Технология многомерных баз данных. Многомерные системы с потерями

На iOS - iPhone, iPod touch 22.05.2019
На iOS - iPhone, iPod touch

Теория случайных величин изучает вероятностные явления «в статике», рассматривая их как некоторые зафиксированные результаты экспериментов. Для описания сигналов, которые отображают развивающиеся во времени случайные явления, методы классической теории вероятностей оказываются недостаточными. Подобные задачи изучает особая ветвь математики, получившая название теории случайных процессов.

По определению, случайный процесс - это особого вида функция, характеризующаяся тем, что в любой момент времени принимаемые ею значения являются случайными величинами.

Ансамбли реализаций.

Имея дело с детерминированными сигналами, мы отображаем их функциональными зависимостями или осциллограммами. Если же речь идет о случайных процессах, то ситуация оказывается сложнее. Фиксируя на определенном промежутке времени мгновенные значения случайного сигнала, получаем лишь единственную реализацию случайного процесса. Случайный процесс представляет собой бесконечную совокупность таких реализаций, образующих статистический ансамбль. Например, ансамблем является набор сигналов , которые можно одновременно наблюдать на выходах совершенно одинаковых генераторов шумового напряжения.

Совсем необязательно, чтобы реализации случайного процесса представлялись функциями со сложным, нерегулярным во времени поведением. Часто приходится рассматривать случайные процессы, образованные, например, всевозможными гармоническими сигналами , у которых однн из трех параметров - случайная величина, принимающая определенное значение в каждой реализации. Случайный характер такого сигнала заключен в невозможности заранее, до опыта зиать значение этого параметра.

Случайные процессы, образованные реализациями, зависящими от конечного числа параметров, принято называть квазидетерминированными случайными процессами.

Плотности вероятности случайных процессов.

Пусть - случайный процесс, заданный ансамблем реализаций, - некоторый произвольный момент времени. Фиксируя величины получаемые в отдельных реализациях, осуществляем одномерное сечение данного случайного процесса и наблюдаем случайную величину Ее плотность вероятности называют одномерной плотностью вероятности процесса в момент времени

Согласно определению, величина есть вероятность того, что реализации случайного процесса в момент времени примут значения, лежащие в интервале

Информация, которую можно извлечь из одномерной плотности, недостаточна для того, чтобы судить о характере развития реализаций случайного процесса во времени. Гораздо больше сведений можно получить, располагая двумя сечениями случайного процесса в несовпадающие моменты времени Возникающая при таком мысленном эксперименте двумерная случайная величина описывается двумерной плотностью вероятности Эта характеристика случайного процесса позволяет вычислить вероятность события, заключающегося в том, что реализация случайного процесса при проходит в малой окрестности точки а при - в малой окрестности точки

Естественным обобщением является -мерное сечение случайного процесса приводящее к -мерной плотности вероятности

Многомерная плотность вероятности случайного процесса должна удовлетворять обычным условиям, налагаемым на плотность вероятности совокупности случайных величин (см. § 6.2). Помимо этого, величина не должна зависеть от того, в каком порядке располагаются ее аргументы (условие симметрии).

Иногда вместо -мерной плотности вероятности удобно пользоваться -мерной характеристической функцией, которая связана с соответствующей плотностью преобразованием Фурье:

Описание свойств случайных процессов с помощью многомерных плотностей вероятности высокой размерности может быть весьма подробным. Однако на этом пути часто встречаются серьезные математические трудности.

Моментные функция случайных процессов.

Менее детальные, но, как правило, вполне удовлетворительные в практическом смысле характеристики случайных процессов можно получить, вычисляя моменты тех случайных величин, которые наблюдаются в сечениях этих процессов. Поскольку в общем случае эти моменты зависят от временных аргументов, они получили название моментных функций.

Для статистической радиотехники наибольшее значение имеют три моментные функции низших порядков, называемые математическим ожиданием, дисперсией и функцией корреляции.

Математическое ожидание

есть среднее значение процесса X(t) в текущий момент времени ; усреднение проводится по всему ансамблю реализаций процесса.

Дисперсия

позволяет судить о степени разброса мгновенных значений, принимаемых отдельными реализациями в фиксированном сечении t, относительно среднего значения.

Двумерный центральный момент

называется функцией корреляции случайного процесса Эта моментная функция характеризует степень статистической связи тех случайных величин, которые наблюдаются при Сравнивая формулы (6.37), (6.38), заметим, что при совмещении сечений функция корреляции численно равна дисперсии:

Стационарные случайные процессы.

Так принято называть случайные процессы, статистические характеристики которых одинаковы во всех сечениях.

Говорят, что случайный процесс стационарен в узком смысле; если любая его -мерная плотность вероятности инвариантна относительно временного сдвига

Если же ограничить требования тем, чтобы математическое ожидание и дисперсия процесса не зависели от времени, а функция корреляции зависела лишь от разности - , то подобный случайный процесс будет стационарен в широком смысле. Понятно, что из стационарности в узком смысле следует стационарность в широком смысле, но не наоборот.

Как следует из определения, функция корреляции стационарного случайного процесса является четной:

Кроме того, абсолютные значения этой функции при любых не превышают ее значения при :

Метод доказательства таков: из очевидного неравенства

следует, что

откуда непосредственно вытекает неравенство (6.41).

Часто удобно использовать нормированную функцию корреляции

для которой .

Чтобы проиллюстрировать понятие стационарного случайного процесса, рассмотрим два примера.

Пример 6.5. Случайный процесс образован реализациями вида где известны заранее, в то время как фазовый угол - случайная величина, равномерно распределенная на отрезке -

Так как плотность вероятности фазового угла то математическое ожидание процесса

Аналогично можно найти дисперсию:

Наконец, функция корреляции

Итак, данный случайный процесс удовлетворяет всем условиям, которые необходимы для того, чтобы обеспечить стационарность в широком смысле.

Пример 6.6. Случайный процесс имеет реализации вида и причем - заданные числа. - случайная величина с произвольным законом распределения. Математическое ожидание

будет не зависимым от времени лишь при Поэтому в общем случае рассматриваемый случайный процесс будет нестационарным.

Свойство эргодичности.

Стационарный случайный процесс называют эргодическим, если при нахождении его моментных функций усреднение по статистическому ансамблю можно заменить усреднением по времени. Операция усреднения выполняется над единственной реализацией длительность Т которой теоретически может быть сколь угодно велика,

Обозначая усреднение по времени угловыми скобками, запишем математическое ожидание эргодического случайного процесса:

которое равно постоянной составляющей выбранной реализации.

Дисперсия подобного процесса

Поскольку величина представляет собой среднюю мощность реализации, а величина - мощность постоянной составляющей, дисперсия имеет наглядный смысл мощности флуктуационной составляющей эргодического процесса.

Аналогично находят функцию корреляции:

Достаточным условием эргодичности случайного процесса, стационарного в широком смысле, является стремление к нулю функции корреляции при неограниченном росте временного сдвига :

В математике показано, что это требование можно несколько ослабить. Оказывается, что случайный процесс эргодичен, если выполнено условие Слуцкого :

Так, равенство (6.47) справедливо применительно к гармоническому процессу со случайной начальной фазой (см. пример 6.5).

Измерение характеристик случайных процессов.

Если случайный процесс является эргодическим, то его реализация достаточной длины есть «типичный» представитель статистического ансамбля. Изучая эту реализацию экспериментально, можно получить много сведений, характеризующих данный случайный процесс.

Прибор для измерения одномерной плотности вероятности случайного процесса может быть выполнен следующим образом. Одномерная плотность вероятности эргодического случайного процесса есть величина, пропорциональная относительному времени пребывания его реализации на уровне между Предположим, что имеется устройство с двумя входами, на один из которых подается исследуемая реализация х(t), а на другой - опорное постоянное напряжение, уровень которого можно регулировать. На выходе устройства возникают прямоугольные видеоимпульсы постоянной амплитуды, начало и конец которых определяются моментами времени, когда текущие значения случайного сигнала совпадают либо с уровнем либо с уровнем Если теперь измерить, скажем, с помощью обычного стрелочного прибора среднее значение тока, создаваемого последовательностью видеоимпульсов, то показания этого прибора будут пропорциональны плотности вероятности

Любой достаточно инерционный стрелочный прибор может быть использован для измерения математического ожидания случайного процесса [см. формулу (6.43)].

Прибор, измеряющий дисперсию случайного процесса, как это следует из (6.44), должен иметь на входе конденсатор, отделяющий постоянную составляющую. Дальнейшие этапы процесса измерения - возведение в квадрат и усреднение по времени - выполняются инерционным квадратичным вольтметром.

Принцип работы измерителя функции корреляции (коррелометра) вытекает из формулы (6.45). Здесь мгновенные значения случайного сигнала после фильтрации постоянной составляющей, разделяясь на канала, поступают на перемножитель, причем в одном из каналов сигнал задерживается на время . Для получения значения функции корреляции сигнал с выхода перемножителя обрабатывается инерционным звеном, которое осуществляет усреднение.

Независимо от величины

Здесь приняты те же обозначения, что и в формуле (6.26). Элементы корреляционной матрицы этого случайного процесса определяются нормированной функцией корреляции:

В дальнейшем часто будет использоваться двумерная гауссова плотность

Стационарный гауссов процесс занимает исключительное место среди прочих случайных процессов - любая его многомерная плотность вероятности определяется даумя характеристиками: математическим ожиданием и функцией корреляции.

Страницы 513-523

Многомерные процессы

До сих пор мы рассматривали модели, которые состоят только из одного соотношения, связывающего временные ряды. При этом мы выбирали одну из переменных в качестве эндогенной, а остальные переменные являлись экзогенными. Такое разделение не всегда является естественным, часто приходится рассматривать одновременно несколько соотношений, в которые одни и те же переменные входят и как эндогенные, и как экзогенные. Как видно из прошлой лекции, переменная не всегда может рассматриваться как экзогенная, и мы фактически должны рассматривать модель DGP, состоящую из нескольких уравнений. Это означает моделирование нескольких временных рядов одновременно, другими словами - моделирование многомерного случайного процесса.

Начнем с определении. Рассмотрим вектор =(х t 1 ,х t 2 ,...,х t k) T , каждая компонента которого является временным рядом. верхним индексом будем обозначать номер компоненты, а нижним по-прежнему - момент времени. распределение компонент характеризуется семейством совместных плотностей распределения вида: f n (х t1 i1 ,х t2 i2 ,..., х tn in )‚ n=1‚2,.... Условием стационарности в узком смысле по-прежнему является независимость от сдвига во времени всего семейства совместных плотностей распределения. Только теперь кроме всевозможных комбинаций значений случайного процесса в различные моменты времени аргументами плотностей вероятности также являются всевозможные комбинации различных компонент в различные моменты времени. Например, для двухмерной плотности получаем из условия стационарности: f 2 t 1 t 2 ) = f 2 (х 1 t + r , х 2 t + r ) для любого τ. Совместное распределение компонент для одного и того же момента времени не зависит от времени. Рассмотрим другую функцию распределения, например трехмерную, в которую входят значения первой компоненты в два разных момента времени и второй компоненты в некоторый третий момент времени. Стационарность означает, чтоf 3 t 1 t + h 1 t + s 2 ) = f 3 (х 1 t + τ , х 2 t + s + τ ) . Можно сказать, что это свойство инвариантности к сдвигу во времени. То есть, если к каждому моменту времени прибавить величину τ, то функция плотности не изменится. Понятно, что стационарность многомерного процесса влечет за собой стационарность каждой из его компонент.

Как и в одномерном случае, стационарность в узком смысле влечет за собой ряд свойств характеристик случайных процессов. Прежде всего, начнем с математического ожидания. Математическое ожидание для каждой компоненты не зависит от других компонент. Поэтому если многомерный процесс стационарен, математическое ожидание каждой компоненты не зависит от времени. Вектор математических ожиданий E( не зависит от времени.

Теперь рассмотрим моменты второго порядка. Каждая компонента характеризуется дисперсией и автокорреляционной функцией. Если одномерный ряд стационарен, его автокорреляционная и автоковариационная функции зависят только от сдвига τ: Corr(τ) = Corr(х t i j t + r ) = р i (τ), однако теперь можно рассмотреть второй смешанный момент для различных компонент, а также Corr(х t i j t + r ). Такую величину естественно назвать кросс-корреляционной функцией. Если компоненты образуют многомерный стационарный процесс, то кросс-корреляция будет функцией сдвига во времени τ. Обозначим эту функцию R ij (τ) . Довольно очевидно, что R ij (τ) = R ji (- τ) . При фиксированном значении τ элементы R ij (τ) образуют матрицу R, зависящую от τ. Значению τ, равному нулю, соответствует корреляционная матрица вектора

Аналитическое прогнозирование многомерных процессов.

Метод обобщенного параметра.

Цель работы: изучение практических приемов прогнозирования состояния многопараметрического объекта.

Краткие теоретические сведения:

Изменение состояния технических систем можно рассматривать как процесс, характеризуемый изменениями некоторого множества параметров. Положение вектора состояния в пространстве определяет степень работоспособности системы. Состояние системы характеризуется вектором в k-мерном пространстве, где координатами пространства служат k параметров системы , .

Прогнозирование состояния сводится к периодическому предварительному контролю параметров; определению в моменты t i T 1 контроля функции состояния

Q =Q[ ] и расчете значений функцииQ состояния в области значений времениT 2 > T 1 .

При этом чем дальше будет расположен вектор состояния от гиперповерхности допустимых значений степени работоспособности Q * , тем выше работоспособность диагностируемой системы. Чем меньше разность * , тем ниже уровень работоспособности.

Использование методов аналитического прогнозирования предполагает регулярность изменения компонентов процесса во времени.

Идея метода обобщенного параметра заключается в том, что процесс, характеризуемый многими компонентами, описывается одномерной функцией, численные значения которой зависят от контролируемых компонентов процесса. Такая функция рассматривается как обобщенный параметр процесса. При этом может оказаться, что обобщенный параметр не имеет конкретного физического смысла, а является математическим выражением, построенным искусственно из контролируемых компонентов прогнозируемого процесса.

При обобщении параметров, характеризующих степень работоспособности технических систем, необходимо решение следующих задач:

Определения относительных значений первичных параметров;

Оценки значимости первичного параметра для оценки состояния объекта;

Построения математического выражения для обобщенного параметра.

Определение относительных значений первичных параметров необходимо в связи с тем, что состояния объекта может характеризоваться параметрами, имеющими различную размерность. Поэтому все контролируемые первичные параметры следует свести к единой системе исчисления, в которой они могут быть сравнимыми. Такой системой является система безразмерного (нормированного) относительного исчисления.

Реально для каждого параметра ,s = 1, 2, …, k можно выделить допустимое значение, * , при достижении которого объект теряет работоспособность, и оптимальное значение опт (зачастую оно равно номинальному значению н).

Пусть в процессе эксплуатации объекта соблюдается условие. Если , достаточно ввести в местоновый параметри тогда длябудет соблюдаться требуемое условие.

Запишем безразмерный (нормированный) параметр в виде:

где , причем при , а при .

Таким образом, с помощью выражения (1) нормируется параметр , а безразмерная нормированная величинаизменяется с течением времени от 1 до 0. Отсюда по величинеможно судить о степени работоспособности объекта по данному параметру. Теоретически может быть, но это означает, что на практике объект неработоспособен.

Можно указать различные нормируемые выражения, которые оказываются удобными при решении частных задач, например:

и т. п., где – соответственно текущее, нулевое, мат. ожиданиеS – го параметра.

Использование нормирующих выражений позволяет получить совокупность безразмерных величин, которые характеризуют состояние объекта. Однако количественно одинаковое изменение этих величин не является равнозначным по степени влияния на изменение работоспособности объекта, поэтому необходимо дифференцировать первичные параметры. Этот процесс осуществляется с помощью весовых коэффициентов, величины которых характеризуют важность соответствующих параметров для физической сущности задачи. Пусть в таком случае параметрам объекта соответствуют весовые коэффициенты, удовлетворяющие тем или иным заданным критериям, причем .

Степень работоспособности объекта по множеству контролируемых параметров можно оценить с помощью обобщающего выражения

Где - обобщенный параметр объекта.

Выражение (2) представляет собой линейное среднее. Из определения обобщенного параметра следует, что чем больше величина и, тем больше вкладS – го слагаемого (параметра) в .

Обобщенный параметр можно определить с помощью выражения вида

, (3)

которое представляет собой нелинейного среднее. Для такой модели также соблюдается условие: чем больше и, тем больший вклад вносит слагаемоев величину.

На практике находят применение и другие формы записи нелинейного среднего, например:

, (4)

, (5)

где подбирает так, чтобы (5) давая лучшее приближения к результатам, полученным экспериментальным путем.

При рассмотрении выражений для обобщенного параметра считалось, что не меняет знака, т. е. всегда . Если же необходимо учитывать знак, выражение (2) преобразуется к виду

, (6)

Таким образом, использование обобщенного параметра позволяет свести задачу прогнозирования состояния многопараметрического объекта к прогнозированию одномерной временной функции.

Пример. Испытания объекта в течении 250 часов, у которого контролировалось 6 параметров, дали результаты, приведенные в таблице1.

Таблица1

I н, ном = 9,5

V g1 . ном = 120

I а, ном = 2,0

I g3 , ном = 70

После нормирования значений параметров с помощью выражения (1) таблица принимает вид (таблица2)

Таблица2

© 2005 г. А. И. Саичев*, С. Г. Уткин*

ПЕРЕХОД МНОГОМЕРНЫХ СКАЧКООБРАЗНЫХ ПРОЦЕССОВ ОТ АНОМАЛЬНОЙ К ЛИНЕЙНОЙ ДИФФУЗИИ

Рассматриваются многомерные процессы "квазианомальных" случайных блужданий, имеющие линейно-диффузионную асимптотику на больших временах и подчиняющиеся аномально-диффузионным закономерностям на промежуточных (также достаточно больших относительно микроскопических масштабов) временах. Демонстрируется переход скачкообразного процесса от аномальной к линейной диффузии. С помощью численного счета подтверждается справедливость аналитических расчетов для двумерного и трехмерного случаев. , .....

Ключевые слова: аномальная субдиффузия, аномальная супердиффузия, уравнения в частных дробных производных, промежутоная асимптотика, квазианомальные случайные блуждания.

1. ВВЕДЕНИЕ

Главным признаком аномальной диффузии служит нелинейный рост среднего квадрата случайного процесса со временем: >г: V» „

характерный, например, для таких физических явлений, как турбулентная диффузия , хаотическая динамика гамильтоновых систем , , перенос заряда в аморфных полупроводниках и др. Динамика подобных явлений адекватно моделируется скачкообразными случайными процессами с теми или иными распределениями / (г) интервалов между скачками и распределениями w(x) величины скачков.

Известно также, что аномальная диффузия возникает из-за нарушения центральной предельной теоремы (ЦПТ) или закона больших чисел (ЗБЧ) (см., например, ). В свою очередь, неприменимость ЗБЧ обусловлена бесконечностью первых моментов времени ожидания скачков, а нарушение ЦПТ связано с бесконечностью вторых моментов скачков. Эти обстоятельства служат объектом критики теории аномальной диффузии со стороны физиков, справедливо замечающих, что для большинства физических явлений указанные моменты ограничены.

"Нижегородский государственный университет, Нижний Новгород, Россия. E-mail: [email protected]; [email protected]

Цена 18 ^уб. Переплет 1 р.

456 А. И. САИЧЕВ, С. Г. УТКИН;

Целью данной работы является демонстрация того факта, что аномальная субдиффузия может возникать и в "классическом случае", когда ЗБЧ и ЦПТ справедливы. А именно, наряду с детально исследованными "чисто" аномальными диффузионными процессами существуют и "квазианомальные" случайные процессы, подчиняющиеся законам линейной диффузии на очень больших временах и пространственных масштабах, а на "промежуточных" временах демонстрирующие универсальные аномально-диффузионные асимптотики. Данная работа посвящена анализу именно таких квазианомальных случайных процессов в пространствах разной размерности. Обнаружено, в частности, что, в отличие от классической многомерной диффузии, случайные координаты аномально-диффузионного скачкообразного процесса статистически зависимы даже при независимых компонентах векторов случайных скачков.

2. СЛУЧАЙНЫЕ БЛУЖДАНИЯ

Рассмотрим типичный процесс случайных блужданий, подчиняющийся простейшему стохастическому уравнению чч-.

*-----. < к 1

Без ограничения общности предположим, что случайные интервалы ожидания скачков т~к = tk - ifc-i и сами случайные скачки hk взаимно независимы, а также имеют одинаковые распределения /(т) и w(x), соответственно. Очевидно, что

где N(t) - число скачков к моменту t. Это функция, обратная времени n-го скачка Т(п):

t = T(n) = ] " "

Используя очевидное соотношение эквивалентности для этих функций ~ !! N(t)^n T{n)

и разбиение единицы - м. .„ >».. л ■ >.

1= ^IIn(z) = ^, z>0, "У ■

где x(z) - функция ступеньки, выведем уравнение для характеристической функции рассматриваемого процесса X (f):

©(«; t) = (¿»ХМ) = £ /ехр (ш £ hk) V п=0 ^ ^ fc=1 " "

Цена 18 дуб. Переплет Í р.

■го) аномальная субдиф-и ЦПТ справедливы. А ми диффузионными про-л, подчиняющиеся зако-анственных масштабах, ьные аномально-диффу-но таких квазианомаль-1. Обнаружено, в част-I, случайные координа-гически зависимы даже

шяющиися простеише-

1лы ожидания скачков а также имеют одина-)

1ени п-го скачка Т(п):

г > О, ^ " ической функции рас-

ПЕРЕХОД МНОГОМЕРНЫХ СКАЧКООБРАЗНЫХ ПРОЦЕССОВ. ..

Применим к обеим частям равенства преобразование Лапласа и просуммируем полученную геометрическую прогрессию:

Найденное выражение для лаплас-образа 0(u; s) характеристической функции представляет собой многомерный аналог уравнения Монтролла-Вейсса . Здесь f(s) -лаплас-образ распределения интервалов между скачками, a w(u) - характеристическая функция скачков. Из последнего равенства видно, что Q(u; s) подчиняется уравнению

0(u;s) - w(u)Q(u;s) =

........... ÎM (2-2)

Применив к нему обратные преобразования Фурье и Лапласа, легко получить (в зависимости от вида распределений /(г) и w(x)) как классическое уравнение Колмогоро-ва-Феллера, так и кинетические уравнения аномальной диффузии.

3. АСИМПТОТИЧЕСКИЕ УРАВНЕНИЯ ДЛЯ ПЛОТНОСТИ ВЕРОЯТНОСТЕЙ БЛУЖДАНИЙ X(t)

Как уже было отмечено выше, вид уравнения для плотности вероятностей W(x; t) зависит от вида распределений /(г) и tu (ж), а точнее - от их лаплас-образа f(s) и характеристической функции w(u). Далее будут получены асимптотические уравнения для W(x; t), справедливые на различных временных масштабах, в случае распределения/(г) с лаплас-образом

V "I + sp " >

где S - малый параметр. Все моменты /(г) ограничены, что делает его физически более корректным, нежели родственное ему дробно-экспоненциальное распределение - (отвечающее значению 6 = 0), являющееся одним из ключевых в теории аномальной диффузии. Рассмотрим случай, когда параметр 6 мал настолько, что временной интервал между 1 и 1/(5 достаточно велик. Тогда процесс X(t) проходит последовательно три стадии. Вначале, на временах t 1, поведение процесса зависит от тонкой структуры распределений / (г) ию(х) ияе отражает универсальных законов диффузии. Далее, на временах между 1 и 1/6, за счет медленно спадающих степенных хвостов распределения /(т) процесс подчиняется аномально-диффузионным законам. Затем, при t 3> 1/6, процесс подчиняется нормальному линейно-диффузионному закону благодаря экспоненциально убывающим при т 1/6 хвостам распределения /(г).

Подставим f(s) (3.1) в уравнение (2.2) и обсудим его асимптотику при s 1, что соответствует вероятностным свойствам скачкообразного процесса на больших временах.

Применительно к лаплас-образу распределения /(т) выделим случай s оо, а также случай 6 s 1, ответственный за "промежуточный" режим 1

Цена 18 ^уб. Переплет 1 р.

и (2.2) примет вид

А. И. САИЧЕВ, С. Г. УТКИН

в ©(«;«) + - ш(«)]в(«; 5) = 1,

а во втором/(в) ~ 1 - (1 + 8$) и, соответственно,

«"§(«; э) + (1 + - й(«)]в(и; «) = в"-1.

Применяя к полученным равенствам обратное преобразование Фурье и Лапласа, придем к уравнению Колмогорова-Феллера

> + [цг{х.^ _ * Ц*)] = < оо,

или к обобщенному уравнению Колмогорова-Феллера

А+б0)т*м) - ж{х-л)*ю(,х)} = 1«*«

характерной, например, для многомерного нормального распределения с независимыми координатами и одинаковой дисперсией а2 по всем осям. Тогда из приведенных выше уравнений вытекают соответственно уравнения линейной и аномальной диффузии для разных временных асимптотик:

е- л ".(< "■

т? 2ч* "" ч"#""" " г(1 -0)

Решение первого из них хорошо известно:

хШх), !«*<-. (3.3)

* " И" (х О- (1 + 1 + -

где п - размерность пространства случайного процесса. Решение второго уравнения приведено в следующем разделе.

Для того ч в п-мерном щ

компонентам ного аргуме! /3-устойчиво

Многомерна таг-Леффле

Таким обрг диффузии }

Рекомендуем почитать

Наверх