет от Agere (кодовое имя: WARP) плохо продавался, и Agere Systems решила уйти с рынка Wi-Fi в конце 2004 года .

Стандарт IEEE 802.11n был утверждён 11 сентября 2009 года. Его применение позволяет повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с.

27 июля 2011 года Институт инженеров электротехники и электроники (IEEE) выпустил официальную версию стандарта IEEE 802.22 . Системы и устройства, поддерживающие этот стандарт, позволят передавать данные на скорости до 22 Мб/с в радиусе 100 км от ближайшего передатчика.

Происхождение названия

Термин «Wi-Fi» изначально был придуман как игра слов для привлечения внимания потребителя «намёком» на Hi-Fi (англ. High Fidelity — высокая точность). Несмотря на то, что поначалу в некоторых пресс-релизах WECA фигурировало словосочетание «Wireless Fidelity» («беспроводная точность»), на данный момент от такой формулировки отказались, и термин «Wi-Fi» никак не расшифровывается.

Принцип работы

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента . Также возможно подключение двух клиентов в режиме точка-точка (Ad-hoc) , когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети ( SSID (англ.) русск. ) с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Поэтому 0,1 Мбит/с — наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID приёмник может выбирать между ними на основании данных об уровне сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения . Более подробно принцип работы описан в официальном тексте стандарта.

Однако, стандарт не описывает всех аспектов построения беспроводных локальных сетей Wi-Fi. Поэтому каждый производитель оборудования решает эту задачу по-своему, применяя те подходы, которые он считает наилучшими с той или иной точки зрения. Поэтому возникает необходимость классификации способов построения беспроводных локальных сетей.

По способу объединения точек доступа в единую систему можно выделить:

  • Автономные точки доступа (называются также самостоятельные, децентрализованные, умные)
  • Точки доступа, работающие под управлением контроллера (называются также «легковесные», централизованные)
  • Бесконтроллерные, но не автономные (управляемые без контроллера)

По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

  • Со статическими настройками радиоканалов
  • С динамическими (адаптивными) настройками радиоканалов
  • Со «слоистой» или многослойной структурой радиоканалов

Преимущества Wi-Fi

  • Позволяет развернуть сеть без прокладки кабеля , что может уменьшить стоимость развёртывания и/или расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.
  • Позволяет иметь доступ к сети мобильным устройствам.
  • Wi-Fi устройства широко распространены на рынке. Гарантируется совместимость оборудования благодаря обязательной сертификации оборудования с логотипом Wi-Fi.
  • Мобильность. Вы больше не привязаны к одному месту и можете пользоваться Интернетом в комфортной для вас обстановке.
  • В пределах Wi-Fi зоны в сеть Интернет могут выходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.
  • Излучение от Wi-Fi устройств в момент передачи данных на порядок (в 10 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi

  • В диапазоне 2.4 GHz работает множество устройств, таких как устройства, поддерживающие Bluetooth , и др, и даже микроволновые печи , что ухудшает электромагнитную совместимость .
  • Производителями оборудования указывается скорость на L1 (OSI), в результате чего создаётся иллюзия, что производитель оборудования завышает скорость, но на самом деле в Wi-Fi весьма высоки служебные «накладные расходы». Получается, что скорость передачи данных на L2 (OSI) в Wi-Fi сети всегда ниже заявленной скорости на L1 (OSI). Реальная скорость зависит от доли служебного трафика, которая зависит уже от наличия между устройствами физических преград (мебель, стены), наличия помех от других беспроводных устройств или электронной аппаратуры, расположения устройств относительно друг друга и т. п.
  • Частотный диапазон и эксплуатационные ограничения в различных странах не одинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США ; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания , запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия , Белоруссия и Италия , требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора.
  • Как было упомянуто выше — в России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ , превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.
  • Стандарт шифрования WEP может быть относительно легко взломан даже при правильной конфигурации (из-за слабой стойкости алгоритма). Новые устройства поддерживают более совершенный протокол шифрования данных WPA и WPA2 . Принятие стандарта IEEE 802.11i (WPA2 ) в июне 2004 года сделало доступной более безопасную схему, которая доступна в новом оборудовании. Обе схемы требуют более стойкий пароль , чем те, которые обычно назначаются пользователями. Многие организации используют дополнительное шифрование (например VPN ) для защиты от вторжения. На данный момент основным методом взлома WPA2 является подбор пароля, поэтому рекомендуется использовать сложные цифро-буквенные пароли для того, чтобы максимально усложнить задачу подбора пароля.
  • В режиме точка-точка (Ad-hoc) стандарт предписывает лишь реализовать скорость 11 Мбит/сек (802.11b). Шифрование WPA(2) недоступно, только легковзламываемый WEP.

2) Bluetooth или блютус (/bluːtuːθ/ , переводится как синий зуб , назван в честь Харальда I Синезубого) — производственная спецификация беспроводных персональных сетей(англ. Wireless personal area network , WPAN ). Bluetooth обеспечивает обмен информацией между такими устройствами как персональные компьютеры (настольные, карманные, ноутбуки), мобильные телефоны, принтеры, цифровые фотоаппараты, мышки, клавиатуры, джойстики, наушники, гарнитуры на надёжной, бесплатной, повсеместно доступной радиочастоте для ближней связи.

Bluetooth позволяет этим устройствам сообщаться, когда они находятся в радиусе до 100 метров друг от друга (дальность сильно зависит от преград и помех), даже в разных помещениях.

История создания и развития

Работы по созданию Bluetooth начал производитель телекоммуникационного оборудования Ericsson в 1994 году как беспроводную альтернативу кабелям RS-232 . Первоначально эта технология была приспособлена под потребности системы FLYWAY в функциональном интерфейсе между путешественниками и системой.

Спецификация Bluetooth была разработана группой Bluetooth Special Interest Group (Bluetooth SIG) , которая была основана в 1998 году . В неё вошли компании Ericsson , IBM , Intel , Toshiba и Nokia . Впоследствии Bluetooth SIG и IEEE достигли соглашения, на основе которого спецификация Bluetooth стала частью стандарта IEEE 802.15.1 (дата опубликования — 14 июня 2002 года ).

Класс

Максимальная мощность, мВт

Максимальная мощность, дБм

Радиус действия, м

Компания AIRcable выпустила Bluetooth-адаптер Host XR с радиусом действия около 30 км.

Спецификации

Bluetooth 1.0

Устройства версий 1.0 (1998) и 1.0B имели плохую совместимость между продуктами различных производителей. В 1.0 и 1.0B была обязательной передача адреса устройства (BD_ADDR) на этапе установления связи, что делало невозможной реализацию анонимности соединения на протокольном уровне и было основным недостатком данной спецификации.

Bluetooth 1.1

В Bluetooth 1.1 было исправлено множество ошибок, найденных в 1.0B, добавлена поддержка для нешифрованных каналов, индикация уровня мощности принимаемого сигнала ( RSSI ).

Bluetooth 1.2

В версии 1.2 была добавлена технология адаптивной перестройки рабочей частоты (AFH), что улучшило сопротивляемость к электромагнитной интерференции (помехам) путём использования разнесённых частот в последовательности перестройки. Также увеличилась скорость передачи и добавилась технология eSCO , которая улучшала качество передачи голоса путём повторения повреждённых пакетов. В HCI добавилась поддержка трёх-проводного интерфейса UART .

Главные улучшения включают следующее:

  • Быстрое подключение и обнаружение.
  • Адаптивная перестройка частоты с расширенным спектром (AFH), которая повышает стойкость к радиопомехам.
  • Более высокие, чем в 1.1, скорости передачи данных, практически до 721 кбит/с.
  • Расширенные Синхронные Подключения (eSCO), которые улучшают качество передачи голоса в аудиопотоке, позволяя повторную передачу повреждённых пакетов, и при необходимости могут увеличить задержку аудио, чтобы оказать лучшую поддержку для параллельной передачи данных.
  • В Host Controller Interface (HCI) добавлена поддержка трёхпроводного интерфейса UART.
  • Утверждён как стандарт IEEE Standard 802.15.1-2005 .
  • Введены режимы управления потоком данных (Flow Control) и повторной передачи (Retransmission Modes) для L2CAP.

Bluetooth 2.0 + EDR

Bluetooth версии 2.0 был выпущен 10 ноября 2004 г. Имеет обратную совместимость с предыдущими версиями 1.x. Основным нововведением стала поддержка Enhanced Data Rate (EDR) для ускорения передачи данных. Номинальная скорость EDR около 3 Мбит/с, однако на практике это позволило повысить скорость передачи данных только до 2,1 Мбит/с. Дополнительная производительность достигается с помощью различных радиотехнологий для передачи данных .

Стандартная (базовая) скорость передачи данных использует GFSK -модуляцию радиосигнала при скорости передачи в 1 Мбит/с. EDR использует сочетание модуляций GFSK и PSK с двумя вариантами, π/4-DQPSK и 8DPSK. Они имеют большие скорости передачи данных по воздуху — 2 и 3 Mбит/с соответственно .

Bluetooth SIG издала спецификацию как «Технология Bluetooth 2.0 + EDR», которая подразумевает, что EDR является дополнительной функцией. Кроме EDR, есть и другие незначительные усовершенствования к 2.0 спецификации, и продукты могут соответствовать «Технологии Bluetooth 2.0», не поддерживая более высокую скорость передачи данных. По крайней мере одно коммерческое устройство, HTC TyTN Pocket PC, использует «Bluetooth 2.0 без EDR» в своих технических спецификациях .

Согласно 2.0 + EDR спецификации, EDR обеспечивает следующие преимущества:

  • Увеличение скорости передачи в 3 раза (2,1 Мбит/с) в некоторых случаях.
  • Уменьшение сложности нескольких одновременных подключений из-за дополнительной полосы пропускания.
  • Более низкое потребление энергии благодаря уменьшению нагрузки.

Bluetooth 2.1

2007 год. Добавлена технология расширенного запроса характеристик устройства (для дополнительной фильтрации списка при сопряжении), энергосберегающая технология Sniff Subrating , которая позволяет увеличить продолжительность работы устройства от одного заряда аккумулятора в 3—10 раз. Кроме того обновлённая спецификация существенно упрощает и ускоряет установление связи между двумя устройствами, позволяет производить обновление ключа шифрования без разрыва соединения, а также делает указанные соединения более защищёнными, благодаря использованию технологии Near Field Communication .

Bluetooth 2.1 + EDR

В августе 2008 года Bluetooth SIG представил версию 2.1+EDR. Новая редакция Bluetooth снижает потребление энергии в 5 раз, повышает уровень защиты данных и облегчает распознавание и соединение Bluetooth-устройств благодаря уменьшению количества шагов, за которые оно выполняется.

Bluetooth 3.0 + HS

3.0+HS была принята Bluetooth SIG 21 апреля 2009 года. Она поддерживает теоретическую скорость передачи данных до 24 Мбит/с. Её основной особенностью является добавление AMP (асимметричная мультипроцессорная обработка) (альтернативно MAC/PHY), дополнение к 802.11 как высокоскоростное сообщение. Две технологии были предусмотрены для AMP: 802.11 и UWB, но UWB отсутствует в спецификации.

Модули с поддержкой новой спецификации соединяют в себе две радиосистемы: первая обеспечивает передачу данных в 3 Мбит/с (стандартная для Bluetooth 2.0) и имеет низкое энергопотребление; вторая совместима со стандартом 802.11 и обеспечивает возможность передачи данных со скоростью до 24 Мбит/с (сравнима со скоростью сетей Wi-Fi ). Выбор радиосистемы для передачи данных зависит от размера передаваемого файла. Небольшие файлы передаются по медленному каналу, а большие — по высокоскоростному. Bluetooth 3.0 использует более общий стандарт 802.11 (без суффикса), то есть не совместим с такими спецификациями Wi-Fi, как 802.11b/g или 802.11n.

Bluetooth 4.0

См. также: Bluetooth с низким энергопотреблением

Bluetooth SIG утвердил спецификацию Bluetooth 4.0 30 июня 2010г. Bluetooth 4.0 включает в себя протоколы Классический Bluetooth, Высокоскоростной Bluetooth и Bluetooth с низким энергопотреблением. Высокоскоростной Bluetooth основан на Wi-Fi, а Классический Bluetooth состоит из протоколов предыдущих спецификаций Bluetooth.

Протокол Bluetooth с низким энергопотреблением предназначен, прежде всего, для миниатюрных электронных датчиков (использующихся в спортивной обуви, тренажёрах, миниатюрных сенсорах, размещаемых на теле пациентов и т. д.). Низкое энергопотребление достигается за счёт использования специального алгоритма работы. Передатчик включается только на время отправки данных, что обеспечивает возможность работы от одной батарейки типа CR2032 в течение нескольких лет . Стандарт предоставляет скорость передачи данных в 1 Мбит/с при размере пакета данных 8—27 байт. В новой версии два Bluetooth-устройства смогут устанавливать соединение менее чем за 5 миллисекунд и поддерживать его на расстоянии до 100 м. Для этого используется усовершенствованная коррекция ошибок, а необходимый уровень безопасности обеспечивает 128-битное AES-шифрование.

Сенсоры температуры, давления, влажности, скорости передвижения и т. д. на базе этого стандарта могут передавать информацию на различные устройства контроля: мобильные телефоны, КПК, ПК и т. п.

Первый чип с поддержкой Bluetooth 3.0 и Bluetooth 4.0 был выпущен компанией ST-Ericsson в конце 2009 года.

Bluetooth 4.0 поддерживается в MacBook Air и Mac mini (с июля 2011 года), iMac (ноябрь 2012 года), iPhone 4S (октябрь 2011 года) и iPhone 5 (сентябрь 2012 года), iPad 3 (март 2012 года)и iPad mini (с ноября 2012 года) , смартфонах LG Optimus 4X HD (февраль 2012 года), Google Nexus 4, HTC One X, S, V и Samsung Galaxy S III (май 2012 года), Explay Infinity (август 2012 года), HTC One X+ (2012), HTC Desire C, HTC Desire V, Google Nexus 7 (2012), Sony VAIO SVE1511N1RSI, Nokia Lumia 920 (18 сентября 2012).

Стек протоколов Bluetooth

Bluetooth имеет многоуровневую архитектуру, состоящую из основного протокола, протоколов замены кабеля, протоколов управления телефонией и заимствованных протоколов. Обязательными протоколами для всех стеков Bluetooth являются: LMP , L2CAP и SDP. Кроме того, устройства, связывающиеся с Bluetooth обычно используют протоколы HCI и RFCOMM.

Link Management Protocol — используется для установления и управления радиосоединением между двумя устройствами. Реализуется контроллером Bluetooth.

Host/controller interface — определяет связь между стеком хоста (т.е. компьютера или мобильного устройства) с контроллером Bluetooth.

AVRCP

A/V Remote Control Profile — обычно используется в автомобильных навигационных системах для управления звуковым потоком через Bluetooth.

L2CAP

Logical Link Control and Adaptation Protocol — используется для мультиплексирования локальных соединений между двумя устройствами, использующими различные протоколы более высокого уровня. Позволяет фрагментировать и пересобирать пакеты.

Service Discovery Protocol — позволяет обнаруживать услуги, предоставляемые другими устройствами, и определять их параметры.

RFCOMM

Radio Frequency Communications — протокол замены кабеля, создаёт виртуальный последовательный поток данных и эмулирует управляющие сигналы RS-232 .

BNEP

Bluetooth Network Encapsulation Protocol — используется для передачи данных из других стеков протоколов через канал L2CAP. Применяется для передачи IP-пакетов в профиле Personal Area Networking.

AVCTP

Audio/Video Control Transport Protocol — используется в профиле Audio / Video Remote Control для передачи команд по каналу L2CAP.

AVDTP

Audio/Video Distribution Transport Protocol — используется в профиле Advanced Audio Distribution для передачи стереозвука по каналу L2CAP.

Telephony Control Protocol – Binary — протокол, определяющий сигналы управления вызовом для установления голосовых соединений и соединений для передачи данных между устройствами Bluetooth. Используется только в профиле Cordless Telephony.

Заимствованные протоколы включают в себя: Point-to-Point Protocol ( PPP ), TCP/IP , UDP , Object Exchange Protocol (OBEX ), Wireless Application Environment (WAE), Wireless Application Protocol (WAP).

3) WiMAX (англ. W orldwide I nteroperability for M icrowave A ccess ) — телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов ). Основана на стандарте IEEE 802.16 , который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован).

Название «WiMAX» было создано WiMAX Forum — организацией, которая была основана в июне 2001 года с целью продвижения и развития технологии WiMAX. Форум описывает WiMAX как «основанную на стандарте технологию, предоставляющую высокоскоростной беспроводной доступ к сети, альтернативный выделенным линиям и DSL ». Максимальная скорость — до 1 Гбит/сек на ячейку.

WiMAX подходит для решения следующих задач:

  • Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.
  • Обеспечения беспроводного широкополосного доступа как альтернативы выделенным линиям и DSL .
  • Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.
  • Создания точек доступа , не привязанных к географическому положению.
  • Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе SCADA .

WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi -сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети . В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

Принцип работы

Основные понятия

В общем виде WiMAX сети состоят из следующих основных частей: базовых и абонентских станций, а также оборудования, связывающего базовые станции между собой, с поставщиком сервисов и с Интернетом.

Для соединения базовой станции с абонентской используется высокочастотный диапазон радиоволн от 1,5 до 11 ГГц. В идеальных условиях скорость обмена данными может достигать 70 Мбит/с, при этом не требуется обеспечения прямой видимости между базовой станцией и приёмником.

Как уже говорилось выше, WiMAX применяется как для решения проблемы « последней мили », так и для предоставления доступа в сеть офисным и районным сетям .

Между базовыми станциями устанавливаются соединения (прямой видимости), использующие диапазон частот от 10 до 66 ГГц, скорость обмена данными может достигать 140 Мбит/c. При этом, по крайней мере одна базовая станция подключается к сети провайдера с использованием классических проводных соединений. Однако, чем большее число БС подключено к сетям провайдера, тем выше скорость передачи данных и надёжность сети в целом.

Структура сетей семейства стандартов IEEE 802.16 схожа с традиционными GSM сетями (базовые станции действуют на расстояниях до десятков километров, для их установки не обязательно строить вышки — допускается установка на крышах домов при соблюдении условия прямой видимости между станциями) .

Режимы работы

MAC / канальный уровень

В Wi-Fi сетях все пользовательские станции, которые хотят передать информацию через точку доступа (АР), соревнуются за «внимание» последней. Такой подход может вызвать ситуацию, при которой связь для более удалённых станций будет постоянно обрываться в пользу более близких станций. Подобное положение вещей делает затруднительным использование таких сервисов как Voice over IP (VoIP), которые очень сильно зависят от непрерывного соединения.

Что же касается сетей 802.16, в них MAC использует алгоритм планирования. Любой пользовательской станции стоит лишь подключиться к точке доступа, для неё будет создан выделенный слот на точке доступа, недоступный другим пользователям.

Архитектура

WiMAX Forum разработал архитектуру, которая определяет множество аспектов работы WiMAX сетей: взаимодействия с другими сетями, распределение сетевых адресов, аутентификация и многое другое. Приведённая иллюстрация даёт некоторое представление об архитектуре сетей WiMAX.

WiMAX Форум WiMAX Архитектура

  • SS/MS: (the Subscriber Station/Mobile Station)
  • ASN: (the Access Service Network)
  • BS: (Base station), базовая станция, часть ASN
  • ASN-GW: (the ASN Gateway), шлюз , часть ASN
  • CSN: (the Connectivity Service Network)
  • HA: (Home Agent, часть CSN)
  • NAP:(a Network Access Provider)
  • NSP: (a Network Service Provider)

ASN (Access Service Network) — сеть доступа .

ASN Gateway — предназначен для объединения трафика и сообщений сигнализации от базовых станций и дальнейшей их передачи в сеть CSN.

BS (Base Station) — базовая станция. Основной задачей является установление, поддержание и разъединение радио соединений. Кроме того, выполняет обработку сигнализации, а также распределение ресурсов среди абонентов.

CSN (Connectivity Service Network) — сеть обеспечения услуг .

HA (Home Agent) — элемент сети, отвечающий за возможность роуминга. Кроме того, обеспечивает обмен данными между сетями различных операторов.

Следует заметить, что архитектура сетей WiMax не привязана к какой-либо определённой конфигурации, обладает высокой гибкостью и масштабируемостью.


А также другие работы, которые могут Вас заинтересовать

51168. Исследование интегрального датчика температуры LM60 89.22 KB
Цель: изучить конструкцию интегрального датчика температуры LM60 его свойства применение научиться снимать статистическую характеристику. Вывод: изучили свойства интегрального датчика температуры LM60 его применение научились снимать...
51169. Исследование работы термометра сопротивления 56.06 KB
Цель: изучить конструкцию термометра сопротивления его свойства применение научиться снимать статистическую характеристику.
51170. Исследование работы термоэлектрического преобразователя 56.5 KB
Цель: изучить конструкцию термоэлектрического преобразователя его свойства применение научиться снимать статистическую характеристику.
51172. Елизавета Петровна - русская императрица 86.35 KB
Смерть жениха расстроила и этот брак а за последовавшей вскоре после того кончиной Екатерины I заботы о замужестве Елизаветы совершенно прекратились. Но теперь за изменение участи Елизаветы взялось само общество. Путем возведения на престол Елизаветы первый думал отвлечь Россию от союза с Австрией а второй вернуть Швеции завоеванные Петром Великим земли. Арест Брауншвейгской фамилии произошел очень быстро не вызвав никакого кровопролития и на другой день появился манифест кратко возвещавший о вступлении Елизаветы на престол.

WiMAX расшифровывается как Worldwide Interoperability for Microwave Access или по-русски Международное взаимодействие для микроволнового доступа. Технология WiMAX базируется на стандартах беспроводной связи, обеспечивающих высокоскоростную широкополосную связь на большие расстояния для домашних (потребительских) и деловых целей.



WiMAX работает по принципу метода модуляции ортогонального частотного разделения. Это технология беспроводного мобильного доступа 4-го поколения.


Принцип работы WiMAX аналогичен принципу Wi-Fi. Компьютер или ноутбук, оснащенный WiMAX, будут получать данные от передающей станции, используя зашифрованные ключи данных. Минимальная система WiMAX состоит из приемопередающей вышки WiMAX и приемника WiMAX. Вышка WiMAX может обеспечить покрытие большой площади, в то время как приемник WiMAX может быть ноутбуком или картой PCMCIA. Станция вышки может быть подключена непосредственно к Интернету с использованием беспроводного канала с высокоскоростной полосой пропускания, проводного соединения или другой вышки с применением технологий Line of Sight, Microwave link.



WiMAX-соединение доступно для жилых районов через интерфейсные опции, такие как RJ-4 Ethernet-соединение и телефонное соединение RJ-11. Для бизнес-приложений опции включают интерфейс T1/E1 с 10/100 BT Ethernet-соединением. Итак, согласно вышеописанному технология WiMax похожа на Wifi, так в чем же разница?


В то время как Wi-Fi основан на стандарте IEEE 802.11, WiMAX основан на стандарте IEEE 802.16. Стандарт IEEE 802.11 используется для обеспечения функционирования беспроводной локальной сети (WLAN) для беспроводной связи на короткие расстояния. Популярные версии: IEEE 802.11b, 802.11g и 802.11n. Стандарт IEEE 802.16 подобен стандарту IEEE 802.11 по архитектуре, но отличается тем, что он обеспечивает функционирование широкополосных беспроводных городских сетей (WMAN). Он использует средство управления доступом к среде (mac), а также спецификации физического уровня, позволяющие использовать несколько физических уровней. Популярные версии 802.16a, 802.16d и 802.16e.



Таким образом, одним из основных отличий WiMAX от Wi-Fi является дальность действия. WiMAX обеспечивает передачу данных как в прямой видимости, так вне поля зрения. Для передачи данных в прямой видимости с использованием мощных антенн можно добиться зоны покрытия до 9300 квадратных километров. При не прямой видимости WiMAX охватывает радиус 50 километров. С другой стороны, Wi-Fi – это средство беспроводной связи на расстоянии до 30 метров для применений внутри помещений и до 100 метров для наружного использования. В отличие от WiMAX, Wi-Fi обеспечивает эффективную связь лишь в прямой линии видимости.



Различаются WiMAX и Wi-Fi также в рабочих частотах и полосах пропускания. Технология WiMAX в режиме Line of sight (в прямой видимости) имеет рабочую полосу частот до 66 ГГц, а в режиме Non-line of sight (не в прямой видимости) рабочая частота составляет от 2 до 11 ГГц. Напротив, Wi-Fi работает в нелицензированных диапазонах 2,4 ГГц и 5 ГГц. Сети WiMAX имеют полосу пропускания от 1,25 МГц до 20 МГц, тогда как сети Wi-Fi имеют фиксированную полосу пропускания канала 20 МГц.


WiMAX поддерживает полнодуплексную связь с 256 FFT OFDM (модуляция с ортогональным частотным разделением) наряду с одной несущей и 2048 FFTOFDM-технологией. С другой стороны, Wi-Fi поддерживает полудуплексную связь с технологией 52 FFT OFDM.


Wi-Fi может передавать данные с максимальной скоростью до 54 мегабит в секунду, тогда как скорость для WiMAX может достигать 70 мегабит в секунду. В настоящее время стандарт обеспечивает 40 мегабит в секунду для одного беспроводного канала как для фиксированных, так и для мобильных приложений. WiMAX может обеспечивать скорость восходящей линии связи со скоростью 25 мегабит в секунду и скорость нисходящей линии связи 63 мегабит в секунду. Ожидается, что обновленная версия WiMAX обеспечит скорость до 1 гигабит в секунду.


Различаются эти две технологии и в вопросах защиты данных и криптографии. Так, Wi-Fi обеспечивает такие методы защиты, как беспроводной защищенный доступ (WPA), защищенный беспроводной доступ (WPA2) и расширенный протокол аутентификации (EAP). Тем не менее, у него пока нет управления качеством обслуживания (QoS). WiMAX использует протоколы безопасности, такие как протокол управления ключами секретности 2 (PKMP2), расширенный протокол аутентификации (EAP) и стандарт расширенного шифрования (EAS). Эти протоколы обеспечивают защиту качества обслуживания (QoS) как аудио-, так и видеопотоков. Эта функция позволяет поставщикам услуг управлять сетевым трафиком на основе соглашения с абонентом и взимать дополнительную плату за защиту качества обслуживания (QoS).



WiMAX, похоже, является многообещающей технологией беспроводной связи следующего поколения с высокой скоростью обмена данными и широкой зоной покрытия. Она не требует прямой видимости для обмена данными и может эффективно использовать полосы пропускания для передачи медиаданных, таких как видео в реальном времени. Говоря простыми словами, используя WiMAX, можно слушать музыку и смотреть видео высокого качества на своем электронном устройстве без каких-либо задержек.

WI-FI

IEEE 802.11

Wi-fi – популярная в мире и быстро развивающаяся технология беспроводных сетей, обеспечивающая беспроводное подключение мобильных пользователей к локальной сети и Интернету.

Работает в диапазоне 2.4ГГц или 5ГГц.

Wi-Fi былсозданв 1991 году NCR Corporation/AT&T.

Распространенным заблуждением является то, что термин Wi-Fi является сокращением от "Wireless Fidelity", однако это не так. Wi-Fi является просто торговой маркой, означающей стандарт IEEE 802.11x. Wi-Fi Alliance -организация, которой принадлежит Wi-Fi (зарегистрированная торговая марка). Изначально термин Wi-Fi использовался только для стандарта 802.11b на частоте 2,4 ГГц, однако Wi-Fi Alliance расширил общее использование Wi-Fi термина, включая любое устройство из стандарта 802.11х.

Wi-fi – набор из нескольких стандартов, разработанных для беспроводных сетей на основе спецификации 802.11.

Wi-Fi поддерживается многими приложениями и устройствами, включая игровые консоли, домашние сети, КПК, мобильные телефоны, основные операционные системы, и другие виды потребительской электроники. Любые устройства, которые протестированы и одобрены как "Wi-Fi Certified" от Wi-Fi Alliance сертифицированы как совместимые друг с другом, даже если они от разных производителей.

Важно отметить, что в стандарте 802.11 предусматривается использование только полудуплексных приемопередатчиков, которые не могут одновременно передавать и принимать информацию. Из-за этого в беспроводных сетях 802.11 станция в принципе не может обнаружить столкновение во время передачи (поскольку в это время не имеет возможности принимать данные). Поэтому в качестве метода доступа к среде во всех стандартах используется метод CSMA/CA (с предотвращением коллизий), позволяющий избегать столкновений. Это приводит к дополнительным сложностям при взаимодействии и, как следствие, к существенно меньшим скоростям передачи данных, чем, например, в технологии Ethernet.

Существует два основных варианта устройства беспроводной сети:

  • – передача напрямую между устройствами;

  • – передача осуществляется через точку доступа;

Как и у всех технологий семейства 802.11, технология 802.11 определяется нижними двумя уровнями, т.е. физическим уровнем и уровнем MAC, а уровень LLC выполняет свои стандартные общие для всех технологий LAN функции.

Уровень MAC выполняет в беспроводных сетях больше функций, чем в проводных. Функции уровня MAC:

  • Доступ к разделяемой среде. Подразделяется:
    • Распределенный режим DCF ;
    • Централизованный режим PCF ;
  • Обеспечение мобильности станций при наличии нескольких точек доступа;
  • Обеспечение безопасности.

DCF (Distributed Coordination Function) не имеет никаких средств централизованного управления (в этом смысле напоминая Ethernet). Реализуется алгоритм CSMA/CA (предотвращение коллизий) т.е. каждый кадр должен подтверждаться кадром положительной квитанции, если по истечению оговоренного тайм-аута квитанция не поступила, станция-отправитель считает, что произошла коллизия.

Режим доступа DCF выполняет синхронизацию станций, с помощью временных интервалов, отсчитанных от момента окончания передачи очередного кадра. Станция, которая хочет передать кадр, обязана предварительно прослушать среду. Как только она фиксирует окончание передачи кадра, обязана отсчитать интервал времени равный межкадровому интервалу (IFS). Если после истечения IFS среда все еще свободна, то начинается отсчет слотов фиксированной длительности. Кадр можно передать только в начале какого-либо из слотов при условии, что среда свободна. Станция выбирает для передачи слот на основании усеченного экспоненциального двоичного алгоритма отсрочки.

PCF (Point Coordination Function), подразумевает, что базовая станция (точка доступа) берет на себя функцию управления активностью всех станций. Является дополнением к режиму DCF.

Режим доступа PCF сосуществует с режимом DCF. После освобождения среды каждая станция отсчитывает время простоя среды, сравнивая его с тремя значениями:

  • Короткий межкадровый интервал (SIFS) имеет наименьшее значение, используемые для захвата среды квитанциями, которые продолжают или завершают начавшуюся передачу кадра;
  • Межкадровый интервал режима PCF (PIFS) имеет среднее значение, используется базовой станцией для контролируемого периода;
  • Межкадровый интервал режима DCF (DIFS) самый длинный интервал, используется для захвата среды передачи кадра.

Безопасность wi-fi

Для того, чтобы получить доступ к проводной сети, злоумышленник должен к ней физически подключиться. Такое действие можно заметить и пресечь.

В беспроводной сети несанкционированный доступ можно осуществить гораздо проще, достаточно оказаться в зоне распространения радиоволн этой сети, даже вне здания офиса.

Любое взаимодействие точки доступа (сети), и беспроводного клиента, построено на:

  • Аутентификации - как клиент и точка доступа представляются друг другу и подтверждают, что у них есть право общаться между собой;
  • Шифровании - какой алгоритм скремблирования передаваемых данных применяется, как генерируется ключ шифрования, и когда он меняется.

В стандарте 802.11 предусмотрены средства обеспечения безопасности, которые повышают защищенность беспроводной локальной сети до уровня обычно проводной локальной сети.

Способы шифрования беспроводных сетей:

  • WEP (WiredEquivalentPrivacy – секретность, эквивалентная проводной). Он представляет возможность шифровать данные, передаваемые через беспроводную среду, и тем самым обеспечивает их конфиденциальность;
  • WPA (Wi-FiProtectedAccess – защищенный доступ к Wi-Fi) – более защищенный вариант беспроводных локальных сетей. Одобрен в 2003г.
  • WPA2 - описывает надежное средство защиты беспроводных локальных сетей, сочетающее в себе наиболее совершенные средства аутентификации пользователей и шифрования данных. Одобрен в 2004г.

Спецификации физической среды 802.11

  • IEEE 802.11 ИК - используются длины волн 0,85 или 0,95 мкм. Возможны две скорости передачи: 1 и 2 Мбит/с. Частота 2,4 ГГц
  • IEEE 802.11a. DSSS (DirectSequenceSpreadSpectrum - передача широкополосного сигнала по методу прямой последовательности). Изначально стандарт IEEE 802.11 предполагал возможность передачи данных по радиоканалу на скорости не более 1 Мбит/с и опционально на скорости 2 Мбит/с. Один из первых высокоскоростных стандартов беспроводных сетей, определяет скорость передачи до 54 Мбит/с. Рабочий диапазон стандарта 5 ГГц.
  • IEEE 802.11b HR-DSSS (High Rate Direct Sequence Spread Spectrum - высокоскоростная передача широкополосного сигнала по методу прямой последовательности) принятый в 1999 году. Стандарт предусматривает использование диапазона частот 2,4 ГГц. Скорость передачи до 11 Мбит/с. Защита WEB
  • IEEE 802.11g OFDM принятый в 2003г. Этот стандарт предусматривает использование диапазона частот 2,4 ГГц, обеспечивая скорость передачи 54 Мбит/с. Стандарт IEEE 802.11g неофициально преодолел лимит 54 Мбит/с с помощью технологий объединения каналов Super G, AirPlusXtremeG, MIMO, Turbo и получил поддержку пропускной способности 108 и даже 150 Мбит/с. Защита WEB,WPA, WPA2
  • IEEE 802.11n -новейшая версия стандарта IEEE 802.11 для сетей Wi-Fi. Теоретически IEEE 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с. Устройства 802.11n работают в диапазонах 2,4 -2,5 или 5,0 ГГц. Кроме того, устройства 802.11n могут работать в трёх режимах:
    • наследуемом (Legacy), в котором обеспечивается поддержка устройств 802.11b/g и 802.11a
    • смешанном (Mixed), в котором поддерживаются устройства 802.11b/g, 802.11a и 802.11n
    • «чистом» режиме -802.11n (именно в этом режиме и можно воспользоваться преимуществами повышенной скорости и увеличенной дальностью передачи данных, обеспечиваемыми стандартом IEEE 802.11n).
  • IEEE 802.11ac - планируется использовать в 2014г, это новый стандарт беспроводных компьютерных сетей семейства 802.11 для сетей Wi-Fi на частотах 5-6 ГГц. Устройства, которые работают по этому стандарту, обеспечивают скорость передачи данных более 1 Гбит/с (до 6 Гбит/с 8x MU-MIMO), Стандарт подразумевает использование до 8 антенн MU-MIMO и расширение канала до 80 и 160 МГц. По версии компании Broadcom, данный стандарт относится к сетям нового поколения 5.5G.
  • IEEE 802.11ad - является беспроводной спецификацией на стадии разработки, будет работать в диапазоне частот 60 ГГц и предлагает большие скорости передачи данных, чем предыдущие 802.11 спецификации, с теоретической максимальной пропускной способностью до 7Гбит/с (гигабит в секунду).

Wi-MAX

WiMax (англ. Worldwide Interoperability for Microwave Access) - телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов).

Основана на стандарте IEEE 802.16, который также называют Wireless MAN. Название «WiMax» было создано WiMaxForum -организацией, которая была основана в июне 2001 года с целью продвижения и развития технологии WiMax. Форум описывает WiMax как «основанную на стандарте технологию, предоставляющую высокоскоростной беспроводной доступ к сети, альтернативный выделенным линиям и DSL»IEEE 802.16.

WiMax позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi сетей.

WiMax это система дальнего действия, покрывающая километры пространства, которая обычно использует лицензированные спектры частот (хотя возможно и использование нелицензированных частот) для предоставления соединения с интернетом типа точка-точка провайдером конечному пользователю.

  • IEEE 802.16d – Спецификация утверждена в 2004 году. Используется ортогональное частотное мультиплексирование (OFDM) поддерживается фиксированный доступ в зонах с наличием либо отсутствием прямой видимости. Скорость до 75Мбит/c, радиус действия 25-80км, частота от 1,5-11ГГц;
  • IEEE 802.16e – Спецификация утверждена в 2005 году. Применяется масштабируемый OFDM-доступ (SOFDMA), возможна работа при наличии либо отсутствии прямой видимости. Скорость до 40Мбит/c, радиус действия 1-5км, частота 2,3-13,6ГГц;
  • IEEE 802.16m или WiMax 2 – представляющем собой стандарт IEEE 802.16e, дополненный новыми возможностями, но сохранивший обратную совместимость. Скорость до 100Мбит/c или до 1Гбит/c, радиус действия и частота в разработке.

Существует большое количество различных технологий, позволяющих обеспечивать связь между разными субъектами. Одни более мобильные, другие обладают мощностью. А есть и средние по параметрам, такие как технология WiMax. Это относительно новая разработка и довольно слабо известная. Что она собой представляет? Где применяется? Какими характеристиками обладает? По каким принципам работает? Какие у неё есть перспективы использования?

Общая информация

Первоначально давайте познакомимся с полным названием - Worldwide Interoperability For Microwave Access. Именно так и расшифровывается WiMax. Это довольно молодая технология, первый стандарт которой был выпущен в 2004 году. В повседневный мир она начала проникать только сейчас. Следует знать, что первоначально технология WiMax позиционировалась как представитель четвертого поколения из-за своей новизны и скорости передачи. Но в 2008 году было остаточно решено отнести её к 3G. Что, впрочем, не мешает различным персонажам позиционировать её как беспроводной

Что она собой представляет? Технология WiMax описана в спецификации 802.16d, которая появилась в 2004 году, где предусматривалось, что абонентские устройства не перемещаются на значительные расстояния, но одновременно обеспечивается работоспособность на пятьдесят километров от базовой станции. В 2005 году вышла спецификация 802.16e, более известная как Mobile WiMax. Эта технология может функционировать в частотном диапазоне 2-6 ГГц. Наиболее удобно использовать 2,3-2,7. Но на них проблематично получить разрешение. Поэтому в оборудовании часто применяется 3,4-3,6 ГГц, что по праву считается золотой срединой. Ведь если подходить слишком близко к 6 ГГц, то возникает ряд проблем, связанных с проникновением волн и обходом имеющихся препятствий. В таких случаях необходимо обеспечить, чтобы абонентские устройства располагались в зоне прямой видимости рабочей базовой станции.

Эта технология используется, чтобы решать проблему, известную как «последняя миля». Также она используется для обеспечения интернетом офисных и районных сетей. Кстати, вот последняя миля ею решается очень эффективно. Но обо всём по порядку.

Как она устроена?

Вот мы и разобрали, что собой в общих чертах представляет технология WiMax. Принцип работы у неё следующий: есть абонентское устройство, настроенное на сеть оператора, у которого в диапазоне доступности есть базовая станция. Она отправляет запрос на выделение радиоресурсов. В случае успешного ответа идёт аутентификация. Запрос перенаправляется ААА-серверу, который решает, разрешить или отклонить его. В случае если аутентификация была успешно осуществлена, то модему назначается адрес, режим работы и иные параметры. Вот, в общем-то, и всё - устройство готово к выполнению манипуляций со стороны пользователя. Так выглядит простейшая схема.

Дополнительно сюда ещё можно включить WiMax оборудование, задачей которого является установление связей между базовыми станциями, поставщиками сервисов и интернетом. Кстати, чтобы установить соединение может быть использован широкий диапазон от 1,5 до 11 ГГц. При идеальных условиях может быть обеспечена скорость передачи данных в 70 Мбит/с. Хотя если говорить о базовых станциях, то здесь ситуация немного другая. Так, для соединения и обмена данными ими используются частоты в диапазоне 10-66 ГГц. А скорость обмена данными между ними может достигать значения 120 Мбит/с. При этом необходимо проследить, чтобы как минимум одна базовая станция была подключена к сети провайдера посредством классического проводного соединения. В целом чем их больше, тем выше скорость передачи данных.

Также растёт в целом и надежность сети. В целом сеть WiMax весьма схожа с традиционными GSM. Базовые станции работают на значительные расстояния, которые могут составлять десятки километров. Чтобы их установить, вышки не обязательно строить, можно обойтись установками на крышах домов. Но при этом необходимо соблюдать условия прямой видимости. Иначе WiMax-оборудование не будет работать с требуемой эффективностью (если вообще будет функционировать).

Технические моменты

Как обеспечивается надёжность работы? Для этого используется:

  1. TDD. Эта составляющая технологии позволяет использовать одну и ту же полосу для передачи и приёма данных, что позволяет оптимизировать работу сети.
  2. CP. Позволяет предотвращать интерференции отраженного и прямого сигнала.
  3. CC&CTC. Используются для кодировки символов.
  4. AMC. Занимается преобразованием цифровых сигналов в аналоговые. Специфика работы зависит от уровня шума и силы передачи данных. Чем лучшие по качеству сигналы поступают, тем более высокая модуляция выбирается, и мы получаем высшую скорость передачи данных.
  5. HARQ. Этот механизм используется для отслеживания ошибок, а в случае проблем отправляет запрос на осуществление повторной передачи.
  6. MIMO. Позволяет во время приёма/передачи обмениваться данными с несколькими антеннами.
  7. AAS. Это антенная система, что меняется в зависимости от перемещений абонентских устройств.

Конечно, это не все технические моменты, которыми обладает беспроводной интернет на этой технологии. Но всего вышеперечисленного с лихвой достаточно для ознакомления.

Целесообразность использования

Особенно актуальна WiMax в случае решения задачи последней мили. В последнее время появилось довольно много технологий, которые предлагают свои ответы на этот вызов. И перед оператором стоит задача выбора такой конфигурации, что позволит оптимально решить задачу доставки данных абонентам. Универсального решения здесь ещё не придумали. Поэтому каждая технология имеет свою область применения, недостатки и преимущества. На конечный выбор влияет множество факторов, среди которых:

  1. Размер требуемых инвестиций и срок их окупаемости.
  2. Время, нужное для запуска сети и последующего начала предоставления услуг.
  3. Уже существующая а также ресурсы, что нужны для её поддержки в работоспособном состоянии.
  4. Выбранная стратегия оператора, его целевая аудитория, предлагаемые и планируемые в ближайшем времени услуги.
  5. Прочие факторы.

В каких же случаях используется технология WiMax? Описание ответа на этот вопрос выглядит следующим образом:

  1. Когда необходимо обеспечить беспроводной широкополосной доступ в качестве альтернативы DSL и выделенным линиям.
  2. Создать точки доступа, не привязанные к географическому положению.
  3. Нужно предоставить высокоскоростные сервисы телекоммуникационных услуг и передачи данных.
  4. Соединить между собой и другими сегментами мировой сети точки доступа Wi-Fi.

Итак, WiMax используются в роли магистральных каналов. Благодаря ему можно создавать высокоскоростные сети в масштабах целого города.

Почему технология привлекательна для телекоммуникационных компаний?

На это есть несколько причин:

  1. WiMax является более эффективной с экономической точки зрения при предоставлении услуг и доступа в сеть для клиентов (сравнительно с проводными технологиями). Она позволяет клиентам работать даже с труднодоступных территорий. А это позитивно сказывается и на количестве абонентской базы, и предоставляемом спектре услуг.
  2. Также необходимо отметить большую простоту в использовании (нежели работа с традиционными проводными каналами). WiMax можно легко развернуть, и при необходимости она легко поддаётся масштабированию. Это её свойство является чрезвычайно полезным, когда нужно обеспечить работу большой сети за незначительный срок. Для лучшего понимания этого её свойства приведем небольшой пример. В декабре 2004 г. в Индонезии произошло сильное цунами. И чтобы помочь выжившим, была развернута WiMax. Ведь на тот момент коммуникационная инфраструктура целой области вышла из строя. А необходимо было оперативно восстановить связь.

Всё это позволяет снижать цену на качественные услуги как для бизнеса, так и для отдельных граждан. Отдельно стоит сказать про пользовательское оборудование. В случае его использования внутри помещения устанавливается устройство, которое по размеру соответствует обычному DSL-модему. Его можно использовать и вне здания, в таком случае оно немного возрастает в размерах и уже напоминает ноутбук. Размещение внутри помещения является более выгодным вариантом, что не требует профессиональных навыков. Но, увы, у него более значительные требования к максимальному расстоянию, на котором могут находиться базовая и абонентская станции.

Архитектурные особенности

В WiMax на этом уровне определено множество различных аспектов, таких как аутентификация, распределение сетевых адресов, взаимодействие с иными сетями и многими другими моментами. Следует отметить, что в данном случае архитектура не привязывается к определённой конфигурации, благодаря чему она обладает высоким уровнем гибкости и масштабности. При работе в данном случае используется алгоритм планирования.

Как это выглядит на практике? Допустим, что у нас есть большое количество пользовательских станций, что в режиме реального времени хотят осуществить передачу данных через точку доступа. В таком случае устройству достаточно просто подключиться к ней, как для него уже будет создан определённый слот, на который не смогут влиять другие абоненты. Благодаря этому достигается стабильность передачи данных, что позитивно сказывается на общем функционировании сети и её надежности.

Сравнение WiMax и Wi-Fi

Как бы это странно ни звучало, но для многих граждан эти технологии ничем не отличаются. Что, конечно, совершенно не так. Возможно, их часто сопоставляют из-за созвучности названия. Возможно, потому, что и стандарт технологии WiMax, и Wi-Fi начинается с «802.». Свою долю в это заблуждение вносит и использование беспроводного соединения для подключения к каналу обмена данными. Но, несмотря на такую поверхностную схожесть, они всё же различны.

Так, WiMax является системой дальнего действия, которая используется для обеспечения связи на километры пространства. При этом может использоваться как мобильный, так и фиксированный подходы. В чем их разница? При использовании мобильного подхода передача данных не привязана к определённому местоположению абонента. Фиксация предусматривает ситуацию, когда хотя и используется беспроводная сеть, пользователь должен находиться в конкретной точке.

Wi-Fi же является системой более короткого действия. Обычно она покрывает сотни или десятки метров, используя для себя нелицензированные диапазоны частот с целью обеспечения доступа. Эта технология используется, как правило, для создания локальной сети, которая не обязательно должна быть подключена к интернету.

Собственно, WiMax можно сравнить с мобильной связью, тогда как Wi-Fi - со стационарным беспроводным телефоном. Также есть определённая разница и в стоимости использования. Тот же Wi-Fi является более дешевым, что позволяет использовать его в рамках (относительно) небольших организаций вроде отелей, кафе, вокзалов и аэропортов. Пускай даже для покрытия более-менее значительных территорий и приходится обеспечивать работу нескольких точек.

Сравнение WiMax и эфирного интернета

Для страны с большой территорией актуальным является обеспечение связи из любой точки. WiMax для этой цели безусловно хорош, если речь идёт, к примеру, про десять километров. А если абонент находится на расстоянии 50 или даже 80 км? Что ж, такую дальность WiMax не может обеспечить, не нарушив санитарных правил работы сети (помним, что её дальность зависит от мощности, которая при выходе за определённые рамки негативно влияет на людей).

В таких случаях на помощь приходит эфирный интернет. Это технология, которая использует для передачи данных те же частоты, что и телевизионные каналы. Благодаря этому можно без значительных трат пользоваться довольно неплохим (до 3 Мбит/с) интернетом на значительном удалении. Так, связь можно иметь даже в случаях, когда эфирная башня находится на удалении 80 километров. Такая дальность возможна исключительно благодаря относительно небольшой скорости, которой всё же достаточно для взаимодействия с миром. Эта технология радиосвязи позволит пользоваться интернетом везде, где можно принять радиоволны: дача, машина, загородный пикник и даже чистое поле. Для подключения достаточно иметь стандартную дециметровую телевизионную антенну и соответствующие настройки компьютера.

Правда, здесь есть и определённый недостаток. Так, для передачи и приёма данных используется два разных канала, что сказывается на продуктивности. Но, с другой стороны, эта технология является довольно дешевой. Вместе со значительным диапазоном это позволяет её рассматривать как довольно удобный и неприхотливый способ обмена данными. Но, увы, за это приходится платить. По сравнению с тем же WiMax скорость передачи ниже в десятки раз. Хотя благо при простом посещении Интернета (а не скачивании огромных игр или длительных фильмов) разница не очень заметна.

Сравнение WiMax и LTE

А вот это наиболее интересно. Хотя бы потому, что эти технологии рассматриваются как прямые конкуренты. Поэтому сравнительный анализ сети LTE и WiMax позволит лучше раскрыть свойства последней. LTE впервые была упомянута в стандарте Rel-8. На момент её появления в ней использовалось почти то же самое, что и в WiMax. И если сравнить их с технической стороны, то можно увидеть, что отличия минимальны.

Так, они обе используют протокол ІР, что позволяет минимизировать капитальные затраты и обеспечить гибкое предоставление сервисов. Также это способствует простой интеграции различных объектов и упрощает управление сетью. Обладают они и похожей структурой сетей, где используются аналогичные по функциональному назначению основные элементы, такие как клиентское устройство, базовая станция, шлюзы, центральный узел, транспортная сеть (протокол IP/MPLS), система управления.

Также эти технологии не имеют принципиальных отличий по своим основным характеристикам. В лабораторных условиях были достигнуты практически одинаковые показатели. Но реальная ситуация немногим отличается. Как правило, низшей скоростью работы. Хотя существуют у LTE определённые проблемы со свободными частотами. В случае с WiMax ситуация немногим лучше. Но конечный выбор делается провайдером, тогда как для пользователей разница между WiMax и LTE в качестве их работы незаметна.

Использование

Как видите, WiMax является весьма прогрессивной технологией, что позволяет её успешно использовать. Вполне вероятно, что со временем она будет применена для обеспечения беспроводной связи в небольших городах или же для агломераций крупных поселений, например Москвы или Санкт-Петербурга. Дешевизна этой технологии и одновременно её высокая эффективность позволит получить людям доступ к высококачественным услугам связи и не отставать от процесса урбанизации. Её вполне хватает для работы с обычными данными, которые мы пересылаем: фотографиями, видео, текстами. Скорости работы вполне достаточно.

Возможно, в будущем технология WiMax уступит своё место чему-то другому. Например, представителям 5G. Но не факт и не везде. Ту же 5G имеет смысл использовать только в том случае, если количество абонентов в радиусе одного километра приближается к числу в один миллион активных устройств. А для сельской местности и небольших городов, вполне вероятно, ещё десятилетиями не будет ничего лучше, нежели WiMax. Хотя следует признать, предугадать будущее весьма сложно, и вполне вероятно, что эти слова уже через несколько лет потеряют свою актуальность.

Заключение

Вот и была рассмотрена технология WiMax, её принцип работы, схема построения и даже чаще всего упоминаемые смежные разработки. Возможно, в будущем она будет доработана, и её характеристики существенно улучшатся, что подарит ей новые шансы на завоевание аудитории. До тех пор её можно считать оптимальным решением, перспективы которого сконцентрированы в небольших городах и агломерациях, что растут вокруг наших гигантов. Возможно и то, что она выступит базисом для чего-то более прогрессивного, как технологии ранних поколений используются для создания всё лучших способов передачи данных. Но пока она удовлетворяет наши потребности, давайте использовать то, что уже есть, и одновременно работать над чем-то более совершенным.



Рекомендуем почитать

Наверх