Сжатие с потерями. Форматы сжатия звуковой информации на примере mp3 и FLAC

Для Андроид 01.08.2019
Для Андроид

Чем более объем памяти WT-карты, тем реалистичнее звучание (ибо в памяти хранится больше образцов, записанных с более высоким разрешением). Стандарт General MIDI описывает более 200 инструментов, для хранения образцов их звучания (таблиц) требуется не менее 8 Мбайт памяти (минимум 20 Кбайт для каждого образца).

Известен WF-метод (Wave Form ) генерации звучания, основанный на преобразовании звуков в сложные математические формулы и дальнейшем применения этих формул для управления мощным процессором с целью воспроизведения звука; от WF-синтеза ожидают еще лучшей (относительно FM и WT-технологий) реальности звучания музыкальных инструментов при ограниченных объемах звуковых файлов.

Типовая схема подключения внешних устройств к IBM PC-ориентированной звуковой плате (карте ) приведена на рис.4.8.

Для сокращения потока данных используются иные (отличные от PCM) методы кодирования аналогового сигнала. Например, известна существенно сокращающая объем хранимых данных техника кодирования, основанная на известных характеристиках аналогового сигнала; при т.н. -кодировании аналоговый сигнал преобразуется в цифровой код, определяемый логарифмом величины сигнала (а не его линейным преобразованием). Недостаток метода - необходимость иметь априорную информацию о характеристиках исходного сигнала.

Известны методы преобразования, не требующие априорной информации об исходном сигнале. При дифференциальной импульсно-кодовой модуляции (DPCM, Differential Pulse Code Modulation ) сохраняется только разность между текущим и предшествующим уровнями сигнала (разница требует для цифрового представления меньшего количества бит, чем полная величина амплитуды). При дельта-модуляции (DM, Delta Modulation ) каждая выборка состоит всего из одного бита, определяющего знак изменения исходного сигнала (увеличение или уменьшение); дельта-модуляция требует повышенной частоты сэмплинга. Технологии дифференциальной импульсно-кодовой модуляции связаны с накапливающейся со временем ошибкой, поэтому применяются специальные меры периодической калибровки АЦП.

Наибольшее распространение при записи звука получила адаптивная импульсно-кодовая модуляция (ADPCM, Adaptive Pulse Code Modulation ), использующая 8- или 4-разрядное кодирование для разности сигналов. Технология впервые была применена фирмой Creative Labs и обеспечивает сжатие данных до 4:1.

Однако часто применяются иные (программные) методы сжатия/распаковки аудиоинформации; среди них в последнее время наиболее популярен формат MP3 , разработанный институтом Fraunhofer IIS (Fraunhofer Institutе Integrierte Schaltungen , www.iis.fhg.de) и фирмой THOMSON (полная спецификация формата MP3 опубликованы на сайте www.mp3tech.org). Полное название стандарта MP3 звучит MPEG-Audio Layer-3 (где MPEG суть Moving Picture Expert Group , не путать с предназначенным для использовании в телевидении высокой четкости стандартом MPEG-3).

MP3-кодирование данных происходит посредством выделения независимых отдельных блоков данных - фреймов. Для этого исходный сигнал при кодировании разбивается на равные по продолжительности участки, именуемые фреймами и кодируемые отдельно (для дополнительного снижения объема данных применяется сжатие с применением алгоритма Хеффмена ); при декодировании сигнал формируется из последовательности декодированных фреймов. Процесс кодирования требует ощутимого времени, декодирование (при воспроизведении) осуществляется `на лету".

MP3-формат обеспечивает наилучшее качество звука при минимальном объеме файла. Это достигается учетом особенностей человеческого слуха, в том числе эффекта маскирования слабого сигнала одного диапазона частот более мощным сигналом соседнего диапазона (когда он имеет место) или мощным сигналом предыдущего фрейма, вызывающего временное понижение чувствительности уха к сигналу текущего фрейма (проще говоря, удаляются второстепенные звуки, которые не слышатся человеческим ухом из-за наличия в данный/предыдущий момент другого - более громкого звука). Также учитывается неспособность большинства людей различать сигналы, по мощности лежащие ниже определенного уровня, разного для разных частотных диапазонов. Этот процесс называется адаптивным кодированием и позволяет экономить на наименее значимых с точки зрения восприятия человеком деталях звучания. Степень сжатия (следовательно и качество), определяются не форматом MP3, а шириной потока данных при кодировании.

Аудиоинфоpмация, сжатая по такой технологии, может передаваться потоком (streaming), а может храниться в файлах формата MP3 или WAV-MP3. Отличие второго от первого состоит в наличии дополнительного заголовка WAV-файла, что позволяет при наличии MP3 - кодека (codec, кодер и декодер в комплексном исполнении) в системе использовать для работы с таким файлом стандартные средства Windows. Параметры компрессии при кодировании файла можно варьировать в широких пределах. Качество, неотличимое большинством рядовых слушателей от качества CD, достигается при скорости передачи (bitrate, битрейт ) 112128 Кбайт в секунду; при этом сжатие составляет примерно 14:1 относительно исходного объема. Специалисты обычно требуют скорости передачи 256320 Кбайт/сек (это соответствует всего лишь двойной скорости CD-проигрывателя, но для большинства отечественных InterNet - линий недоступна).

Принципиальной особенностью MPEG-кодирования (как видео-, так и аудиоинформации) является компрессия с потерями . После упаковки и распаковки звукового файла методом MP3 результат не идентичен оригиналу `бит в бит". Напротив, упаковка целенаправленно исключает из упаковываемого сигнала несущественные компоненты, что и приводит к чрезвычайному возрастанию коэффициента сжатия (сжатие до 96:1 при качестве телефонного канала).

Для MP3 также написано множество удобного программного обеспечения. Налажено производство аппаратных (карманных и автомобильных) MP3 плееров (MP3 поддерживает до 5 каналов).

На рубеже 19981999 г. фирма XingTech (www.xingtech.com) первая использовала технологию переменного битрейта (VBR, Variable Bite Rate ). В случае VBR задается максимальный допустимый уровень потерь, а кодер выбирает минимальный битрейт, достаточный для выполнения поставленной задачи. Стоящие рядом в конечном потоке фреймы могут оказаться в итоге закодированными с разными параметрами.

По расчетам специалистов MP3 останется актуальным в ближайшее десятилетие (даже несмотря на существование форматов AAG и VQF и продвигаемого MS формата WMA ). О существовании иных кодеров (преобразователей информации из одного формата в другой) см. www.sulaco.org/mp3/free.html и www.xiph.org.

Возможным конкурентом MP3 в (не столь близком) будущем может стать формат MPEG-4 (точнее, его аудиокомпонента), основанный на объектном подходе к звуковым сценам (язык BIFS позволяет располагать источники звука в трехмерном пространстве сцены, управлять их характеристиками и применять к ним эффекты независимо друг от друга и т.д., в следующих версиях предполагается добавление возможности задания акустических параметров среды).

Для кодирования аудиообъектов MPEG-4 предлагает наборы инструментов как для `живых" звуков, так и для синтезированных. MPEG-4 устанавливает синтаксис двоичных потоков и процесс декодирования в терминах наборов инструментов, что позволяет применять различные алгоритмы сжатия. Диапазон предлагаемых стандартом скоростей потока для кодирования живых звуков - от 2 до 128 Кбайт/сек и выше. При кодировании с переменным потоком минимальная средняя скорость может оказаться еще меньше (порядка 1,2 Кбайт/сек). Для звука высшего качества применяется алгоритм AAC, который дает качество лучше, чем у CD при потоке в 10 с лишним раз меньше. Другой возможный алгоритм кодирования живого звука - TwinVQ . Для кодирования речи предлагаются алгоритмы HVXC (Harmonic Vector eXcitation Coding ) для скоростей потока 24 Кбайт/сек и CELP (Code Excited Linear Predictive ) для скоростей 424 Кбайт/сек.

MPEG-4 предполагает возможность синтеза речи. На входы синтезатора поступает проговариваемый текст, а также различные параметры `окраски" голоса - ударения, изменения высоты тона, скорости произнесения фонем и т. п. Можно также задать для `говорящего" пол, возраст, акцент и др. В текст можно вставлять управляющую информацию, обнаружив которую синтезатор синхронно с произнесением соответствующей фонемы передаст параметры или команды другим компонентам системы (например, параллельно с голосом может генерироваться поток параметров для анимации лица). Как и всегда, MPEG-4 задает правила работы, интерфейс синтезатора, но не его внутреннее устройство.

Интересная часть `звуковой" составляющей - средства синтеза произвольных звуков и музыки. MPEG-4 предлагает в качестве стандарта подход, разработанный в колыбели многих передовых технологий - MIT Media Lab . и названный SA (Structured Audio , Структурированный Звук). Это не конкретный метод синтеза, а формат описания методов синтеза, в котором можно задать любой из существующих методов (а также, как утверждается, будущих). Для этого предлагаются два языка - SAOL (Structured Audio Orchestra Language ) и SASL (Structured Audio Score Language ). Первый задает оркестр, а второй - то, что этот оркестр должен играть. Оркестр состоит из инструментов, каждый инструмент представлен сетью элементов цифровой обработки сигналов - синтезаторов, цифровых фильтров, которые все вместе и синтезируют нужный звук. С помощью SAOL можно запрограммировать практически любой нужный инструмент, природный или искусственный звук. Сначала в декодер загружается набор инструментов, а затем поток данных SASL заставляет этот оркестр играть, управляя процессом синтеза; таким образом обеспечивается одинаковое звучание на всех декодерах при очень низком входном потоке и высокой точности управления. С появлением MPEG-4 фактически обретает более реальные и понятные очертания идея ITV (Interactive TeleVision, Интерактивное Телевидение ), о котором спорят уже несколько лет и под которым каждый понимает нечто свое (от простого `видео-по-запросу" до детективов с многовариантным развитием сюжета и участием зрителя).

Данные о MPEG-4 приведены в основном для информации о современных тенденциях записи и синтеза медиаданных, интересующихся отсылаем к cselt.it/mpeg и www.mpeg.org. В конце 2000 г. группа разработчиков MPEG планировала объявить об окончании работы над стандартом MPEG-7 (официальное название - Multimedia Content Description Interface ).

В общих чертах смысл сжатия без потерь таков: в исходных данных находят какую-либо закономерность и с учётом этой закономерности генерируют вторую последовательность, которая однозначно описывает исходную. Например, для кодирования двоичных последовательностей, в которых много нулей и мало единиц, мы можем использовать такую замену:

00 > 0
01 > 10
10 > 110
11 > 111

В таком случае шестнадцать битов:

00 01 00 00 11 10 00 00

будут преобразованы в тринадцать битов:

0 10 0 0 111 110 0 0

Если мы запишем сжатую строку без пробелов, мы всё равно сможем расставить в ней пробелы - а значит, восстановить исходную последовательность.

FLAC (Free Lossless Audio Codec - свободный аудио-кодек без потерь)

Принцип кодирования: алгоритм пытается описать сигнал такой функцией, чтобы полученный после её вычитания из оригинала результат (называемый разностью, остатком, ошибкой) можно было закодировать минимальным количеством битов.

Когда модель подобрана, алгоритм вычитает приближение из оригинала, чтобы получить остаточный (ошибочный) сигнал, который затем кодируется без потерь.

Сжатие с потерями (MP3, AAC, WMA, OGG)

Используется алгоритм сжатия с потерями, размер MP3-файла со средним битрейтом 128 кбит/с примерно равен 1/11 от оригинального файла с аудио CD (несжатое аудио формата CD-Audio имеет битрейт 1411,2 кбит/с). MP3 файлы могут создаваться с высоким или низким битрейтом, что влияет на качество результата.

Принцип сжатия заключается в снижении точности некоторых частей звукового потока, что практически неразличимо для слуха большинства людей. Звуковой сигнал разбивается на равные по продолжительности отрезки, каждый из которых после обработки упаковывается в свой фрейм (кадр). Разложение в спектр требует непрерывности входного сигнала, в связи с этим для расчётов используется также предыдущий и следующий фрейм. В звуковом сигнале есть гармоники с меньшей амплитудой и гармоники, лежащие вблизи более интенсивных - такие гармоники отсекаются, так как среднестатистическое человеческое ухо не всегда сможет определить присутствие либо отсутствие таких гармоник. Такая особенность слуха называется эффектом маскировки. Также возможна замена двух и более близлежащих пиков одним усреднённым (что, как правило, и приводит к искажению звука). Критерий отсечения определяется требованием к выходному потоку. Поскольку весь спектр актуален, высокочастотные гармоники не отсекаются, а только выборочно удаляются, чтобы уменьшить поток информации за счёт разрежения спектра. После спектральной «зачистки» применяются математические методы сжатия и упаковка во фреймы.

Типы битрейта MP3

CBR расшифровывается как Constant Bit Rate, то есть постоянный битрейт, который задаётся пользователем и не изменяется при кодировании произведения. Таким образом, каждой секунде произведения соответствует одинаковое количество закодированных бит данных (даже при кодировании тишины).

VBR расшифровывается как Variable Bit Rate, то есть изменяющийся битрейт или переменный битрейт, который динамически изменяется программой-кодером при кодировании в зависимости от насыщенности кодируемого аудиоматериала и установленного пользователем качества кодирования (например, тишина закодируется с минимальным битрейтом). Минусом данного метода кодирования является то, что VBR считает «незначительной» звуковой информацией более тихие фрагменты, таким образом получается, что если слушать очень громко, то эти фрагменты будут некачественными, в то время как CBR делает с одинаковым битрейтом и тихие, и громкие фрагменты.

ABR расшифровывается как Average Bit Rate, то есть усредненный битрейт, который является гибридом VBR и CBR: битрейт в кбит/c задаётся пользователем, а программа варьирует его, постоянно подгоняя под заданный битрейт. Таким образом, кодек будет с осторожностью использовать максимально и минимально возможные значения битрейта, так как рискует не вписаться в заданный пользователем битрейт. Это является явным минусом данного метода, так как сказывается на качестве выходного файла, которое будет немного лучше, чем при использовании CBR, но хуже, чем при использовании VBR (при том же размере файла) .

1. Очевидной техникой сжатия, которую можно применять к речи, является удаление пауз, ᴛ.ᴇ. вместо того, чтобы использовать 44 100 выборок с нулевым значением для записи каждой секунды тишины (частота дискретизации 44,1 кГц) просто указывается длительность паузы - ϶ᴛᴏ сжатие без потерь.

2. В случае если амплитуда звука не достигает максимального уровня, который можно представить при данном размере выборки, эффективным должна быть кодирование Хаффмана (Хофмана). В этом случае сигнал представляется выборками меньшего размера. Это алгоритм сжатия без потерь – всœего лишь частный случай сжатия.

3. Техника компандирования (расширения) также внесла вклад в технологии сжатия речи. Она основывается на восприятии человеком разных уровней громкости и состоит в использовании нелинœейных уровней квантования. В случае если расстояние между более высокими уровнями больше расстояния между низкими, то тихие звуки представляются детальнее, чем громкие.

4. Другая техника сжатия - ϶ᴛᴏ дифференциальная импульсно-кодовая модуляция. Эта схема связана с межкадровым сжатием и основана на записи разностей последовательных выборок, а не их абсолютных значений.

5. Эффективное сжатие с потерями состоит в определœении данных, не имеющих значения (ᴛ.ᴇ. не влияющих на восприятие сигнала), и их отбрасывании. В случае если аудиосигнал оцифровывается прямолинœейным образом (в ПК), в оцифрованную версию могут включаться данные, соответствующие неслышным звукам. Это объясняется тем, что сигнал записывает всœе физические колебания давления воздуха, являющиеся причиной звука, но за восприятие звука отвечает мозг, который (вместе с ухом) совсœем не так просто реагирует на звуковые волны.

Звук часто используется как часть видео- или анимационной продукции. В этом случае необходима синхронизация звука и изображения. Для решения этой проблемы используется временная шкала, которая позволяет упорядочить аудио- и видео в некоторых приложениях редактирования видео, к примеру, в Final Cut Pro. Изучая сигналы, редактор может определить контрольные точки звуковой дорожки (начало слогов или ударные такты в музыке), по которым выстраиваются подходящие картины.

Существует два способа генерации движущихся изображений в цифровой форме для мультимедийной продукции.

В первую очередь, с помощью видеокамеры можно записать последовательность кадров реального движения в реальном мире.

Во-вторых, можно создать всœе кадры по отдельности либо с помощью ПК, либо записывая по одному неподвижные изображения.

В первом случае мы будем создавать видео , а во втором – анимацию .

Видеоряд состоит из набора кадров, каждый из которых является отдельным изображением.

n Считается, что для адекватной передачи исходного изображения требуется 16 млн. оттенков, в связи с этим используется 24-битовый формат хранения цветной картинки. В случае если размер изображения 640 пикселœей (ширина) на 480 пикселœей (высота) и глубина цвета 24 бита͵ то каждый кадр потребует 640х480х3=900 Кбайт.

n Запись последовательности кадров в цифровом виде требует от компьютера больших объёмов внешней памяти. Одна секунда несжатого видео стандарта NTSC (сев. Америка, Япония) содержит 30 кадров. Каждая секунда видео потребует более 26 Мбайт памяти. А для стандарта видео PAL (Зап. Европа и Австралия, 24 кадра) для записи одной секунды нужен 21 Мбайт памяти, для минуты – 1,25 Гбайт.

n Но последовательность кадров недостаточно только запомнить, ее нужно еще вывести на экран в соответствующем темпе. Подобной скоростью передачи информации - около 30 Мбайт/с - не обладает ни одно из существующих внешних запоминающих устройств. При таких цифрах запись (воспроизведение) видео на CD, DVD и передача по сетям – проблематична. Запись видео возможна для видео- и телœестудий.

n Для уменьшения объёма данных необходимы схемы сжатия для видео, а также использование других методов.

Чтобы выводить на экран компьютера оцифрованное видео, приходится идти на уменьшение объёма передаваемых данных, ĸᴏᴛᴏᴩᴏᴇ достигается при помощи:

n вывода уменьшенного изображения в небольшом окне

n снижения частоты кадровой развертки до 10-15 кадров/с

n уменьшение числа бит/пиксель

Это приводит к ухудшению качества изображения.

Существуют различные форматы видео: WMA, ASF, RM, SWF, DVC, VOB, но используются редко, так как либо имеют серьезные недостатки, либо плохо совместимы с обычными средствами создания мультимедийных приложений (но можно конвертировать в другой формат с помощью любого видеоредактора).

n Самые распространенные форматы –AVI и MPEG.

n Audio Video Interleaved (AVI) – ʼʼроднойʼʼ формат для Windows Media от Microsoft. Система Windows использует запатентованный кодек. При записи в данном формате используются несколько различных алгоритмов сжатия (компрессии) видеоизображения. Среди них: Cinepak, Indeo video, Motion-JPEG (M-JPEG) и др.
Размещено на реф.рф
Но только M-JPEG был признан среди них как

международный стандарт для сжатия видео. Первоначально для захвата и воспроизведения видео использовались возможности программного комплекта Video for Windows, разработанного Microsoft, однако сейчас у пользователя имеется для этого лучшие возможности. Файл формата AVI не может иметь размер больше 2 Гбайт. Понимая это, компания Microsoft объявила о разработке новых форматов, призванных заменить формат AVI:

n ASF (Advanced Screaming Format)

n AAF (Advanced Authoring Format)

Поддержка указанных форматов началась с 1999 ᴦ. При этом старый формат AVI также применяется, существуют средства для преобразования этих форматов.

Формат AVI – не только видео, но и синхронизированный с ним звук. Обычно звуковую составляющую называют звуковой дорожкой или аудиотреком . Для AVI это звук в формате WAV. В любом видеоредакторе можно выделить звуковую дорожку, сохранить в звуковом файле, отредактировать в звуковом редакторе

n Windows Media Video (WMV) – новый формат видео от Microsoft, который приходит на смену формату AVI. В его базе Windows Video Codec, разработанный на базе стандарта MPEG-4.

n Quick Time Movie (MOV) – наиболее распространенный формат для записи и воспроизведения видео, разработанный фирмой Apple для компьютеров Macintosh в рамках технологии QuickTime. Включает поддержку не только видео, но и звука, текста͵ потоков MPEG, расширенного набора команд MIDI, векторной графики, панорам и объектов (QT VR) и трехмерных моделœей . Поддерживает несколько различных форматов сжатия видео, в т.ч. MPEG и Indeo, а также свой собственный метод компрессии.

n MPEG (MPG, MPEG ) – формат для записи и воспроизведения видео, разработанный в 1992 ᴦ. группой экспертов по движущимся изображениям (Moving Pictures Expert Group - MPEG). Предназначен для сжатия звуковых и видеофайлов, для загрузки или пересылки, к примеру, через Интернет.

MPEG-4 – стандарт, описывающий правила кодирования цифровой мультимедийной информации. При разработке данного стандарта основное внимание было сконцентрировано на возможности сжимать видеоданные значительно сильнее, чем предусмотрено, к примеру, стандартом MPEG-2. Это позволяет передавать данные на низких скоростях, менее 1 Мбит/с. Такие скорости характерны для большинства пользователœей Интернет и актуальны для потребителœей мобильных беспроводных устройств. Записи MPEG-4 компактнее и значительно дешевле по сравнению с файлами мультимедийной информации, закодированными с MPEG-2. Также средства кодировки и расшифровки MPEG-4 проще

Аудио компрессия для меломанов

правда о высоком битрейте при сжатии с потерями

Предисловие

В понимании большинства людей слово меломан чаще всего ассоциируется с человеком, не просто любящим и коллекционирующим музыку, а еще и ценящим качественную музыку, причем не только в художественно-эстетическом плане, но еще и качество записи самой фонограммы. Подумать только, еще несколько лет назад эталоном качества музыки считался аудио компакт диск, компьютер же даже в мечтах не мог конкурировать с качеством CD. Однако, время — большой шутник, и часто любит переворачивать все с ног на голову. Прошло, казалось бы, совсем немного времени, какой-то год или два и… всё, компакт диск на PC отступил на второй план. Не спрашивайте "почему?", Вы ведь сами знаете ответ на этот вопрос. Всему виною революция в мире звука на компьютере — аудио компрессия (здесь и далее под аудио компрессией подразумевается сжатие с потерями, для уменьшения размера аудио файла), которая позволила хранить музыку на жестком диске, много музыки! Более того, появилась возможность обмениваться ею через Интернет. Вышли новые звуковые карты, способные "выжать" чуть ли не студийное качество из, казалось бы, бесполезной в плане музыки "железки". Сегодня, имея даже не очень шустрый по производительности компьютер, купив звуковую карту Creative SoundBlaster Live! и вспомнив, что еще с советских времен имеется хороший усилитель и добротная акустика, Вы получите ни что иное, как музыкальный центр высокого качества, звучание которого уступает разве что очень дорогой аудио аппаратуре (средней или даже высшей Hi-Fi категории). Прибавьте к этому общедоступность музыкальных файлов, и Вы поймете, что у Вас в руках — сила. И тогда происходит переворот, и Вы понимаете, что компакт диск — это уже и не так удобно, завораживает Вас совсем другое — магические знаки "MP3". Вы не можете ни есть, ни спать — перед Вами неразрешимый на первый взгляд вопрос "курицы и яйца": чем "сжимать" и, самое главное, — как "сжимать"…

Из существующих на сегодня форматов компрессии аудио заслуживающими внимания, на мой взгляд, являются три: MP3 (или MPEG-1 Audio Layer III), LQT (как представитель семейства MPEG-2 AAC / MPEG-4) и совершенно новый формат OGG (Ogg Vorbis), разрабатываемый группой энтузиастов:

  • На сегодняшний день MP3 — самый распространенный из них (в первую очередь потому, что он бесплатный). Напомню, что именно благодаря формату МР3 и произошло победоносное шествие сжатого аудио. Однако, как часто бывает с пионерами, он постепенно сдает позиции и уступает место более новым и качественным форматам.
  • Второй формат, LQT, является представителем нового направления алгоритмов аудио кодирования, представителем семейства AAC. Это достаточно качественный, но коммерческий и строго засекреченный формат.
  • OGG стал широко известен общественности этим летом и на данный момент бурно развивается, в скором времени (с релизом кодера и декодера) должен побить MP3 лучшим качеством звучания при меньшем объеме файлов.

Я не буду приводить здесь подробного описания технологий и форматов, Вы легко можете найти их самостоятельно. Будут только факты, выводы и рекомендации. Свои исследования отдельно по каждому формату я планирую изложить в отдельных статьях.

Условие задачи

Я решил "столкнуть лбами" три указанных формата на предмет получения максимально качественного звука при минимальном размере файла. Для теста были выбраны несколько семплов (здесь семпл — вырезанный из PCM файла небольшой фрагмент) из композиций двух типов. Первый — очень плотного и громкого звучания с нормализацией по амплитуде (уплотнение звука "по вертикали", чтобы он с 24 битного мастера уместился в 16 битах) и компрессией динамического диапазона (чтобы при этом звучание всех инструментов было всегда громким). В качестве первого типа (как и в моих прошлых тестах) была выбрана композиция Crush On You из альбома Have A Nice Day группы Roxette, исследовалось три семпла по 15-20 секунд с разных участков композиции. Второй семпл — чистый и прозрачный (легкая оркестровая или акустическая аранжировка). В качестве второго типа была взята композиция Mano a Mano с альбома Tango известного пианиста Richard Clayderman.

Почему именно эти записи? В семплах Roxette имеет место очень сильная динамическая компрессия (значение амплитуды очень часто равно максимуму (что плохо) и приводит к перегрузке воспроизводящей аппаратуры и сильным искажениям).

На подобных семплах кодерам приходится работать в экстремальном режиме, из-за чего становятся легко слышны любые искажения, т.к. к уже имеющимся собственным искажениям оригинала добавляются еще и искажения кодирования. Вы спросите "а зачем тогда брать в качестве теста такой семпл?". Нужно и еще как. Подавляющее большинство выпускаемых в настоящее время альбомов именно таким образом и записано. Поэтому кодер должен приемлемо относиться к перегруженному звуку.

С семплами Клайдермана ситуация диаметрально противоположная. Исходно аналоговая запись после очень качественного цифрового ремастеринга записана на компакт диске, причем без динамической компрессии.

Великолепное звучание, очень приятные и мягкие "верха". На них мы и обратим особое внимание при проведении анализа, попытаемся их сохранить. А ведь именно эти частоты кодерам будет сложнее всего передать.

Чем "жмем"

Мои исследования эталонного качества для разных битрейтов и кодеров формата MP3 выражены в программе OrlSoft MPeg eXtension . Параметры кодирования подобраны по результатам тестов.

Безусловный лидер качества на высоком битрейте — кодер LAME. Кодеры от Fraunhofer IIS по-прежнему хороши только для низких битрейтов — для 128 и 160 кбит/с. Про другие я даже говорить не буду. Только НИ В КОЕМ СЛУЧАЕ не связывайтесь с кодерами, основанными на коде XING (самый известный представитель — Audio Catalyst) — эти самые плохие, звук — просто ужас.

Для большинства пользователей формата MP3 проблема качественного звука обычно ставится следующим образом: "256 или 320? а может попробовать VBR?". И этот вопрос мучает их изо дня в день. Не все записи хорошо звучат в 256 — имеют место сильно слышимые и видимые (по измерениям) потери в области верхних частот. При использовании режима VBR (так называемый поток с переменным битрейтом) часто бывает, что музыка звучит на слух лучше, чем 256, но это нельзя брать за общее правило. Кодируйте мало ценные записи, либо не очень качественные — не ошибетесь. Параметры VBR у меня подобраны для получения максимального для VBR качества.

Для коммерческого формата LQT существует только фирменный кодер от авторов — Liquifier Pro. Им и жмем. Отмечу, что формат LQT изначально основан на VBR кодировании, поэтому для него существует просто несколько режимов типа "плохо", "хорошо" и "отлично". Естественно, для наших тестов берем режим "отлично" (Audiophile), в результате чего получается поток от 192 до 256, чаще всего 200-220 кбит/с. Напомню, что формат LQT основан на семействе алгоритмов MPEG-2 AAC. Более того, это наиболее качественная на сегодня реализация AAC (проверено на аналогах).

Формат OGG родственник формата MP3, однако содержит в себе иную психоакустическую модель и некоторые отсутствующие у MP3 технические новинки. Начать хотя бы с того, что OGG изначально поддерживает только режим VBR. Пользователь задает ориентировочную скорость потока, а кодер пытается сжать максимально ближе к нему. Диапазон изменения чрезвычайно широк: от 8 до 512 кбит/с, причем он значительно более дискретный, чем у MP3. Верхняя планка составляет целых 512 кбит/с, в то время как MP3 кодеры на сегодня реально "тянут" только до 320. Вы спросите "а разве бывает что и 320 мало?". Да, бывает, но редко.

Семплы Roxette

Ну вот, мы и подошли к самому интересному. Начнём с моих слуховых ощущений.

Для МР3 на потоке 256 кбит/с явно слышны нарушения звучания верхних частот. Мало того, что в звуке отсутствует немалая их часть, так еще и примешивается сильное искажение, хрип, металлический лязг и прочие "прелести". Это знак к тому, что 256 явно не хватает, следовательно, надо попробовать повыше. Берем сжатый в 320 семпл. Звук значительно изменился — это совсем другое дело: верха на месте, на слух никакой разницы не обнаружено. Для чистоты эксперимента посмотрим, что же получится в режиме плавающей скорости потока. Получаем средний битрейт в 290 кбит/с, из чего напрашивается вывод, что 256 для исследуемого семпла маловато будет. Действительно, на слух семпл, закодированный в режиме VBR, звучит чуть-чуть лучше, чем 256, однако явно не дотягивает до звучания 320. В случае применения МР3, для качественного сжатия подходит только кодирование в режиме 320 кбит/с, т.е. на максимуме возможностей.

Берем OGG как "модифицированный MP3". Для кодера существует пять ориентировочных битрейтов: 128, 160, 192, 256 и 350. Что ж, попробуем 192 и 256. Битрейт 350 брать не будем, т.к. нам уже известно, что MP3 при 320 кбит/с передает явно прекрасное качество, лучше вроде бы и не надо. Для режима 192 получаем средний поток в 226, а для режима 256 — целых 315 кбит/с. Вот вам и точность. Столь большое отклонение от ориентира — это сигнал к очень сложно кодируемому звуковому материалу, при более простом по плотности семпле точность будет выше. Честно говоря, я долго пытался оценить 320 MP3 и 315 OGG и пришел к выводу, что оба они звучат практически аналогично исходному звучанию. Но они основаны на разных психоакустических моделях и окраска звучания у них разная. Лично мне чуть больше понравился все-таки MP3. Однако, это действительно спорный вопрос — ведь кодер OGG пока только бета версия. Когда будет релиз, думаю, он должен обогнать MP3 в качестве. Сравнивая их по отдельности с оригиналом, я склонился к тому, что OGG все-таки ближе по звучанию к оригиналу, но вот с верхними частотами у этого кодера что-то не так. Из-за этого MP3 и звучит немного лучше. Думаю, не надо говорить, что в режиме 350 (средний битрейт получился в 365) OGG "идеально" повторяет оригинал.

Теперь про малоизвестный, но широко рекламируемый как "самый качественный" формат — формат LQT. И, что самое главное, он действительно звучит очень круто в целом, однако, прислушавшись, я понял, что мне не понравилось в его звучании. Он не искажает верхние частоты, как MP3 на 256 кбит/с, но размазывает звук, причем сильно размазывает. Резкие звуки размываются во времени. Да, это плохо. Но дело в том, что сравнивать LQT на битрейте всего в 230кбит/с с MP3 на таком же битрейте бесполезно, МР3 проигрывает по общему звучанию. Придраться, конечно, есть к чему. МР3 теряет и искажает верхние частоты, LQT же в свою очередь несколько "проваливает" средние частоты и размазывает верхние. В общем, тут кому что больше понравится. Но это — тема уже для другой статьи. Сегодня у нас разговор только про высшие битрейты. Да, LQT дает хорошее качество, но отнюдь не супер. По всей видимости, здесь сказывается недостаток скорости потока, то есть, если в LQT появится режим большего битрейта, он побьет даже 320 кбит/с MP3 на записях типа исследуемой.

Это были мои чисто субъективные впечатления. Давайте теперь перейдем к более объективным тестам. Исследуем АЧХ (то есть амплитудно-частотную характеристику ) семплов, признанных лучшими (320 для MP3, 315 для OGG и 230 для LQT). Представленная диаграмма — так называемый "сонарм" — частотно-временное представление звука. По горизонтали располагается шкала времени, по вертикали — линейная шкала частот.

Внимательно присмотрелись? Вот вам и ясное подтверждение моих слов: новейший формат Ogg Vorbis в режиме 256 явно недотягивает "по верхам" — урезание частот видно невооруженным взглядом. "Супер коммерческий" формат LQT передает диапазон частот по верхам вроде как даже лучше, чем LAME, но общее качество хуже. Дело в том, что в LQT нет режима чистого стерео — там, по сути, всегда Joint-Stereo (кодер сначала сжимает левый канал, а потом кодирует только разницу между левым и правым). Из-за этого и происходит размазка верхов при недостатке битрейта, что прекрасно видно на иллюстрациях, плюс сие заключение легко подтверждается исследованием сигнала в MS-матрице, т.е. при переводе его в режим центральный канал + стерео. Что можно сказать про семпл LAME… все просто замечательно — чуть-чуть урезаются верхние частоты, но это терпимо; видимых провалов также не отмечено.

Подытожим. На финишной прямой для семпла Roxette форматы OGG на 256 кбит/с и LQT сошли с дистанции, семпл OGG на 350 кбит/с не уступает лидеру. Однако не будем хоронить новый формат раньше времени — подождем релиза. Вот тогда уже и проведем тесты еще раз: OGG 256 против LAME 320.

Семплы Richard Clayderman

C семплами Roxette вроде все понятно — плотный звук пока лучше сжимать кодером LAME в режиме 320 кбит/с. А как насчет более прозрачного звука? Попробуем сначала сжать в режиме 256 кбит/с и все, по идее, должны бы быть довольны. Результат: низкие частоты вроде на месте, да и средние тоже, а вот верхние частоты… не стало верхних частот! Они есть, но в них не осталось того красивого звучания, не обратить внимание на которое в данной записи очень сложно. Высокие частоты в целом на месте и сильных потерь нет, однако звук "тарелок" стал какой-то синтетический, резкий и весьма неприятный. Такой звук не имеет права претендовать на звание качественного. Что ж, придется снова использовать 320, а ведь как хотелось сжать в 256… Если сравнивать 320 со звучанием 256, передача верхних частот стала значительно лучше. Однако, при сравнении с оригиналом, слышно, что запись по-прежнему не является удовлетворительной в плане качества. После сравнения еще нескольких семплов, становится очевидно, что это погрешности психоакустической модели. Даже в 320 кбит/с MP3 не передает нормально верхние частоты на исследуемом типе записей. Верхние частоты становятся более резкими, металлическими, от них так и веет синтетикой и, как ни странно, они кажутся более громкими (измерения АЧХ этого не демонстрируют — чисто слуховой эффект).

Исследуем теперь Ogg Vorbis. Как и в предыдущем тесте, берем семплы, сжатые в режиме 256 кбит/с. После неудачи с MP3 сложно поверить в полученный результат — звучание Ogg Vorbis лучше по всем параметрам и не идет ни в какое сравнение с тем, что выдает LAME на 320 кбит/с! Сравнивая с оригиналом, также очень сложно найти разницу. Ogg Vorbis на битрейте 287 побил LAME на битрейте 320. Именно об этом я и говорил в начале статьи: формат OGG вполне может победить MP3.

Хорошо, а что нам может сказать титулованный формат LQT на битрейте всего в 252? Но и здесь получается шокирующий результат — чрезвычайно близкое соответствие оригиналу! По-крайней мере, разница настолько мала, что можно считать ее несущественной. Еще, обратите внимание на интересный факт: при кодировании семплов Roxette средний битрейт получался порядка 230 кбит/с, а на, казалось бы, более простых семплах Clayderman — 250 кбит/с. Это говорит о том, что LQT значительно лучше адаптирован под реальное звучание музыки, в нем более точно учитываются все нюансы. Великолепный формат. Вот ему бы нормальный кодер без выкрутасов и битрейт чуть-чуть повыше, чтобы смог кодировать более сложные семплы.

Это были мои субъективные "слуховые" исследования. Теперь посмотрим на АЧХ.

И снова анализ АЧХ сигналов только подтверждает мои выводы по результатам прослушивания: LQT выдает просто выдающийся результат, на сей раз лучше LAME. Прекрасная передача частотного диапазона, а потери на уровне 21 кГц это удаленный высокочастотный шум, что даже приветствуется. LAME отстает, но не сильно. Как и ожидалось, с передачей частотного диапазона у MP3 все нормально. А вот АЧХ семпла Ogg Vorbis принесло разочарование: посмотрите, какое урезание частот. Но звучит он лучше, чем можно было бы подумать, взглянув на его АЧХ. По всей видимости, за счет урезания некоторых частот получается возможным более точно передать общую звуковую картину.

И что же мы получаем в итоге? Два лидера: LAME и LQT на максимальном битрейте. OGG очень сильно наступает на пятки MP3 и победит в дальнейшем, если его разработчики доведут свою идею до финального воплощения: меньший размер и лучшее качество.

Исследование дельта-сигналов

Формат MP3 за счет высокого битрейта лучше на большинстве записей. Однако он сдает позиции, когда мы имеем дело с очень качественным звуком. Здесь LQT — абсолютный фаворит. Но разница между 256 и 320 не такая уж и большая, поэтому ею чаще всего можно поступиться ради более удобного и распространенного формата. Многие, да и я в том числе, так и делают в своей фонотеке, а особо качественные записи просто покупают на дисках.

Все это конечно хорошо, но два формата звучат по-разному, и это не дает многим покоя. Есть еще одно интересное исследование. Можно вычислить разностный сигнал (далее он будет упоминаться как дельта-сигнал ) двух семплов и тем самым узнать, а в чем же они различаются. Это, конечно же, сугубо цифровое исследование, т.к. разница может быть не настолько значительной, чтобы ее можно было услышать. В нашем случае все оказалось совсем не так.

Громкость разностного сигнала доходит до -25дБ, а его АЧХ внешне сильно напоминает широкополосный шум. Если прослушать дельта-сигнал, он звучит как широкополосный набор искажений, т.е. в нем явно слышна разница психоакустических моделей MP3 и LQT.

Сравнив по той же схеме MP3 с форматом OGG, ничего нового не получили (разница, конечно, меньше, но она все же значительная):

Аналогичные результаты получаются и для пары LQT и OGG.

Результаты исследования дельта сигналов говорят о том, что психоакустические модели трех рассмотренных форматов очень сильно отличаются друг от друга и их бессмысленно сравнивать между собой по разнице АЧХ.

Заключение

Что ж, попытаемся сделать некоторые окончательные выводы, представив их в виде практических рекомендаций:

  1. LAME — лучший представитель кодеров формата MP3, выдает практически максимум того, что можно получить из MP3. Для всех очень громких и "плотных" записей я бы рекомендовал использовать LAME на 320.
  2. OGG — некоторая структурная модификация формата MP3 с новой психоакустической моделью, математическая обработка и практическая реализация которой в корне отличается от MP3. Для малоценных и низкокачественных записей пойдет OGG в режиме 192 кбит/с (либо LQT в режиме 128 Transparent, в среднем получается 160-180 кбит/с).
  3. В отличие от MP3 и OGG, которые являются представителями кодеров формата MPEG-1, формат LQT базируется на спецификации MPEG-2 AAC. Формат AAC передает значительно лучшее качество на более низких битрейтах за счет принципиально другой обработки звука. Для записей средней ценности рекомендую LQT (на максимуме), либо на выбор (разница между ними невелика): OGG в режиме 256 кбит/с, LAME на 256. VBR режим кодера LAME лучше не использовать, он заметно хуже.
  4. Для очень качественных записей, на которых даже при кодировании в 320 кбит/с ясно слышно отсутствие чего-либо значительного в звучании семпла, попробовать закодировать семпл кодером Ogg Vorbis на 350 кбит/с.
  5. Если сжатый с потерями звук Вас всё-таки не устроит, придется покупать понравившиеся композиции на CD-DA диске.

Возможно, какая-то часть статьи Вас заинтересовала в большей степени. Пишите мне — буду очень рад отзывам.

Сегодня большинство из нас имеет дело преимущественно с цифровыми системами воспроизведения звука. В этих системах звук хранится в цифровом виде – то есть – в виде последовательностей нулей и единиц, которые после раскодирования их с помощью специального программного и аппаратного обеспечения, превращаются в звук. В мире цифровой музыки идет борьба, с одной стороны, за качество воспроизведения, а с другой – за объем хранимых данных. Это два противоборствующих понятия – чем выше качество звука, тем, обычно, больше места требуется для его хранения. Для того, чтобы сохранить цифровой звук с как можно более высоким качеством в как можно меньшем объеме информации, были разработаны алгоритмы сжатия звука.

Существует два различных подхода к сжатию аудиоинформации. Первый называется сжатием без потерь ( lossless ) – в ходе такого сжатия звук, записанный в цифровом виде, сохраняется полностью, без потерь. Другой подход к сжатию аудиоданных называется сжатием с потерями ( lossy ) – звук особым образом обрабатывается, из него удаляется все, по заключению алгоритма сжатия, лишнее, а то, что остается, сжимается. Такое сжатие, в сравнении со сжатием без потерь, позволяет добиться гораздо более высоких уровней сжатия, то есть – уменьшить размеры звуковых файлов, в то время как качество звучания, если не стараться сжать файл слишком сильно, страдает не особенно заметно.

Музыкальные записи можно сжимать и обычными архиваторами, однако они не могут работать в режиме реального времени, к тому же, уровень сжатия несжатых музыкальных записей редко когда превышает 50%. Другой, используемый на практике, способ сжатия аудиоинформации заключается в применении специальных программ – так называемых кодеков, с помощью которых можно сжимать и "на лету" заниматься раскодированием и воспроизведением сжатых композиций.

Говоря о кодеках для сжатия аудиоинформации, следует различать понятия кодек и контейнер медиаданных. Контейнер – это, упрощенно говоря, некая стандартная оболочка , в которой хранятся аудиоданные, сжатые тем или иным кодеком. Например, в MP4-контейнере могут храниться данные, сжатые различными кодеками – в частности – кодеком сжатия с потерями AAC , кодеком сжатия без потерь ALAС и другими. Обычно для различных типов данных, которые хранятся в MP4-контейнере, применяются различные расширения файла. Точно так же, в WAV -файле могут храниться различные данные – например, сжатые в популярном формате MP3 или несжатая информация в формате PCM – в случае с WAV -файлами расширение имени файла остается неизменным (. wav ), а различаются эти файлы лишь по своей внутренней структуре.

Перечень программ

В табл. 3.1. приведены программы, описанные в данной теме. Это, в основном, универсальные программы, вы можете выбрать для кодирования тех или иных файлов любую из них. Входным форматом файлов по умолчанию является WAV , однако практически все программы умеют кодировать музыку между форматами и "разжимать" исходные файлы в стандартные WAV .

Таблица 3.1. Программы и форматы файлов
Программы и форматы MP3 OGG WMA AAC VQF FLAC WAV PACK APE ALAC
Lame +
Winlame + + +
RazorLame +
Windows Media Encoder +
aoTuV +
iTunes +
ImToo WMA MP3 Converter* + +
MP4 Converter**
ImToo Audio Encoder + + + + + + +
Flac Frontend +
Cue Splitter ***
WavPack Frontend +
Monkey’s Audio +
dBpoweramp + + + + + + + +

* Программа ImToo WMA MP3 Converter поддерживает большое количество входных форматов файлов, на выходе же могут быть лишь MP3 и WMA .

** Программа MP4 Converter конвертирует видеофайлы различных форматов в формат, понятный плеерам Apple iPod .

*** Программа для разбиения больших аудиофайлов в соответствии с индексными картами.

Сжатие с потерями

Среди существующих форматов сжатия аудиоданных с потерями можно отметить "большую четверку" - MP3 , WMA , Ogg Vorbis и AAC . Ваш MP3 -плеер с практически 100% вероятностью будет поддерживать один из этих форматов, а скорее всего – несколько. Знания о некоторых особенностях форматов будут особенно полезны при практической работе с аудиоинформацией. Например, в следующих лекциях мы рассмотрим ПО для работы со звуком, в частности, подробно остановимся на конверсии звука из одного формата в другой, и если вы будете знать о формате сжатия данных немного больше, чем его название, это может вам неплохо помочь. Итак, начнем с самого популярного формата.

MP3

Полное название MP3 – MPEG 1 Audio Layer 3. MP3 – это формат сжатия аудиоданных с потерями, который добился невероятной популярности по всему миру. В настоящее время существуют варианты стандарта - MPEG-2 Layer 3 и MPEG-2 .5 Layer 3.

История MP3 начинается в конце 1980-х годов, когда рабочая группа инженеров института Фраунгофера (Fraunhofer Society) начала работать над проектом DAB ( Digital Audio Broadcast ). Проект был частью исследовательской программы EUREKA и в ее рамках был известен как EU -147. MP3 стал результатом переработки стандартов сжатия аудиоинформации Musicam и ASPEC, добавления к идеям, используемых в этих стандартах, новых оригинальных концепций. Непосредственное отношение к стандарту имеет так же компания Thomson.

Стандарт развивался в начале 1990-х, в 1995 году была опубликована окончательная версия стандарта, однако еще в 1994 году был создан первый программный MP3 -кодировщик, который назывался l3enc. Тогда же было выбрано расширение. mp3 для файлов, закодированных в данном формате, а в 1995 году появился первый программный MP3 -проигрыватель Winplay3, доступный широкой общественности. Благодаря высокому качеству музыки при небольшом размере файлов, а так же из-за появления простого и качественного программного обеспечения для проигрывания и создания MP3 -файлов (например, широко известного и ныне здравствующего WinAmp’a, который появился еще в середине 1990-х годов), стандарт обрел огромную популярность и пользуется ей до сих пор.

Возможности MP3

Говоря о возможностях формата MP3, пожалуй, надо начать с формата, в котором хранят музыку на обычных музыкальных CD-дисках, на так называемых Audio CD . Звук, записанный на такие диски, имеет вполне определенные характеристики, а именно, это 44.1kHz 16Bit Stereo (44,1 кГц, 16-битный стереозвук). В переводе на нормальный человеческий язык это означает, что каждая секунда звучания состоит из 44100 образцов (этот параметр называют частотой дискретизации), каждый из которых имеет размер 16 бит (то есть – два байта), причем, информация записывается для двух каналов – для правого и для левого. В итоге получается, что для хранения одной секунды музыки в формате Audio CD потребуется 44100*16*2=1411200 бит, или 176400 байт, или 172,2 Кб. Таким образом, пятиминутная композиция займет 176400*5*60=52920000 байт, то есть – почти 50 мегабайт дискового пространства. Даже сегодня, учитывая десятки, а чаще – сотни гигабайт жестких дисков, которые есть в распоряжении обычных пользователей, довольно сложно представить себе музыкальную коллекцию, состоящую исключительно из звука, записанного в таком неэкономном формате. Что и говорить о жестких дисках на пару гигабайт, которые были пределом мечтаний многих лет десять назад.

Файлы, сжатые в MP3 практически без потери первоначального качества, занимают в 6-10 раз меньше места, чем оригинал. То есть из огромного 50-мегабайтного файла получается вполне пристойный 5-мегабайтный. Причем, если сжать такой файл с помощью обычных алгоритмов сжатия (RAR или ZIP, например), которые используются для простых файлов, мы получим, в лучшем случае, 50% выигрыш (то есть файл порядка 25 Мб). В чем же дело? Почему же MP3 способен так сильно сжимать файлы, практически не ухудшая их качества. Ответ на вопрос здесь кроется в слове "практически". Ведь обычное сжатие не изменяет качества композиций, оно полностью сохраняет его, а MP3 проводит некие манипуляции с файлом, которые могут сказаться на его качестве.

Как работает MP3

В основе MP3 лежит множество механизмов сжатия, в частности, так называемое адаптивное кодирование, основанное на психоакустических моделях, которые учитывают особенности восприятия звука человеком и удаляют из него все "лишнее" - все то, что среднестатистическому человеку невозможно услышать при прослушивании композиций. Как мы уже говорили, если не стремиться слишком сильно сжать композицию, применив наиболее качественный вариант MP3-кодирования, то ее размер будет примерно в 6-10 раз меньше оригинала с CD-качеством, а качество этих двух записей будет идентичным – вряд ли даже профессионал различит их. При более высоких уровнях сжатия потери (их еще называют артефактами сжатия) слышны гораздо сильнее, но тот, кто пользуется сильно сжатой MP3-музыкой, сознательно идет на такой шаг. Например, сильно сжатые MP3 чрезвычайно популярны в среде сотовых телефонов – часто встроенной памяти аппарата не хватает для того, чтобы закачать в него достаточное количество качественных MP3, в результате владелец жертвует качеством записи ради количества. Но вернемся к описанию принципов работы MP3, в частности, к психоакустическим моделям.

Адаптивное кодирование, основанное на психоакустических моделях, применяет различные знания об особенностях восприятия звуков человеком. Так, если одновременно воспроизводятся два звуковых сигнала, один из которых слабее, то более слабый сигнал заглушается (или, как говорят, маскируется) более сильным сигналом. В результате получается, что человек слышит более сильный звук, а более слабый – нет. В таком случае информация о более слабом звуке просто отбрасывается. Точно так же происходит, если сразу после громкого звука идет тихий – громкий звук вызывает временное понижение слуховой чувствительности, в результате – тихий звук оказывается не слышным – информацию о нем так же можно убрать. Так же при обработке музыкальных композиций учитывается то, что большинство людей не способны различить сигналы, мощность которых находится ниже определенного уровня для различных частотных диапазонов.

Битрейт

При MP3-кодировании особенную важность имеет так называемый битрейт (bitrate или ширина потока), который задается при кодировании. Например, уже описанный Audio CD может быть закодирован с максимальным битрейтом 320 Кбит/c (килобит в секунду – этот показатель так же обозначают как kbps , kbs , kb/s) до 128 и ниже. На практике, при битрейте ниже 128 Кбит/с качество звучания падает настолько сильно, что кодировать с подобным битрейтом есть смысл лишь тогда, когда другой альтернативы просто нет.

С одним и тем же битрейтом могут быть закодированы различные исходные материалы, например, звук может быть не стереофоническим, а монофоническим, другой может быть частота дискретизации или размер выборки, однако битрейт – это очень важный интегральный показатель качества MP3-файла. В общем случае, чем он больше – тем это лучше. Очень часто при кодировании MP3-записей Audio CD -качества, можно встретить битрейт 192 Кбит/с – он неплохо подходит для этих целей, однако при прослушивании подобных записей на качественной аудиоаппаратуре (особенно, если сравнить их с оригинальными Audio CD ), заметны артефакты сжатия.

Однако, нельзя однозначно утверждать, что любая музыкальная композиция, скажем, записанная на битрейте 192 Кбит/с лучше, чем композиция, записанная на 128 Кбит/с. Многое зависит от самой музыки, от кодировщика, от исходного качества записи, а так же от того, какой тип битрейта использован при записи композиции.

Так, наиболее простой тип битрейта – это постоянный битрейт – или CBR ( Constant Bit Rate ). Этот битрейт не меняется в течение кодирования всей композиции, то есть каждая секунда звучания, независимо от ее содержимого, кодируется одинаковым количеством бит.

Bit Rate ) – его можно назвать комбинацией VBR и CBR . Так, перед началом кодирования пользователь задает средний битрейт, а при кодировании программа, используя переменный битрейт, следит за тем, чтобы в итоге битрейт вписался в установленное пользователем ограничение. Качество выходного файла получается, таким образом, хуже, чем при использовании VBR (но немного лучше, чем при использовании аналогичного CBR ), однако размер файла поддается гибкой и точной регулировке.

В ходе кодирования исходный аудиосигнал разбивается на участки, которые называются фреймами. Каждый фрейм кодируются отдельно, а при декодировании звуковой сигнал реконструируется из декодированных фреймов. Особый интерес при кодировании MP3 представляет способ обработки стереосигнала – давайте остановимся на этом вопросе подробнее.



Рекомендуем почитать

Наверх