Способы коммутации сети для любых устройств. Схемы устройств малопроводной связи и коммутации

Скачать Viber 01.08.2019
Скачать Viber

При большом числе пользователей более эффективны схемы коммутации, содержащие много звеньев. На рис. 2.3. приведена двухзвенная схема коммутации. Для определения

областей применения сравним эту и предыдущую схемы по числу тре­буемых точек коммутации.

Рис. 2 Двухзвенная коммутационная схема

На рис. 2 приняты следующие
обозначения: -

я - число входов в матрицу

звена А; г - число матриц звена А; т - число промежуточных ли­ний между звеньями А и В; s - количество входов в матри­цу звена В; к- число выходов из матрицы

звена В; /- связность.

Связность - это число проме­жуточных линий, которые соединя­ют одну определенную матрицу зве­на А с одной определенной матри­цей звена В. Пусть необходимо коммутировать N входов с М выходами. Тогда будут соблю­даться следующие условия:

для полнодоступной коммутационной схемы число точек коммутации равно NM;

для неполнодоступной схемы коммутации число точек коммутации равно r{nm) + (m/f) (fa);

число коммутаторов звена А (г) зависит от требуемого общего числа входов N и составляет г = N/n;

Число коммутаторов звена В (m/f) зависит от требуемого общего числа выходов М, т.е. m/f=M/k.

Тогда число точек коммутации неполнодоступной коммутационной схемы будет равно Nm + Ms. Тем самым определяется условие того, что многозвенная коммутационная схема более эффективна, чем однозвенная: число коммутационных точек в ней должно быть мень­ше, чем в полнодоступной

Последнему условию может соответствовать множество сочетаний параметров комму­тационных схем, но для всех из них справедливы соотношения

т/М< 1 и s/N< 1 (гдеN, M, m, s 0).

Эти требования означают, что число выходов матрицы звена А не должно быть больше общего числа выходов всей коммутационной схемы М, а число входов звена В не должно быть больше общего числа входов в коммутационную схему N.

Такое условие выполняется для всех реальных задач. Число выходов матриц, которые используются для малых станций (100...500 входов и тот же диапазон числа выходов) варьи­руется от 4 до 8, а для больших емкостей (4000...300 000 входов и выходов) используются матрицы, имеющие 512 выходов. Из приведенных данных следует, что в современных теле­фонных станциях однозвенные коммутационные схемы во много раз менее экономичны, чем многозвенные. Однако небольшое число входов в коммутационную матрицу не позво­ляет построить коммутационную двухзвенную схему с достаточно большим числом выхо­дов. Для этих случаев применяются многозвенные схемы (рис. 3).

Рис. 3 Пример построения 4-звенной коммутационной схемы 512x512

На рис. 3 показан блок, содержащий 8 коммутационных матриц 8x8. Он имеет общее число входов N = 64 и выходов М = 64. Для увеличения числа входов и выходов строится схема из 8 блоков, которая позволяет увеличить число входов и выходов до N = М = 512.


Показанная на рис. 3 схема коммутации имеет равное количество входов и выходов, однако, для построения телефонных систем применяются различные типы блоков. Они различаются не только параметрами коммутаторов и числом каскадов, но и назначением. Например, известно, что уровень загрузки абонентских линий довольно низок (за исключе­нием таксофонов, линий с терминалами сети Интернет). В среднем они используются на 10-15%. Для межстанционных линий, стоимость которых очень высока, необходимо увели­чить интенсивность использования и тем самым снизить требования по числу линий, выде­ляемых для заданной группы абонентов. Поэтому для включения абонентских линий при­меняются специальные схемы с концентрацией (рис. 2.5).

Рис.4 Концентрация нагрузки на звене А: а) 2-звенная схема с концентрацией; б)пример создания матрицы с концентрацией

Для этого применяются матрицы, которые имеют число входов большее, чем число выхо­дов. Это может достигаться конструктивно или путем запараллеливания выходов (рис. 4). В цифровых системах коммутации широко применяются варианты, когда концентрация пу­тем запараллеливания делается на абонентских (терминальных) комплектах, что вносит до­полнительные удобства. При рассмотрении вопросов построения терминальных комплектов будут рассмотрены и такие варианты.

Ключи коммутации телефонных аппаратов (ТА) с линией являются, пожалуй, одним из наиболее сложных элементов сопряжения в микро-АТС.

Различают два вида коммутации:

По минусу питания схемы;

По плюсу питания схемы.

Комбинацией этих двух методов можно реализовать любой способ электрического (не механического) подключения ТА к линии. Рассмотрим их в отдельности.




На рис. 11 приведена простая схема ключа с использованием микросхемы 1014КТ1А по минусу питания.

В соответствии с параметрами микросхемы КР1014КТ1А, В, описанными в , схема обеспечивает надежную работу при максимальном токе коммутации до 110мА и импульсном напряжении до 200 В. Управляющее напряжение не должно превышать 3,5...5 В.

Достоинства схемы:

Высокое качество коммутации (сопротивление в открытом состоянии не превышает 10 Ом);

Простота схемного решения;

Совместимость с КМОП-логикой;

Сверхнизкое потребление по управляющему входу (устойчиво

переключается через сопротивление до 10 МОм). Недостатки схемы:

Невозможность простым схемным решением реализовать контроль за состоянием телефона (снята трубка или положена), что ограничивает применение этого способа коммутации.

На рис. 12 приведена схема коммутации по плюсу питания. Достоинством такой схемы является возможность увязки в схеме с общим корпусом различных узлов телефонной приставки: узла подъема трубки (контроля телефона), узлов коммутации, схемы обработки и пр. достаточно простым способом. Коммутационные свойства этой схемы так же высоки, так как в основе лежит токовый ключ 1014КТ1А.

Принцип работы заключается в следующем. При подаче на базу VT1 логической единицы напряжение на управляющий вход DA1 не подается. Емкость С1 разряжена, ключ DA1 закрыт, мост VD6...VD9 также закрыт, и телефонный аппарат изолирован от линии по плюсу.



При подаче на базу VT1 логического нуля напряжение телефонной линии за счет падения на VD4, VD5 и частично на диодах моста VD6...VD9 через резисторы R1, R2 поступает на управляющий вход 1 DA1. Цепочка VD2, С1 обеспечивает стабильность включения ключа при импульсных помехах на линии (например при наличии импульсов набора номера). Телефон включается по плюсу в линию.

Еще один способ коммутации ТА по плюсу питания схемы рассматривается в . На рис. 13 приведена схема ключа коммутации



с использованием оптопары АОТ101А. Диодно-транзисторный оптрон позволяет осуществить гальваническую развязку цепи управления и ключа коммутации, в качестве которого выступает транзистор КТ972А. Транзистор открывается напряжением с линии через R1, обеспечивая коммутацию ТА на линию. Следует отметить, что сопротивление в открытом состоянии у транзистора КТ972А несколько выше, чем у микросхемы 1014КТ1А, кроме этого, при наличии импульсов в телефонной линии открытое состояние транзистора поддерживается лишь за счет переходных процессов в полупроводнике. Это может несколько ухудшить соответствие схемы коммутации нормам ГОСТ . Для коммутации телефона либо разговорного ключа ТА, в описаны схемы импульсных ключей на составных транзисторах, приведенные на рис. 14, 15, 16.

Эти схемы применяются в телефонных аппаратах импортного и отечественного производства для формирования импульсов набора номера, но с таким же успехом их можно применять в любых телефонных приставках в качестве ключей коммутации по плюсу схемы.




Аннотация: Лекция посвящена общему описанию основных составляющих телефонной станции - коммутационным полям и устройствам управления, которые будут детально рассмотрены в дальнейших лекциях

Общие сведения о телекоммуникационных станциях

В данном разделе будут в основном рассмотрены станции, предназначенные для работы в телефонных сетях. Эти вопросы составляют основу телекоммуникации и изучались многие десятилетия. Существует ряд учебников (, , , ), которые являются базовыми при изучении данного материала, несмотря на то, что в настоящее время многие вопросы, изложенные в указанной литературе, необходимо адаптировать к современной технике. Развитие телекоммуникационной техники привело к интеграции, охватившей сначала сети информации (например, сети передачи речи и передачи данных), а потом соответствующие услуги. Вследствие набирающих силу интеграционных процессов ограничиться рассмотрением только задач передачи речи невозможно, поэтому будут рассмотрены и другие принципы коммутации и обработки информации. Основные принципы построения коммутационных станций не зависят от того, на какой базе (механические элементы или компьютерная техника) выполняются станции. Как мы увидим дальше, решения по построению станций диктуются в первую очередь экономическими и техническими требованиями, порождая таким образом возможность осуществлять новые услуги для абонентов.

Сегодня мы можем наблюдать большое разнообразие как телефонных станций, так и коммутационных узлов обработки информации. Однако все они содержат определенные группы устройств (рис. 1.1).

Рассмотрим задачи, выполняемые каждой из частей станции.

Коммутационное поле решает задачи соединения двух или нескольких источников между собой. На первых этапах внедрения телефонной техники эту роль играли электромеханические устройства на базе электромагнитных элементов. Эти базовые элементы определили названия для первых коммутационных систем:

  • декадно-шаговая система Автоматических Телефонных Станций (АТС);
  • координатная система АТС (АТС-К) или усовершенствованная АТС-К (АТС-КУ).

С появлением микроэлементной базы и развитием электронной вычислительной техники был разработан целый комплекс цифровых систем передачи и соответствующих цифровых систем коммутации. В настоящее время все больше задач коммутации выполняется совместно с задачами управления. Повышение быстродействия позволяет совместить эти задачи и тем самым приводит к дальнейшему прогрессу техники коммутации информации.

Управляющее устройство решает логические задачи, необходимые для установления соединения, а также выполняет работы, связанные с основными и дополнительными видами обслуживания. Первые системы АТС применяли управляющие устройства на базе электромагнитных реле, по сути представляющие собой медленные компьютеры. Число решаемых ими задач было ограничено вследствие их небогатых логических возможностей и большого времени выполнения. В дальнейшем, по мере развития микрокомпьютеров, для задач управления АТС стали применять универсальную компьютерную технику, и в настоящее время на ней реализованы все части телефонной станции. Поэтому наряду с существующими методами построения и управления сетей, характерными для традиционной телефонии, стали развиваться и получать все большее распространение методы, присущие компьютерным сетям (например, пакетная передача, адресная коммутация и т. п.). При переходе к управлению с помощью компьютеров появилась еще одна существенная составляющая - это программное обеспечение , которое берет на себя все задачи по управлению станцией (кроме физического и некоторых функций уровня звена данных).


Рис. 1.1.

Общая структурная схема современной станции с программным управлением (рис. 1.1) включает также:

  • терминальные комплекты, обеспечивающие выполнение протоколов связи уровня звена данных и иногда физического уровня с абонентскими терминалами;
  • линейные комплекты, выполняющие те же функции, что и терминальные, но по отношению к объектам сети (другие станции, узлы сети).

Рассмотрим более подробно структуру построения станций на примере телефонных станций. Особенности построения других объектов коммутации информации будут проанализированы отдельно.

Типы построения коммутационного поля

Однозвенное коммутационное поле

Для наиболее простого типа коммутационного поля - полнодоступного коммутационного поля - характерно, что каждый источник, включенный в его вход, может быть соединен с источником, включенным в выход.

Такой тип коммутационного поля применялся в станциях очень малой емкости (до 50 номеров и меньше). Но в последнее время прогресс элементной базы расширяет возможности его применения.

Предварительно можно сказать, что сейчас коммутаторы информационных сетей работают по однозвенному принципу, но постепенно современные коммутаторы, даже на базе программных маршрутизаторов, переходят к многозвенным схемам.

На рис. 1.2 приведено построение условной схемы коммутатора. На каждом пересечении горизонтали и вертикали коммутатора условно показан контакт, для простоты - механический.

Физический принцип реализации такого контакта может быть любым, в том числе и программно-адресным.


Рис. 1.2.

Такие полнодоступные принципы построения коммутационного поля не нашли широкого применения из-за их неэкономичности для станций большой емкости. Только в последнее время в связи с уменьшением габаритов и удешевлением микросхем, реализующих коммутаторы, стало возможным применять этот принцип для построения станций достаточно большой емкости (более 2000 входов/выходов). Но современные станции часто имеют большие емкости, до 300000 входов и 100000 выходов. В этом случае такая матрица просто не может быть выполнена, учитывая ее реальную цену и габариты.

В последнее время во многих важных приложениях для коммутации применяются программные способы, которые выполняются на компьютерах.

Эти способы коммутации эквивалентны способу с применением полнодоступной схемы. Но при больших емкостях один компьютер не может обеспечить обслуживание поступающих потоков вызовов ни по быстродействию, ни по объемам памяти. Поэтому на программном уровне требуется поиск решений, эквивалентных многозвенной коммутации.

Двухзвенные и многозвенные схемы коммутации

При большом числе пользователей более эффективны схемы коммутации, содержащие много звеньев. На рис. 1.3 приведена двухзвенная схема коммутации. Для определения областей применения сравним предыдущую и последующую схемы по числу требуемых точек коммутации.


Рис. 1.3.

На рис. 1.3 приняты следующие обозначения:

  • n - число входов в матрицу звена A ;
  • r - число матриц звена A ;
  • m - число входов матрицы звена A ;
  • s - число выходов матрицы звена B ;
  • k - число выходов из матрицы звена B ;
  • f - "связность".

Связность - это число промежуточных линий, которые соединяют одну определенную матрицу звена A с одной определенной матрицей звена В .

Пусть необходимо коммутировать N входов с M выходами. Тогда будут соблюдаться следующие условия: для полнодоступной коммутационной схемы число точек коммутации равно NM ;

Для неполнодоступной схемы коммутации число точек коммутации равно r (nm) + m/f (ks) .

Однако r (число коммутаторов звена A ) зависит от требуемого общего числа входов N и составляет

В то же время m/f (число коммутаторов звена B ) зависит от требуемого общего числа выходов M :

Тогда число точек коммутации неполнодоступной коммутационной схемы будет равно Nm + Ms .

Тем самым определяется условие: чтобы многозвенная коммутационная схема была более эффективна, чем однозвенная, число коммутационных точек в ней должно быть меньше, чем в полнодоступной:

NM > Nm + Ms 1 > m/M + s/N.

Последнему условию может соответствовать множество сочетаний параметров коммутационных схем , но для всех из них справедливо, чтобы соблюдались соотношения

Коммутатором называют устройство, позволяющее коммутировать (включать или переключать) электрические сигналы. Аналоговый коммутатор предназначен для коммутации аналоговых, т. е. изменяющихся по амплитуде во времени сигналов.

Отмечу; что аналоговые коммутаторы с успехом можно применять и для коммутации цифровых сигналов.

Обычно состоянием «включено/выключено» аналогового коммутатора управляют подачей управляющего сигнала на управляющий вход. Для упрощения процесса коммутации для этих целей используют цифровые сигналы:

♦ логическая единица - ключ включен;

♦ логический ноль - выключен.

Чаще всего уровню логической единицы отвечает диапазон управляющих напряжений, лежащих в пределах от 2/3 до 1 от напряжения питания микросхемы коммутатора, уровню логического нуля - зона управляющих напряжений в пределах от 0 до 1/3 от напряжения питания. Вся промежуточная область диапазона управляющих напряжений (от 1/3 до 2/3 от величины напряжения питания) соответствует зоне неопределенности. Поскольку процесс переключения носит, хотя и неявно выраженный, пороговый характер, аналоговый коммутатор можно рассматривать по отношению к входу управления как простейший .

Основными характеристиками аналоговых коммутаторов являются:

К числу недостатков переключателя можно отнести то, что предель-

При включении генератора оба ключевых элемента микросхемы разомкнуты. С2 через R5 заряжается до напряжения, при котором ключ DA1.1 включается. На резистивный делитель R1-R3 подается напряжение питания; С1 заряжается через R4, R3 и часть потенциометра R2. Когда напряжение на его положительной обкладке достигнет напряжения включения ключа DA1.2, произойдет разряд обоих конденсаторов, и процесс их заряда- разряда будет периодически повторяться.

Для проверки исправности элементов световой индикации необходимо кратковременно нажать кнопку SA1 «Тест».

При работе на индуктивную нагрузку (электромагниты, обмотки и т. п.) для защиты выходных транзисторов микросхемы вывод 9 микросхемы следует подключить к шине питания, как показано на рис. 23.26.

Рис. 23.24. Структурная Рис. 23.26. включения микросхемы

микросхемы ULN2003A (ILN2003A) (JLN2003A при работе на индуктивную нагрузку

UDN2580A содержит 8 ключей (рис. 23.27). Она способна работать на активную и индуктивную нагрузку при напряжении питания 50 В и максимальном токе нагрузки до 500 мА.

Рис. 23.27. Цоколевка и эквивалентная микросхемы UDN2580A

UDN6118A (рис. 23.28) предназначена для 8-и канального ключевого управления активной нагрузкой при максимальном напряжении до 70(85) В при токе до 25(40) мА. Одна из областей применения этой микросхемы - согласование низковольтных логических уровней с высоковольтной нагрузкой, в частности, вакуумными флуоресцентными дисплеями. Входное напряжение, достаточное для включения нагрузки - от 2,4 до 15 В.

Совпадают с микросхемами UDN2580A по цоколевке, а по внутреннему строению с микросхемами UDN6118A другие микросхемы этой серии - UDN2981 - UDN2984.

Рис. 23.29. Строение и цоколевка микросхемы аналогового мультиплексора ADG408

Рис. 23.28. Цоколевка и эквивалентная микросхемы UDN6118А

Аналоговые мультиплексоры ADG408!ADG409 фирмы Analog Device можно отнести к управляемым цифровым кодом многоканальным электронным переключателям. Первый из мультиплексоров (ADG408) способен переключать единственный вход (выход) на 8 выходов (входов), рис. 23.29. Второй (ADG409) - переключает 2 входа (выхода) на 4 выхода (входа), рис. 23.30.

Максимальное замкнутого ключа не превышает 100 Ом и от напряжения питания микросхемы.

Микросхемы могут питаться от двух- или однополярного источника питания напряжением до ±25 В, соответственно, коммутируемые сигналы по знаку и амплитуде должны укладываться в эти диапазоны. Мультиплексоры отличаются малым потреблением тока - до 75 мкА. Предельная частота коммутируемых сигналов - 1 МГц.

Сопротивление нагрузки - не менее 4,7 кОм при ее емкости до 100 ηФ.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Характерной особенностью автомобиля можно считать его быстрое моральное старение, но долгую жизнь. Самое современное сегодня авто, как минимум через два года будет уже уступать другим, более новым, с улучшенными характеристиками, машинам. Но и сейчас на дорогах встречаются автомобили прошлого века. Поэтому не просто интересно, но порой и необходимо, знать хотя бы в общих чертах, что собой представляют подобные транспортные средства, их устройство, особенности, в том числе и такую вещь, как простой коммутатор зажигания, значительно изменивший возможности машины.

Что собой представляет и каков принцип работы коммутатора зажигания

Ещё на самых первых автомобилях для поджигания горючей смеси использовались системы батарейного зажигания, функциональная схема которой приведена на рисунке

Указанный рисунок позволяет понять, что ее работа основана на принципе самоиндукции. При разрыве цепи протекания тока в обмотке бобины 3, во вторичной наводится высоковольтная ЭДС, вызывающая появление искры на контактах свечи 2. Разрыв цепи вызывается размыканием контактов прерывателя 6.

Не касаясь достоинств или недостатков, следует отметить, что такая схема работала на автомобиле долгое время. И только появление новой элементной базы, дало толчок дальнейшему развитию подобного устройства, сохранив первоначальный принцип его работы.

Электронный коммутатор зажигания – следующий шаг в развитии

Самый простой и напрашивающийся вариант – использование транзисторных ключей для управления токами, протекающими через катушку зажигания . Так появился электронный коммутатор напряжения. Схема подобного простого устройства приведена ниже:


Коммутатор не влияет на первоначальный принцип работы, основанный на электромагнитной индукции. Роль электронных ключей, в качестве которых использованы транзисторы VT1 и VT2, заключается в том, чтобы уменьшить нагрузку на контакты прерывателя S1 и увеличить ток, протекающий через обмотку катушки L1. Следствием такого технического решения стало:

  • повышение надежности работы всей системы зажигания;
  • обеспечение возможности ее работы на больших оборотах двигателя и при высокой скорости движения;
  • повышение степени сжатия.

Каким может быть коммутатор системы зажигания

Приведенная выше схема коммутатора – лишь один из вариантов, как может быть реализовано устройство зажигания. Это выполняется с использованием:

  1. транзисторов;
  2. тиристоров:
  3. гибридных элементов;
  4. бесконтактных датчиков.

Транзисторная схема коммутатора рассмотрена выше, тиристорная схема использует накопление энергии в конденсаторе, а не в электромагнитном поле катушки зажигания. В ходе работы тиристорной системы, при поступлении управляющих сигналов, схема подключает заряженный конденсатор к обмоткам катушки, через которую он и разряжается, вызывая появление искры. Не касаясь достоинств и недостатков, которыми обладает та или иная схема, достаточно сказать, что любое подобное устройство обеспечивает значительное улучшение всех параметров системы зажигания, а коммутатор со временем вытеснил обычное батарейное зажигание.

Однако необходимо отметить и ещё один этап развития системы, и коммутатора в частности. Использование электронных компонентов и введение в конструкцию автомобиля коммутатора, позволило со временем отказаться от контактного прерывателя напряжения и заменить его бесконтактным датчиком. Такая система, в отечественных автомобилях, впервые была применена в машинах ВАЗ, в частности ВАЗ 2108. Подобный принцип работы, когда коммутатор получает сигналы от специального узла, на ВАЗ 2108 реализован с использованием датчика Холла.


При рассмотрении вариантов, каким может быть устройство коммутатора, нельзя обойти вниманием развитие самой системы зажигания. Основной принцип, который реализуется при ее построении – повышение надежности и эффективности работы всей системы. Достигается это применением микропроцессорных систем, использующих показания многочисленных датчиков. Для работы с такими системами требуется, как минимум, двухканальный коммутатор, а в последнее время и отдельная катушка, и коммутатор на каждую свечу.
Такой подход – двухканальный коммутатор (в дальнейшем и многоканальный) позволяет обеспечить:

  • более мощную искру;
  • исключение потерь в трамблере;
  • стабильный холостой ход;
  • улучшенный пуск при пониженной температуре;
  • снижение расхода топлива.

Стоит отметить, что двухканальный коммутатор позволяет избавиться от бегунка.

Как определить неисправность коммутатора зажигания

Введение в конструкцию автомобиля коммутатора зажигания, особенно на отечественных авто семейства ВАЗ, позволило повысить их надежность. И хотя первым серийным автомобилем с электронной системой зажигания был ВАЗ 2108, подобные устройства стали ставиться на многих других машинах, в первую очередь на классику. Однако использование такого достаточно сложного изделия привело к тому, что найти возникающую неисправность, а также проверить и отремонтировать коммутатор стало возможным по большей части только в условиях специализированных центров.
Внешними признаками, свидетельствующими, что появилась неисправность, могут быть:

  1. двигатель не заводится, искры на свечах нет;
  2. мотор заводится, но глохнет через несколько минут;
  3. мотор работает неустойчиво, если коммутатор заменить на заведомо исправный, дефект устраняется.

Самый простой способ выявить неисправность и проверить коммутатор, как уже отмечено, – установить заведомо исправный. Из-за достаточно низкого качества коммутаторов, поступающих на комплектацию автомобилей семейства ВАЗ, в том числе и ВАЗ 2108, водителям приходится возить с собой дополнительные коммутаторы для замены отказавшего. Однако существует и косвенный принцип оценки, позволяющий проверить работоспособность изделия и выявить его неисправность.


Для этого можно воспользоваться показаниями вольтметра в комбинации прибора. Надо включить зажигание, при этом стрелка установится посередине шкалы, а немного погодя качнется вправо (из-за отключения питания катушки при неработающем двигателе). Такое поведение стрелки свидетельствует, что неисправность в коммутаторе отсутствует.
В том случае, когда вольтметра нет, чтобы проверить зажигание, потребуется контрольная лампа. Один ее конец присоединяется на массу, другой – к выходу катушки, соединенному с клеммой 1 коммутатора. Если включить зажигание, то при исправном коммутаторе через некоторое время лампа станет гореть ярче.

Однако, в некоторых случаях, неисправность зажигания не связана с отказом коммутатора. Надо проверить состояние проводов, в первую очередь контакт с массой и состояние разъемов. Также необходимо проверить датчик Холла.

Появление в конструкции автомобиля, в том числе и отечественного ВАЗ 2108, коммутатора напряжения, явилось закономерным результатом развития системы зажигания. Дальнейшим ее улучшением стало использование сначала двухканальных, а затем многоканальных коммутаторов для повышения эффективности работы.



Рекомендуем почитать

Наверх