Способ создания диаграммы направленности антенны и спиральная антенна для его осуществления. Большая энциклопедия нефти и газа

Скачать на Телефон 10.07.2019
Скачать на Телефон

SLY_G 26 января 2017 в 19:25

Справочник по антеннам для радаров

  • Компьютерное железо ,
  • Сотовая связь
  • Перевод

Статья на перевод предложена . Материал взят с обширного справочного сайта, описывающего, в частности, принципы работы и устройство радаров.

Антенна – это электрическое устройство, преобразующее электроэнергию в радиоволны и наоборот. Антенна используется не только в радарах, но и в глушилках, системах предупреждения об облучении и в системах коммуникаций. При передаче антенна концентрирует энергию передатчика радара и формирует луч, направляемый в нужную сторону. При приёме антенна собирает возвращающуюся энергию радара, содержащуюся в отражённых сигналах, и передаёт их на приёмник. Антенны часто различаются по форме луча и эффективности.


Слева – изотропная антенна, справа – направленная

Дипольная антенна




Дипольная антенна, или диполь – самый простой и популярный класс антенн. Состоит из двух одинаковых проводников, проводов или стержней, обычно с двусторонней симметрией. У передающих устройств к ней подаётся ток, а у принимающих – принимается сигнал между двумя половинами антенны. Обе стороны фидера у передатчика или приёмника соединены с одним из проводников. Диполи – резонирующие антенны, то есть их элементы служат резонаторами, в которых стоячие волны переходят от одного конца к другому. Так что длина элементов диполя определяется длиной радиоволны.

Диаграмма направленности

Диполи – это ненаправленные антенны. В связи с этим их часто используют в системах связи.

Антенна в виде несимметричного вибратора (монопольная)


Несимметричная антенна представляет собой половину дипольной, и монтируется перпендикулярно проводящей поверхности, горизонтальному отражающему элементу. Коэффициент направленного действия монопольной антенны вдвое больше, чем у дипольной антенны удвоенной длины, поскольку под горизонтальным отражающим элементом нет никакого излучения. В связи с этим КНД такой антенны в два раза выше, и она способна передавать волны дальше, используя ту же самую мощность передачи.

Диаграмма направленности


Антенна "волновой канал ", антенна Яги-Уда, антенна Яги


Диаграмма направленности


Уголковая антенна


Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и уменьшающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.

Диаграмма направленности


Вибраторная логопериодическая (логарифмическая периодическая) антенна, или логопериодическая решетка из симметричных вибраторов


Логопериодическая антенна (ЛПА) состоит из нескольких полуволновых дипольных излучателей постепенно увеличивающейся длины. Каждый состоит из пары металлических стержней. Диполи крепятся близко, один за другим, и подключаются к фидеру параллельно, с противоположными фазами. По виду такая антенна похожа на антенну Яги, но работает она по-другому. Добавление элементов к антенне Яги увеличивает её направленность (усиление), а добавление элементов к ЛПА увеличивает её полосу частот. Её главное преимущество перед другими антеннами – чрезвычайно широкий диапазон рабочих частот. Длины элементов антенны относятся друг к другу по логарифмическому закону. Длина самого длинного из элементов составляет 1/2 от длины волны самой низкой из частот, а самого короткого – 1/2 от длины волны самой высокой частоты.

Диаграмма направленности


Спиральная антенна


Спиральная антенна состоит из проводника, закрученного в виде спирали. Обычно они монтируются над горизонтальным отражающим элементом. Фидер соединяется с нижней частью спирали и горизонтальной плоскостью. Они могут работать в двух режимах – нормальном и осевом.

Нормальный (поперечный) режим: размеры спирали (диаметр и наклон) малы по сравнению с длиной волны передаваемой частоты. Антенна работает так же, как закороченный диполь или монополь, с такой же схемой излучения. Излучение линейно поляризуется параллельно оси спирали. Такой режим используется в компактных антеннах у портативных и мобильных раций.

Осевой режим: размеры спирали сравнимы с длиной волны. Антенна работает как направленная, передавая луч с конца спирали вдоль её оси. Излучает радиоволны круговой поляризации. Часто используется для спутниковой связи.

Диаграмма направленности


Ромбическая антенна


Ромбическая антенна – широкополосная направленная антенна, состоящего из одного-трёх параллельных проводов, закреплённых над землёй в виде ромба, поддерживаемого в каждой вершине вышками или столбами, к которым провода крепятся при помощи изоляторов. Все четыре стороны антенны одинаковой длины, обычно не менее одной длины волны, или длиннее. Часто используются для связи и работы в диапазоне декаметровых волн.

Диаграмма направленности


Двумерная антенная решётка


Многоэлементный массив диполей, используемых в КВ диапазонах (1,6 – 30 МГц), состоящий из рядов и столбцов диполей. Количество рядов может быть 1, 2, 3, 4 или 6. Количество столбцов – 2 или 4. Диполи горизонтально поляризованы, а отражающий экран располагается за массивом диполей для обеспечения усиленного луча. Количество столбцов диполей определяет ширину азимутального луча. Для 2 столбцов ширина диаграммы направленности составляет около 50°, для 4 столбцов - 30°. Главный луч можно отклонять на 15° или 30° для получения максимального охвата в 90°.

Количество рядов и высота самого нижнего элемента над землёй определяет угол возвышения и размер обслуживаемой территории. Массив из двух рядов обладает углом в 20°, а из четырёх – в 10°. Излучение двумерной решётки обычно подходит к ионосфере под небольшим углом, и из-за низкой частоты часто отражается обратно к поверхности земли. Поскольку излучение может многократно отражаться между ионосферой и землёй, действие антенны не ограничено горизонтом. В результате такая антенна часто используется для связи на дальние расстояния.

Диаграмма направленности


Рупорная антенна


Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.

Диаграмма направленности


Параболическая антенна


Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.

Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.

Диаграмма направленности


Антенна Кассегрена


Антенна Кассегрена очень похожа на обычную параболическую, но использует систему из двух отражателей для создания и фокусировки луча радара. Основной отражатель параболический, а вспомогательный – гиперболический. Облучатель находится в одном из двух фокусов гиперболы. Энергия радара из передатчика отражается от вспомогательного отражателя на основной и фокусируется. Возвращающаяся от цели энергия собирается основным отражателем и отражается в виде сходящегося в одной точке луча на вспомогательный. Затем она отражается вспомогательным отражателем и собирается в точке, где расположен облучатель. Чем больше вспомогательный отражатель, тем ближе он может быть к основному. Такая конструкция уменьшает осевые размеры радара, но увеличивает затенение раскрыва. Небольшой вспомогательный отражатель, наоборот, уменьшает затенение раскрыва, но его нужно располагать подальше от основного. Преимущества по сравнению с параболической антенной: компактность (несмотря на наличие второго отражателя, общее расстояние между двумя отражателями меньше, чем расстояние от облучателя до рефлектора параболической антенны), уменьшение потерь (приёмник можно разместить близко от рупорного излучателя), уменьшение интерференции по боковому лепестку для наземных радаров. Основные недостатки: сильнее блокируется луч (размер вспомогательного отражателя и облучателя больше, чем размер облучателя обычной параболической антенны), плохо работает с широким диапазоном волн.

Диаграмма направленности

Антенна Грегори



Слева – антенна Грегори, справа - Кассегрена

Параболическая антенна Грегори очень похожа по структуре на антенну Кассегрена. Отличие в том, что вспомогательный отражатель искривлён в противоположную сторону. Конструкция Грегори может использовать меньший по размерам вспомогательный отражатель по сравнению с антенной Кассегрена, в результате чего перекрывается меньшая часть луча.

Офсетная (асимметричная) антенна


Как следует из названия, излучатель и вспомогательный отражатель (если это антенна Грегори) у офсетной антенны смещены от центра основного отражателя, чтобы не блокировать луч. Такая схема часто используется на параболических антеннах и антеннах Грегори для увеличения эффективности.

Антенна Кассегрена с плоской фазовой пластиной

Ещё одна схема, предназначенная для борьбы с блокированием луча вспомогательным отражателем,- это антенна Кассегрена с плоской пластиной. Она работает с учётом поляризации волн. У электромагнитной волны есть 2 компоненты, магнитная и электрическая, всегда находящиеся перпендикулярно друг другу и направлению движения. Поляризация волны определяется ориентацией электрического поля, она бывает линейной (вертикальной/горизонтальной) или круговой (круговой или эллиптической, закрученной по или против часовой стрелки). Самое интересное в поляризации – это поляризатор, или процесс фильтрации волн, оставляющий только волны, поляризованные в одном направлении или в одной плоскости. Обычно поляризатор изготавливают из материала с параллельным расположением атомов, или это может быть решётка из параллельных проводов, расстояние между которыми меньше, чем длина волны. Часто принимается, что расстояние должно быть примерно в половину длины волны.

Распространённое заблуждение состоит в том, что электромагнитная волна и поляризатор работают схожим образом с колеблющимся тросом и дощатым забором – то есть, к примеру, горизонтально поляризованная волна должна блокироваться экраном с вертикальными щелями.

На самом деле, электромагнитные волны ведут себя не так, как механические. Решётка из параллельных горизонтальных проводов полностью блокирует и отражает горизонтально поляризованную радиоволну и пропускает вертикально поляризованную – и на оборот. Причина следующая: когда электрическое поле, или волна, параллельны проводу, они возбуждают электроны по длина провода, и поскольку длина провода многократно превышает его толщину, электроны могут легко двигаться и поглощают большую часть энергии волны. Движение электронов приведёт к появлению тока, а ток создаст свои волны. Эти волны погасят волны передачи и будут вести себя как отражённые. С другой стороны, когда электрическое поле волны перпендикулярно проводам, оно будет возбуждать электроны по ширине провода. Поскольку электроны не смогут активно двигаться таким образом, отражаться будет очень малая часть энергии.

Важно отметить, что, хотя на большинстве иллюстраций у радиоволн всего 1 магнитное и 1 электрическое поле, это не значит, что они осциллируют строго в одной плоскости. На самом деле можно представлять, что электрические и магнитные поля состоят из нескольких подполей, складывающихся векторно. К примеру, у вертикально поляризованной волны из двух подполей результат сложения их векторов вертикальный. Когда два подполя совпадают по фазе, результирующее электрическое поле всегда будет стационарным в одной плоскости. Но если одно из подполей медленнее другого, тогда результирующее поле начнёт вращаться вокруг направления движения волны (это часто называют эллиптической поляризацией). Если одно подполе медленнее других ровно на четверть длины волны (фаза отличается на 90 градусов), то мы получим круговую поляризацию:

Для преобразования линейной поляризации волны в круговую поляризацию и обратно необходимо замедлить одно из подполей относительно других ровно на четверть длины волны. Для этого чаще всего используется решётка (четвертьволновая фазовая пластина) из параллельных проводов с расстоянием между ними в 1/4 длины волны, расположенных под углом в 45 градусов к горизонтали.
У проходящей через устройство волны линейная поляризация превращается в круговую, а круговая – в линейную.

Работающая по этому принципу антенна Кассегрена с плоской фазовой пластиной состоит из двух отражателей равного размера. Вспомогательный отражает только волны с горизонтальной поляризацией и пропускает волны с вертикальной поляризацией. Основной отражает все волны. Пластина вспомогательного отражателя располагается перед основным. Он состоит из двух частей – это пластина со щелями, идущими под углом в 45°, и пластина с горизонтальными щелями шириной менее 1/4 длины волны.

Допустим, облучатель передаёт волну с круговой поляризацией против часовой стрелки. Волна проходит через четвертьволновую пластину и превращается в волну с горизонтальной поляризацией. Она отражается от горизонтальных проводов. Она опять проходит через четвертьволновую пластину, уже с другой стороны, и для неё провода пластины ориентированы уже зеркально, то есть, будто бы повёрнуты на 90°. Предыдущее изменение поляризации отменяется, так что волна снова приобретает круговую поляризацию против часовой стрелки и идёт обратно к основному отражателю. Отражатель меняет поляризацию с идущей против часовой стрелки на идущую по часовой. Она проходит через горизонтальные щели вспомогательного отражателя без сопротивления и уходит в направлении целей вертикально поляризованной. В режиме приёма всё происходит наоборот.

Щелевая антенна


Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).

Диаграмма направленности


Пассивная фазированная антенная решётка (ПФАР)



Радар с МИГ-31

С ранних времён создания радаров разработчиков преследовала одна проблема: баланс между точностью, дальностью и временем сканирования радара. Она возникает оттого, что у радаров с более узкой шириной пучка повышается точность (увеличивается разрешение) и дальность при той же мощности (концентрация мощности). Но чем меньше ширина пучка, тем дольше радар сканирует всё поле зрения. Более того, радару с большим усилением потребуются антенны большего размера, что неудобно для быстрого сканирования. Для достижения практичной точности на низких частотах радару потребовались бы настолько громадные антенны, что их было бы затруднительно поворачивать с механической точки зрения. Для решения этой проблемы была создана пассивная фазированная антенная решётка. Она полагается не на механику, а на интерференцию волн для управления лучом. Если две или более волн одного типа осциллируют и встречаются в одной точке пространства, суммарная амплитуда волн складывается примерно так же, как складываются волны на воде. В зависимости от фаз этих волн интерференция может усиливать или ослаблять их.

Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.

Обычно радар с ПФАР состоит из 1 облучателя, одного МШУ (малошумящего усилителя), одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазовращателей.

Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:

На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.

Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:

Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.

Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.

Самая важная и дорогая часть ПФАР – фазовращатели. Без них невозможно управлять фазой сигнала и направлением луча.

Они бывают разных видов, но в целом их можно разделить на четыре типа.

Фазовращатели с временной задержкой


Простейший тип фазовращателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.

Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)

Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.

Отражательный/квадратурный фазовращатель


Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазовращателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.

Векторный IQ-модулятор


Так же, как и у отражательного фазовращателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.

Фазовращатель на фильтрах верхних/нижних частот


Был изготовлен для решения проблемы фазовращателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазовращатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазовращатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазовращателей, поэтому он чаще всего используется в радарах.

Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).

Активная фазированная антенная решётка


Снаружи АФАР (AESA) и ПФАР (PESA) отличить сложно, но внутри они кардинально различаются. ПФАР использует один или два высокомощных усилителя, передающего один сигнал, который затем делится на тысячи путей для тысяч фазовращателей и элементов. Радар с АФАР состоит из тысячи модулей приёма/передачи. Поскольку передатчики находятся непосредственно в самих элементах, у него нет отдельных приёмника и передатчика. Различия в архитектуре представлены на картинке.

У АФАР большинство компонентов, таких, как усилитель слабых сигналов, усилитель большой мощности, дуплексор, фазовращатель уменьшены и собраны в одном корпусе под названием модуля приёма/передачи. Каждый из модулей представляет собой небольшой радар. Архитектура их следующая:

Хотя АФАР (AESA) и ПФАР (PESA) используют интерференцию волн для формирования и отклонения луча, уникальный дизайн АФАР даёт много преимуществ по сравнению с ПФАР. К примеру, усилитель слабого сигнала находится рядом с приёмником, до компонентов, где теряется часть сигнала, поэтому у него отношение сигнал/шум лучше, чем у ПФАР.

Более того, при равных возможностях обнаружения у АФАР меньше рабочий цикл и пиковая мощность. Также, поскольку отдельные модули АФАР не полагаются на один усилитель, они могут одновременно передавать сигналы с разными частотами. В результате АФАР может создавать несколько отдельных лучей, разделяя массив на подмассивы. Возможность работать на нескольких частотах приносит многозадачность и способность развёртывать системы радиоэлектронного подавления в любом месте по отношению к радару. Но формирование слишком большого количества одновременных лучей уменьшает дальность действия радара.

Два главных недостатка АФАР – высокая стоимость и ограниченность поля зрения 60 градусами.

Гибридные электронно-механические фазированная антенные решётки

Очень высокая скорость сканирования ФАР сочетается с ограничением поля зрения. Для решения этой проблемы на современных радарах ФАР располагаются на подвижном диске, что увеличивает поле зрения. Не стоит путать поле зрения с шириной пучка. Ширина пучка относится к лучу радара, а поле зрения – общий размер сканируемого пространства. Узкие пучки часто нужны для улучшения точности и дальности действия, а узкое поле зрения обычно не нужно.

Теги:

  • радар
  • антенна
Добавить метки

Изобретение относится к антеннам сантиметрового, дециметрового и метрового диапазонов с эллиптической поляризацией излучения и может быть использовано в приемо-передающих системах радиосвязи и радиопеленгации, например, для связи с искусственными спутниками земли, в летательных аппаратах и передающих станциях. В ближней зоне активного излучателя с эллиптической поляризацией излучения (например, активной цилиндрической спирали 1, размещенной над металлическим экраном 3) помещают пассивную цилиндрическую спираль (ПЦС) 4 с направлением намотки витков, противоположным направлению вращения вектора электрической составляющей электромагнитной волны, излучаемой активным излучателем. Облучая ПЦС, возбуждают в ней бегущую волну тока, фаза которой в каждом витке зависит от расстояния до активной цилиндрической спирали 1. Сложение электромагнитных волн активной ЦС и ПЦС 4 в дальней зоне формирует ДН антенны. Перемещение ПЦС в осевом направлении изменяет разность фаз между бегущими волнами токов в активной ЦС 1 и ПЦС 4 в каждом из витков и соответственно разность фаз излучаемых полей. Благодаря этому, происходит усиление или ослабление суммарного электромагнитного поля в дальней зоне в зависимости от рангов возбуждаемых в спиралях волн токов. Ранги основных бегущих волн токов задаются конструктивно выбором длины витка спиралей.

1.Режимы излучения спиральной антенны 2

2.Расчетные соотношения для цилиндрической спиральной антенны 5

3.Плоская арифметическая спиральная антенна 8

4.Равноугольная (логарифмическая) спиральная антенна 11

5.Пример расчета цилиндрической спиральной антенны 14

Список использованной литературы 16

1. Режимы излучения спиральной антенны.

1.1. Спиральная ан­тенна представляет собой свернутый в спираль провод (1), который питается через коаксиальный фидер (2) (рис. 1, а). Внутренний провод фидера соединяется со спиралью, а внешняя оболочка фидера - с металлическим диском (3). Последний служит рефлектором, а также препятствует проникновению токов с внутренней на наружную поверхность оболочки фидера. Спираль может быть не только цилиндриче­ской, как на рис. 1, а, но и конической (рис. 1, в) и плоской (рис. 7) или выпуклой.

Рис.1. Спиральные антенны:

а - цилиндрическая; б – развёрнутый виток; в – коническая.

Цилиндрическая спиральная антенна характеризуется следующими геометрическими размерами: радиусом а, шагом s, длиной одного витка, числом витков p, длиной по оси , углом подъема .

Как видно из схемы антенны и изображения развернутого витка спирали (рис. 1, б), между размерами антенны имеются следующие зависимости:

, ,

1.2. Спиральные антенны используются на УКВ в режиме бегущих волн с осевым излучением и вращающейся поляризацией. Такой режим требует определенных соотношений между размерами антенны и дли­ной волны. Выявим эти соотношения.

Ток высокой частоты, проходя но спирали, вызывает излучение электромагнитных волн. Достаточно десяти-одиннадцати витков, что­бы вся подводимая к антенне энергия излучалась в пространство и не происходило отражения волн от конца спирали. Такая бегущая волна тока распространяется вдоль провода спирали с фазовой скоростью , т. е., с замедлением .

Рис.2.Виток спиральной антенны

Волна проходит один виток (от сечения 1 к сечению5 на рис. 2) за время.Электро­магнитные волны, возбуждаемые током спирали, распространяются в воздухе со скоростью с и длиной волны.

Если бы все витки сливались, то достаточно было установить время, равным периоду колебаний, т. е., чтобы поля любой пары противоположных элементов (1-3,2-4) спирали совпадали по фазе и полностью складывались в точках оси 0"0", которая равноудалена от контура витка. Это объясняется тем, что в пределах одного витка ам­плитуды тока практически одинаковая, а различие в фазе на угол в диаметрально противоположных сечениях витка (1-3, 2-4) компенсируется противоположным направлением токов в них.

В случае спирали цилиндрической формы с шагом s условие мак­симального осевого излучения формулируется несколько иначе: за вре­мя прохождения тока по витку электромагнитная волна долж­на пройти в воздухе расстояние большее, чем длина волны, на шаг s:

; соответственно

(1)

При таком коэффициенте замедления токи в любых двух сечениях, расположенных под углом 90° (например, в 1 и 2, 2 и 3, 3 и 4, 4 и 5), вызывают на оси О"О" поля, которые сдвинуты по фазе на 90°, и волны, которые поляризованы под углом 90°. В результате сложения этих линейно-поляризованных волн получаются волны с круговой поляриза­цией.

1.3. Опытным путем установлено, что с увеличением длины волны фазовая скорость уменьшается, а коэффициент замедления увеличивается во столько же раз. Благодаря этому условие осевого излучения (1) поддерживается в широком диапазоне волн:

(рис. 3, а).

Рис.3.ДН цилиндрической спиральной антенны

при различной длине витка спирали

При длине витка набег фазы в 360° происходит при про­хождении волной тока нескольких витков спирали. При этом антенна уподобляется электрически малой рамке из N витков провода, которая имеет ДН в виде восьмерки с максимумами излучения в плоскости, перпендикулярной оси спирали (рис. 3, б). Если, то на одном витке спирали укладывается две, три и более волн, а это приво­дит к наклонному излучению и конусной форме пространственной ДН (рис. 3, в).

1.4. Наиболее выгодный режим - осевого излучения, который, как известно, требует длины витка и обеспечивает полосу пропус­кания . Эта полоса может быть значительно расширена путем перехода к конической антенне (рис, 1, б), в которой участок (2) со средней длиной витка удовлетворяет условию, а крайние участки (1, 3) с большими () и меньшими () длинами витков удовлетворяют аналогичным условиям, но для мак­симальной и минимальной длин волн рабочего диапазона:

,. В зависимости от ра­бочей длины волны интенсивно излучает только одна из зон спирали и только этой активной зоной определяется острота ДН.


Cтраница 1


Диаграмма направленности спиральной антенны стабильна в широкой полосе частот; например, спираль с постепенно изменяющимся диаметром отдельных витков имела рабочий диапазон частот 120 - 450 Мгц ; начальный диаметр равнялся 60 см, а через 10 витков, осевая длина которых составляла 112 см, диаметр уменьшался до 20 см; точка возбуждения находилась в вершине. Было показано , что размеры проводника слабо влияют а характеристики излучения.  

Поскольку диаграмма направленности равноугольной спиральной антенны поворачивается при изменении частоты, при детальном изучении изменения диаграммы с частотой необходимо осуществлять поворот антенны для каждого сдвига частоты. При обычном способе работы антенна, как правило, неподвижна и желательно знать изменения положения диаграммы относительно начального состояния антенны.  

Ширина диаграммы направленности спиральной антенны уменьшается с увеличением угла подъема, числа витков спирали и уменьшением диаметра экрана.  


Ширина диаграммы направленности спиральной антенны уменьшается обратно пропорционально корню квадратному из длины спирали в длинах волн. Соотношения (21 - 21) - (21 - 23) будут проиллюстрированы на следующем примере.  

Множитель / с (6) диаграммы направленности спиральной антенны имеет максимум, направленный вдоль оси спирали в положительном направлении для волны тока Jv (n), в отрицательном направлении для волны тока J v (n 1), если значения ka выбраны в интервалах, соответствующих сильной дисперсии фазовой скорости этих волн тока.  

Рассмотренные в главе результаты решения задачи о возбуждении собственных волн Т заданными источниками поля в следующей главе используются для анализа зависимости диаграмм направленности спиральных антенн от параметров возбуждающих источников.  

При этом РП - k - Ар, фазовая скорость n - й пространственной гармоники близка к скорости света в свободном пространстве, щ направлена в противоположную сторону по сравнению с волной тока в проводнике спирали. Множитель Ус (9) диаграммы направленности спиральной антенны имеет максимум вдоль оси системы, но направлен навстречу волне тока.  

В технической литературе имеется большое количество теоретических и экспериментальных работ, посвященных исследованию диаграмм направленности эквиугольных спиральных антенн. Однако в этих работах исследуются диаграммы направленности эквиугольных спиральных антенн с угловыми параметрами fro и а, ограниченными небольшими пределами. В получены формулы для диаграмм направленности конических спиральных антенн с величинами углов конусности и намотки, удовлетворяющих условию sindotgaCl, но использование их для инженерных расчетов затруднительно, поскольку формулы представляют собой суммы комплексных полей витков. По этой же причине выражения для поля излучения, приведенные в , не удобны для получения формул для фазовых и поляризационных характеристик эквиугольных спиральных антенн В известной литературе отсутствуют формулы для расчета диаграммы направленности многозаходных эквиугольных спиральных антенн, а также нет достаточно обширных семейств расчетных графиков диаграмм направленности эквиугольных спиральных антенн для различных угловых параметров до и а и при различном числе заходов антенны.  

Таким образом, поле волны Тп при выполнении условий (3.12), в основном, определяется л-й пространственной гармоникой и имеет фазовую скорость, близкую к скорости света в свободном пространстве. В этом случае множитель / с (9) диаграммы направленности спиральной антенны имеет максимум вдоль оси спирали в направлении распространения волны тока. Поэтому интервал ka, в котором выполняются условия (3.12), называется областью сильной дисперсии фазовой скорости.  

В технической литературе имеется большое количество теоретических и экспериментальных работ, посвященных исследованию диаграмм направленности эквиугольных спиральных антенн. Однако в этих работах исследуются диаграммы направленности эквиугольных спиральных антенн с угловыми параметрами fro и а, ограниченными небольшими пределами. В получены формулы для диаграмм направленности конических спиральных антенн с величинами углов конусности и намотки, удовлетворяющих условию sindotgaCl, но использование их для инженерных расчетов затруднительно, поскольку формулы представляют собой суммы комплексных полей витков. По этой же причине выражения для поля излучения, приведенные в , не удобны для получения формул для фазовых и поляризационных характеристик эквиугольных спиральных антенн В известной литературе отсутствуют формулы для расчета диаграммы направленности многозаходных эквиугольных спиральных антенн, а также нет достаточно обширных семейств расчетных графиков диаграмм направленности эквиугольных спиральных антенн для различных угловых параметров до и а и при различном числе заходов антенны.  

В технической литературе имеется большое количество теоретических и экспериментальных работ, посвященных исследованию диаграмм направленности эквиугольных спиральных антенн. Однако в этих работах исследуются диаграммы направленности эквиугольных спиральных антенн с угловыми параметрами fro и а, ограниченными небольшими пределами. В получены формулы для диаграмм направленности конических спиральных антенн с величинами углов конусности и намотки, удовлетворяющих условию sindotgaCl, но использование их для инженерных расчетов затруднительно, поскольку формулы представляют собой суммы комплексных полей витков. По этой же причине выражения для поля излучения, приведенные в , не удобны для получения формул для фазовых и поляризационных характеристик эквиугольных спиральных антенн В известной литературе отсутствуют формулы для расчета диаграммы направленности многозаходных эквиугольных спиральных антенн, а также нет достаточно обширных семейств расчетных графиков диаграмм направленности эквиугольных спиральных антенн для различных угловых параметров до и а и при различном числе заходов антенны.  

В технической литературе имеется большое количество теоретических и экспериментальных работ, посвященных исследованию диаграмм направленности эквиугольных спиральных антенн. Однако в этих работах исследуются диаграммы направленности эквиугольных спиральных антенн с угловыми параметрами fro и а, ограниченными небольшими пределами. В получены формулы для диаграмм направленности конических спиральных антенн с величинами углов конусности и намотки, удовлетворяющих условию sindotgaCl, но использование их для инженерных расчетов затруднительно, поскольку формулы представляют собой суммы комплексных полей витков. По этой же причине выражения для поля излучения, приведенные в , не удобны для получения формул для фазовых и поляризационных характеристик эквиугольных спиральных антенн В известной литературе отсутствуют формулы для расчета диаграммы направленности многозаходных эквиугольных спиральных антенн, а также нет достаточно обширных семейств расчетных графиков диаграмм направленности эквиугольных спиральных антенн для различных угловых параметров до и а и при различном числе заходов антенны.  

Страницы:      1

лавные проблемы, возникающие при использовании беспроводных сетей стандарта 802.11b/g, — это недостаточно стабильная связь из-за слабого уровня принимаемого сигнала, и сильная зависимость скорости передачи от расстояния между беспроводным сетевым адаптером и точкой доступа. Так, если в пределах комнаты (офиса) одна точка доступа в состоянии обеспечить устойчивую работу беспроводных клиентов, то гарантировать устойчивую связь с клиентом, находящимся за стеной, уже вряд ли возможно, а уж две стены сможет «пробить» далеко не каждая точка доступа.

Если говорить об эксплуатации беспроводной точки доступа в квартире или офисе, ситуация, когда беспроводные клиенты находятся в разных комнатах и отделены от точки доступа стеной, а то и двумя, вполне реальна. Казалось бы, проблема решается достаточно просто: нужно лишь приобрести точку доступа с большой мощностью передатчика. Однако мощность передачи беспроводных устройств стандарта 802.11b/g регламентируется законодательными актами. В частности, в полосе частот 2400-2483,5 МГц (то есть устройств стандарта 802.11b/g) для создания радиосетей передачи данных без частотного планирования и на безлицензионной основе допускается использование передатчиков с мощностью излучения, что эквивалентно изотропно-излучаемой мощности (ЭИИМ), не более 100 мВт. В случае превышения этого показателя требуется получение в Минсвязи лицензии на создание и эксплуатацию ведомственной радиосети передачи данных.

Есть и еще одно препятствие, причем более серьезное. Дело в том, что точек доступа и беспроводных адаптеров с мощностью передачи более 100 мВт, что эквивалентно 20 дБм (о том, как связаны эти единицы между собой, мы расскажем ниже), вообще нет в продаже (речь, конечно, идет об устройствах, ориентированных на конечных пользователей).

Что же остается делать в сложившейся ситуации? Можно, конечно, ориентироваться на распределенные беспроводные сети. Однако это решение нельзя назвать дешевым, поскольку для увеличения зоны покрытия беспроводной сети требуется использование уже не одной, а нескольких беспроводных точек доступа. Другой способ увеличить зону покрытия беспроводной сети заключается в использовании направленных антенн, которые не меняют параметр ЭИИМ (а значит, закон не нарушается), но усиливают сигнал в определенном направлении. В этой статье мы рассмотрим наиболее типичные примеры направленных антенн и расскажем о том, как их можно сделать самостоятельно из подручных материалов.

Характеристики направленных антенн

отя направленные антенны часто называются усиливающими и даже характеризуются коэффициентом усиления, но в действительности они передаваемый сигнал не усиливают. То есть если мощность передатчика, к примеру, составляет 50 мВт, то какую бы антенну мы ни поставили, мощность передаваемого сигнала от этого не изменится. Это и понятно: все антенны подобного рода являются пассивными, так что брать энергию для усиления передаваемого сигнала им попросту неоткуда.

В чем же тогда заключается эффект усиления сигнала передающей антенной? Представьте себе электролампу, освещающую помещение. Свет от этой лампочки распространяется приблизительно равномерно по всем направлениям, от чего во всей комнате становится светло. Однако ту же самую лампочку можно установить в фонарь, создав позади нее параболический зеркальный отражатель. В этом случае мы получим направленное распространение света, то есть луч света, который не будет освещать всю комнату, но сможет передать свет на значительно большее расстояние. Именно по такому принципу работают и внешние антенны: они не изменяют мощности передаваемого сигнала, но меняют диаграмму его направленности.

Изотропный излучатель

Антенны излучают энергию во всех направлениях, но эффективность передачи сигнала для различных направлений может быть неодинакова и характеризуется диаграммой направленности. Для того чтобы оценивать эффективность передачи сигнала для различных направлений, введено понятие изотропного излучателя (omni), или изотропной антенны.

Изотропный излучатель — это идеальный точечный источник электромагнитных волн, излучающий равномерное по плотности энергии поле сферической формы. В природе изотропных излучателей не встречается. Каждая передающая антенна, даже самая простейшая, излучает энергию неравномерно, но всегда имеется направление, в котором излучается максимум энергии. Понятие же изотропного излучателя рассматривается исключительно в качестве некоторого идеализированного эталонного излучателя, с которым удобно сравнивать все остальные антенны.

Диаграмма направленности антенны

Направленные свойства антенн определяются зависимостью напряженности излучаемого антенной поля от направления. Графическое изображение этой зависимости называется диаграммой направленности антенны. Трехмерная диаграмма направленности изображается в виде поверхности, описываемой исходящим из начала координат радиус-вектором, длина которого в каждом направлении пропорциональна энергии, излучаемой антенной в данном направлении.

Кроме трехмерных диаграмм, часто рассматривают и двумерные, которые строятся для горизонтальной и вертикальной плоскостей. В этом случае диаграмма направленности представляет собой замкнутую линию в полярной системе координат, построенную таким образом, чтобы расстояние от антенны (центр диаграммы) до любой точки диаграммы направленности было прямо пропорционально энергии, излучаемой антенной в данном направлении.

В случае идеальной изотропной антенны, излучающей энергию одинаково по всем направлениям, диаграмма направленности представляет собой сферу, центр которой совпадает с положением изотропного излучателя. При этом горизонтальная и вертикальная диаграммы направленности изотропного излучателя представляют собой окружности.

В случае направленных антенн на диаграмме направленности можно выделить так называемые лепестки, то есть направления преимущественного излучения. Направление максимального излучения антенн называется главным направлением, а соответствующий ему лепесток — главным. Остальные лепестки являются боковыми, а лепесток излучения, ориентированный в сторону, обратную главному направлению, называется задним лепестком диаграммы направленности антенны. Направления, по которым антенна не принимает и не излучает, называются нулями диаграммы направленности.

Диаграмма направленности характеризуется и шириной. Под шириной диаграммы направленности понимают угол, внутри которого коэффициент усиления уменьшается по отношению к максимальному не более чем на 3 дБ. Практически всегда коэффициент усиления и ширина диаграммы связаны между собой: чем больше усиление, тем уже диаграмма, и наоборот.

Самым простым типом антенны, который часто используется в беспроводных устройствах, является диполь Герца — в радиотехнике он эквивалентен небольшой антенне, размер которой гораздо меньше длины волны излучения (рис. 1).

Диаграмма направленности диполя Герца, изображенная на рис. 2, напоминает тор, поперечный разрез которого представляет собой две соприкасающиеся окружности. Приблизительно такую же форму имеют диаграммы направленности антенн различных передатчиков. Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Вертикальная и горизонтальная диаграммы направленности диполя Герца показаны на рис. 3 и 4.

Коэффициент усиления антенны

Еще одной важной характеристикой направленной антенны является коэффициент усиления, который показывает, во сколько раз эффективность данной антенны выше по сравнению с изотропным излучателем.

Коэффициент усиления антенны определяется как отношение плотности потока энергии, излучаемого в определенном направлении, к плотности потока энергии, который был бы зафиксирован при использовании изотропной антенной. Таким образом, коэффициент усиления антенны определяет, на сколько большую напряженность поля создаст данная антенна по сравнению с изотропной на одинаковом расстоянии при прочих равных условиях. Коэффициент усиления антенны измеряется в так называемых изотропных децибелах (дБи или dBi):

,

где k — коэффициент усиления антенны в заданном направлении; E — напряженность поля, создаваемого антенной в некоторой точке; E omni — напряженность поля, создаваемого изотропной антенной в той же точке.

Допустим, коэффициент усиления антенны в заданном направлении составляет 5 дБи — это означает, что в данном направлении мощность излучения на 5 дБ (в 3,16 раза) больше, чем мощность излучения идеальной изотропной антенны. Естественно, увеличение мощности сигнала в одном направлении влечет за собой уменьшение мощности в других направлениях.

Когда говорят, что коэффициент усиления антенны составляет 10 dBi, то имеется в виду направление, на котором достигается максимальная мощность излучения (главный лепесток диаграммы направленности).

К примеру, при использовании беспроводной точки доступа с мощностью передатчика 20 dBm (100 мВт) и направленной антенны с коэффициентом усиления 10 dBi мощность сигнала в направлении максимального усиления составит 20 dBm + 10 dBi = 30 dBm (1000 мВт), то есть в 10 раз больше, чем в случае использования изотропной антенны. Следовательно, с такой антенной и две бетонные армированные стены не станут проблемой.

В физике мощность принято измерять в ваттах (Вт), но в теории связи для измерения мощности сигнала чаще используют децибелы (дБ). Данная единица измерения является логарифмической и может использоваться лишь для сравнения одноименных физических величин. Так, если сравниваются два значения A и B одной и той же физической величины, то отношение A/B показывает, во сколько раз одна величина больше другой. Если же рассмотреть десятичный логарифм того же самого отношения (), то мы получим сравнение этих величин, но выраженное уже в белах (Б), а выражение определяет сравнение этих величин в децибелах (дБ). Если, например, говорят, что одна величина больше другой на 20 дБ, то это означает что одна величина больше другой в 100 раз.

Децибелы используются не только для сравнения величин, но и для выражения абсолютных значений. Однако с этой целью в качестве второй величины, с которой производится сравнение, принимается некоторое эталонное значение. Чтобы выразить абсолютное значение мощности сигнала в децибелах, за эталонное значение принимается мощность в 1 мВт, а уровень мощности сравнивается в децибелах с мощностью в 1 мВт. Эта единица измерения, получившая название децибел на милливатт (дБм), и показывает, на сколько децибелов мощность измеряемого сигнала больше мощности в 1 мВт.

Делаем направленные антенны своими руками

Большинстве случаев точки доступа стандарта 802.11b/g комплектуются миниатюрными штыревыми антеннами (рис. 5), которые могут быть как съемными, так и несъемными. В горизонтальной плоскости такие антенны являются всенаправленными с коэффициентом усиления не более 4 dBi.

Высота подобной антенны составляет 88 мм, но если такую антенну разобрать (рис. 6), то можно заметить, что длина самой антенны составляет всего 30 мм.

Рис. 6. Стандартная штыревая антенна в разобранном виде

Понятно, что ожидать от такой антенны чего-то серьезного не приходится, поэтому многие производители беспроводного Wi-Fi-оборудования в качестве аксессуаров к своим точкам доступа выпускают и направленные антенны с более высоким коэффициентом усиления. Основная проблема всех таких внешних антенн — это их неоправданно высокая цена: в среднем за такую направленную антенну придется выложить не менее 50 долл., хотя, по большому счету, ничего особенного в ее конструкции нет. Так почему бы не попробовать сделать такую антенну самостоятельно?

В этой статье мы рассмотрим несколько схем самодельных антенн для диапазона 2400 МГц, которые можно найти на различных Интернет-сайтах. Однако прежде чем приступать к практическим шагам и бежать в магазин «Чип и Дип», нелишне ознакомиться с типами разъемов, используемых для соединения антенн с кабелем.

ВЧ-разъемы для соединения антенн с кабелем

Для соединения антенн с кабелем используются специализированные высокочастотные (ВЧ) разъемы, которые можно приобрести в специализированных магазинах (например, «Чип и Дип»). Существует несколько вариантов таких разъемов, которые отличаются друг от друга и типом резьбы (дюймовая или метрическая), и типом кабеля (RG-58, RG-8 и пр.), и другими характеристиками. Кроме того, ВЧ-разъемы различаются и по способам крепления кабеля — обжимные, напаиваемые, под гайку.

Все разъемы классифицируются сериями. Так, существуют разъемы серий N, BNC, F, FME, SMA, SMB, TNC, UHF. К сожалению, единого стандарта маркировки разъемов не существует, а потому каждая компания-производитель использует свое собственное обозначение разъемов.

В большинстве случаев для создания направленных антенн рекомендуют использовать разъемы N-серии. Однако стоит учесть, что разъемы N-серии — самые большие и что их монтаж в некоторых случаях может быть неудобен. На собственном опыте можем сказать, что вовсе необязательно использовать разъемы именно N-серии. Главное, чтобы разъем типа Male (папа) соответствовал разъему типа Female (мама): один из этих разъемов устанавливается на рефлекторе антенны, а второй монтируется на кабеле. Понятно, что разъем, монтируемый на антенне, должен иметь либо фланец, либо гайки, которые позволяют укреплять его на рефлекторе (такие разъемы называют приборными).

На рис. 7-12 показаны разъемы различных серий. Нетрудно заметить, что SMA-разъемы — самые миниатюрные, а N-разъемы, наоборот, самые крупногабаритные.


с крепежной гайкой. Маркировка TNC-7401A

Маркировка TNC-7422


для монтажа на кабеле антенны.
Маркировка TNC-7422

Отметим также, что в большинстве случаев и на самих точках, и на антеннах к ним используются миниатюрные разъемы типа SMA, причем на антеннах применяются разъемы типа Female с накидной гайкой, а на точках доступа — типа Male. Проблема заключается в том, что весьма непросто найти такой SMA-разъем для монтажа на антенном кабеле, чтобы он соответствовал разъему на точке доступа. Для решения данной проблемы есть три пути. Во-первых, заменить довольно редкий SMA-разъем на самой точке доступа, чтобы он согласовывался с разъемом, монтируемым на кабеле. Во-вторых, можно вообще избавиться от разъема на точке доступа и просто вывести антенный кабель напрямую — этот способ используется и в том случае, когда на точке доступа есть несъемная антенна и нет никаких разъемов. В-третьих, можно изготовить нужный SMA-разъем из самой миниатюрной антенны.

Программное моделирование антенн

После того как внесена некоторая ясность в дело с типами разъемов, приступим непосредственно к моделированию и производству антенн.

Для моделирования антенн можно использовать бесплатную утилиту EZNEC Demo v.4.0.15 (www.eznec.com), которая имеет ряд ограничений, но в простейших случаях вполне может использоваться для моделирования антенн. В частности, в демо-версии программы ограничено количество сегментов, из которых состоит антенна. Кроме того, невозможно использовать рефлекторы с заданными размерами, а тем более с заданной геометрией. Поэтому лучше купить или найти в Интернете полную версию программы.

Утилита EZNEC Demo v.4.0.15 совместима с 32-разрядными версиями Microsoft Windows XP/2000/2003. Рассмотрим более подробно, каким образом можно моделировать антенны с использованием этой утилиты.

После запуска программы мы попадаем в главное окно (рис. 13), в котором имеются основные характеристики антенны. Для конструирования новой антенны лучше всего выбрать из списка моделей, предоставляемых вместе с программой, наиболее подходящую и модифицировать ее. Чтобы получить доступ к базе моделей антенн, нужно просто нажать на кнопку Open.

Рис. 13. Главное окно программы EZNEC Demo v.4.0.15

Чтобы создать штыревую антенну, выбираем в базе модель Dipole1.ez. А для просмотра типа выбранной антенны, то есть ее схемы в декартовой системе координат, следует нажать на кнопку View Ant. В нашем случае это будет обычный стержень (рис. 14).

Для моделирования нужной антенны необходимо прежде всего задать частоту излучения, поэтому в главном окне программы вместо 299,793 МГц необходимо задать частоту 2473 МГц (частота излучения на шестом канале в сетях 802.11b/g).

Далее можно приступить к рисованию самой антенны. Антенна состоит из отдельных кусков проволоки, и для того, чтобы нарисовать антенну, необходимо задать координаты точек начала и конца каждого отдельного куска проволоки. Кроме того, можно задать диаметр проволоки. Все необходимые параметры геометрии антенны задаются в окне Wires.

К примеру, если мы хотим изобразить вертикальную штыревую антенну длиной 30 см, то необходимо в качестве координаты начальной точки задать значения — 0, 0, 0, а в качестве координаты конечной точки — 0, 0, 30. Если же наша антенна должна иметь Г-образную форму, придется использовать уже два куска проволоки.

Кроме того, главное окно позволяет указать положение точки подвода сигнала к антенне (точка соединения с фидером) (окно Sources), задать тип заземления, а также произвести множество других специфических настроек.

После того как модель антенны сформирована, можно посмотреть ее диаграмму направленности в окне FF Plot. Утилита EZNEC Demo v.4.0.15 позволяет строить как трехмерную, так и двумерную диаграмму направленности. Для рассмотренного примера Dipole1.ez трехмерная и вертикальная двумерная диаграмма направленности показаны на рис. 15 и 16.

Кроме построения диаграммы направленности, утилита EZNEC Demo v.4.0.15 позволяет рассчитать коэффициент усиления антенны и ширину главного лепестка. В нашем случае (см. рис. 16) коэффициент усиления равен 2,16 dBi, а ширина главного лепестка составляет 77,2°.

Штыревая антенна c перпендикулярным рефлектором

Самый простой вариант антенны — штыревая и именно такие антенны наиболее часто используются в беспроводных точках доступа.

Штыревая антенна часто называется несимметричным вибратором. Диаграмма направленности такой антенны мало отличается от диаграммы направленности диполя Герца. В горизонтальной плоскости антенна излучает энергию во все стороны равномерно, поэтому в горизонтальной плоскости такая антенна является всенаправленной, а следовательно, не приходится говорить о преимущественном излучении в определенном направлении. Используя утилиту EZNEC Demo v.4.0.15, можно смоделировать диаграмму направленности для различных длин антенны. Типичные варианты — когда длина антенны составляет четверть или половину длины волны излучения, и в большинстве штатных антенн точек доступа длина антенны составляет четверть длины волны излучения (30 мм). Так, для длины антенны 1/4 коэффициент усиления составляет 1,71 dBi, а для длины — 2,11 dBi. Если продолжать моделирование длины антенны, то для длины 3/4 коэффициент усиления составляет 3,33 dBi, а для длины — 3,43 dBi. Диаграмма направленности для длины антенны 3/4 показана на рис. 17.

Конструкцию штыревой антенны можно улучшить, использовав перпендикулярный к антенне рефлектор — металлическую поверхность (экран), выполняющую функцию идеальной заземляющей поверхности. Для длины антенны 1/2 в случае идеального рефлектора коэффициент направленного действия составит уже 7 dBi. Диаграмма направленности такой антенны представлена на рис. 18.

Разумеется, в действительности диаграмма направленности будет иметь несколько иную форму и коэффициент усиления окажется меньше. Дело в том, что при расчете диаграммы направленности утилитой EZNEC Demo v.4.0.15 предполагается, что рефлектор представляет собой бесконечную, идеально проводящую плоскость. Кроме того, не учитываются потери сигнала при распространении в самой антенне. Утилита EZNEC Demo v.4.0.15 частично позволяет внести поправки на «неидеальность» заземляющего экрана и учесть потери сигнала в самой антенне.

Для того чтобы сконструировать такую антенну, нам потребуется медный штырь (медная жила провода), диаметром 1,5-2 мм и длиной 65 мм, а также металлический рефлектор в форме квадрата со стороной порядка 100 мм или диск диаметром 80-85 мм. Такой диск делается из крышки металлической консервной банки. Кроме того, потребуются разъем N-серии типа Female с фланцем для крепления на рефлекторе антенны (например, N-7317), разъем N-серии типа Male для монтажа на кабеле антенны (например, GN-7301A), нужный для соединения с антенным кабелем, и сам кабель с сопротивлением 50 Ом/м (RG-58).

Разъем N-серии типа Female с фланцем необходимо закрепить на рефлекторе, для чего в центре рефлектора просверливается отверстие. Крепление можно выполнить как с помощью четырех болтиков, так и эпоксидным клеем. С одной стороны разъема N-серии с фланцем необходимо вставить медный стержень и дополнительно пропаять его. Если толщина медного стержня несколько больше отверстия в разъеме, то можно напильником уменьшить диаметр стержня в месте крепления.

Медный стержень должен выступать над поверхностью отражателя на 60 мм, что составляет половину длины волны излучения. Процесс производства данной антенны показан на рис. 19.

Штыревая антенна с параллельным рефлектором

Еще один способ модифицирования штыревой антенны заключается в том, чтобы использовать не перпендикулярный, а параллельный рефлектор. Прежде чем приступать к изготовлению такой антенны, смоделируем ее с помощью утилиты EZNEC Demo v.4.0.15. Разместим антенну параллельно плоскости XY вдоль оси X. В качестве точки подведения сигнала выберем точку E1 (точка начала антенны) с координатами (0, 0, z). Координаты точки E2 (точка конца антенны) соответственно будут (x, 0, z), где координата x определяется длиной антенны, а координата z — расстоянием от антенны до плоского рефлектора). В качестве «земли» выберем идеальную проводящую поверхность (Perfect). Варьируя длину антенны и расстояние до рефлектора, можно подобрать желаемую диаграмму направленности и коэффициент усиления.

На рис. 20 представлены диаграммы направленности, ширина главного лепестка и коэффициент усиления для антенны длиной 1/2 (60 мм) при различном расстоянии до рефлектора.


для штыревой антенны длиной 1/2l (60 мм)
при различном расстоянии до параллельного рефлектора

Для изготовления данной антенны, как и в предыдущем случае, нам потребуется медный штырь (медная жила провода), диаметром 2 мм и длиной 65 мм, два металлических рефлектора (один тоже в форме квадрата со стороной около 100 мм, а второй — в форме прямоугольника с размерами примерно 100x170 мм). Кроме того, опять потребуются разъем N-серии типа Female с фланцем для крепления на рефлекторе антенны и разъем N-серии типа Male для монтажа на кабеле антенны.

Легче всего собрать такую антенну путем небольшой модификации предыдущей схемы.

Отражающий экран будет состоять из двух взаимно перпендикулярных частей — горизонтальной и вертикальной. Разъем N-серии с медным стержнем крепится к горизонтальной части рефлектора, а вертикальный рефлектор устанавливается на расстоянии 12 мм (0,1l) перпендикулярно к горизонтальному рефлектору и, следовательно, параллельно самой антенне. Схема данной антенны показана на рис. 21.


с параллельным рефлектором

Симметричный полуволновой вибратор с рефлектором

Следующий вариант антенны, которую нетрудно изготовить в домашних условиях, — симметричный полуволновой вибратор с рефлектором, или полуволновая дипольная антенна.

Данная антенна состоит из двух симметричных разнонаправленных плеч, одно из которых заземлено (соединяется с рефлектором), а другое соединяется с центральной жилой антенного кабеля. Каждое из двух плеч такой антенны выполняется в Г-образной форме. Часть каждого плеча, параллельного плоскости рефлектора, составляет 1/4, поэтому общая длина такой антенны равна 1/2. Именно потому такую дипольную антенну называют симметричным полуволновым вибратором.

Прежде чем приступать к конструированию такой антенны, смоделируем ее с помощью утилиты EZNEC Demo v.4.0.15 с тем, чтобы определить оптимальное расстояние антенны от плоскости рефлектора.

На рис. 22 дана диаграмма направленности симметричного полуволнового вибратора с рефлектором при расстоянии между плоскостью рефлектора и плечами антенны равном 0,1 (12 мм). Коэффициент усиления антенны составляет 8,88 dBi, а форма диаграммы направленности говорит о секторном характере антенны.


с рефлектором

При изготовлении данной антенны нам, как всегда, понадобятся разъем N-серии с фланцем для крепления на рефлекторе антенны и разъем N-серии для монтажа на кабеле антенны. Кроме того, потребуется медная проволока диаметром 2 мм, а для изготовления рефлектора можно воспользоваться медным или алюминиевым листом в форме круга либо квадрата (это может быть даже сковорода). Габариты рефлектора могут быть любыми, но минимальный размер желательно сделать в два раза больше длины волны излучения (262 мм).

Схема этой антенны представлена на рис. 23.

Спиральная антенна с рефлектором

Еще один образец распространенных антенн для диапазона частот от 2 до 5 ГГц — это спиральные антенны с рефлектором. Такие антенны были изобретены еще в 1947 году Джоном Краусом. Спиральная антенна характеризуется количеством витков N, диаметром витков D и шагом спирали d.

Не вникая в сложные теоретические расчеты, приведем лишь конечный результат. В принципе, чем больше витков содержит антенна, тем выше коэффициент усиления. При этом радиус витка обычно выбирается исходя из условия, чтобы длина витка соответствовала длине волны излучения , то есть: 2 П R = , а шаг спирали должен быть равен четверти длины волны излучения: d = /4 .

Размер рефлектора, который устанавливается перпендикулярно оси спирали и может иметь форму диска или квадрата, должен быть не меньше длины волны излучения. При длине волны излучения 123 мм (частота 2437 МГц) получим, что диаметр витка должен быть равен примерно 40 мм, а шаг спирали — 30 мм.

К сожалению, моделирование данной антенны с использованием утилиты EZNEC Demo v.4.0.15 невозможно — в силу ограничения на количество сегментов, из которых состоит программа. Поэтому для расчета спиральных антенн необходимо воспользоваться полнофункциональной версией программы, что мы и сделали. Пример диаграммы направленности такой антенны для 12 витков показан на рис. 24. Отметим, что расчетный коэффициент усиления составляет 10,72 dBi. Дальнейшее увеличение числа витков не позволяет существенно увеличить коэффициент усиления антенны.


40 мм, шаг спирали — 30 мм.

Для изготовления этой антенны нам нужны пластиковая труба диаметром 40 мм (такие трубы можно приобрести на строительном рынке) и длиной около 40 см, медный многожильный провод в изоляции с диаметром сечения 1,5-2 мм. Провод наматывается вокруг трубы и приклеивается к ней. Такая конструкция антенны имеет импеданс около 150 Ом и требует правильного согласования со стандартным кабелем на 50 Ом. Самый изящный метод согласования — использование куска меди в форме прямоугольного треугольника, который является продолжением провода, намотанного вокруг трубы. Катеты треугольника имеют размеры 71x17 мм. С одной стороны треугольник подпаивается к проводу, а с другой соединяется с центральным штырем разъема N-серии. Рефлектор изготавливается из медной пластины в форме квадрата, а труба к рефлектору прикрепляется с помощью заглушки для трубы. Схема антенны показана на рис. 25.

В заключение отметим, что данная антенна вызывает круговую поляризацию, которая может быть как право-, так и левосторонней — в зависимости от того, как намотана спираль. Такие антенны должны применяться только в паре, то есть если на одной точке доступа используется спиралевидная антенна, то и на другой точке доступа должна быть спиралевидная антенна, причем с одинаковой намоткой спирали.

Антенна с биквадратным четвертьволновым излучателем и рефлектором

От предыдущих данный вариант отличается формой самой антенны. Основными конструктивными элементами антенны являются рефлектор, который выполняется из любого металла, и сам излучатель. Рефлектор может быть в форме диска диаметром 140 мм или квадрата со стороной 123 мм (); в последнем случае рекомендуется также использовать края высотой 31 мм (1/4 ). В центре рефлектора высверливается отверстие для крепления разъема N-серии.

Излучатель выполняется из медной проволоки диаметром 2 мм, которая сгибается так, чтобы сформировать две квадратные рамки со сторонами 31 мм (1/4). Свободные концы проволоки припаиваются друг к другу. Далее к рамке излучателя припаиваются проволочные ножки высотой 31 мм, как показано на рис. 26. Одна из этих ножек припаивается к центральной жиле антенного кабеля, вторая — к рефлектору.

Данная конструкция антенны позволяет получить коэффициент усиления 9,5 dBi. Диаграмма направленности такой антенны, рассчитанная утилитой EZNEC Demo v.4.0.15, представлена на рис. 27.


с биквадратным излучателем

Антенны из консервных банок

Направленные антенны из консервных банок получили широкое распространение благодаря не только простому исполнению, но и высокой эффективности. Существует множество вариантов изготовления подобных антенн, отличающихся друг от друга размерами. Основная идея, заложенная в конструкцию таких антенн, заключается в том, что консервная банка выполняет роль волновода, в котором образуются стоячие волны, — поэтому в данном случае немаловажным условием является точное соблюдение размеров.

Прежде чем переходить к описанию конкретных моделей таких антенн, вкратце рассмотрим основные теоретические аспекты. Введем следующие обозначения:

0 — длина волны в вакууме (открытом пространстве); если частоту измерять в ГГц, а длину волны в мм, то

.

C — минимальная критическая длина волны, которая может распространяться по волноводу. Данная длина волны зависит от внутреннего диаметра волновода: c = 1,1706·D ;

G — длина стоячей волны в волноводе, которая зависит от c и 0 .

В дальнейшем мы будем рассматривать волноводы в форме трубы, которая открыта с одной стороны и закрыта с другой. Такой волновод подобен короткому коаксиальному кабелю: входящий высокочастотный сигнал отражается от торца волновода, а отраженная волна накладывается на падающую волну. В результате суперпозиции этих волн возникает эффект стоячей волны. К примеру, если волны складываются в противофазе, то они ослабляют друг друга, а если в фазе, то, наоборот, усиливают.

Между длинами волн c , 0 и g существует следующая зависимость:

.

Из данного уравнения можно получить формулу длины стоячей волны:

Так, для частоты 2,437 ГГц и для внутреннего диаметра волновода D=83 мм получим, что длина стоячей волны составляет 248,4 мм, а минимальная критическая длина волны 141,6 мм.

А теперь, опираясь на введенные обозначения, рассмотрим пример создания волноводных антенн из консервных банок. При конструировании волноводов из консервных банок длина волновода должна составлять 3/4 g , а источник сигнала должен устанавливаться на расстоянии g /4 от закрытого торца банки. Как правило, диаметр консервной банки составляет 83 мм. Нетрудно рассчитать, что длина волновода в этом случае составит 186 мм. А поскольку таких длинных банок не бывает, то волновод придется состыковать из двух банок.

На расстоянии g /4 от закрытого торца банки высверливается отверстие под разъем N-серии с фланцем. В N-разъем вставляется медный стержень диаметром 2 мм, который выполняет функцию источника волн внутри волновода. Длина этого стержня должна составлять четверть длины волны излучения — в нашем случае 0 /4=31 мм. Модель данной антенны показана на рис. 28.

В случае применения данной антенны вне помещения необходимо также предусмотреть возможность закрытия банки с тем, чтобы избежать попадания внутрь грязи, снега, дождя и т.д. Для этого можно взять пластиковую крышку, но обычные крышки для банок не подойдут, поскольку могут несколько ослабить сигнал. Лучший вариант — использовать в качестве крышки пластик от посуды, предназначенной для микроволновой печи, который можно просто приклеить к банке эпоксидным клеем.



Рекомендуем почитать

Наверх