Создание потоков Java. Потоки Java: создание и завершение

Для Андроид 17.05.2019
Для Андроид

Языка программирования Java. И сегодня речь пойдет о многопоточности:

  • что такое многопоточность;
  • как ее реализовать;
  • как создать о остановить потоки выполнения.

Для начала, нужно разобрать, что же такое многопоточность и для чего она нужна. Долго расписывать не буду.

Многопоточность — это свойство системы выполнять несколько вычислений одновременно, тем самым ускоряя процесс этого вычисления. Например, когда Вы играете в компьютерные игры, вы видите, что Ваш персонаж выполняет определенное действие, другие персонажи, анимация, звук. Это все отдельные потоки если говорить примитивно.

В языке Java есть стандартный класс, который реализует многопоточность: Thread, который имплементирует Runable интерфейс. Для того, чтобы реализовать многопоточность в своей программе нужно унаследовать свой класс от Thread или имплементировать интерфейс Runable. Нечто похожее мы делали, когда создавали свои классы исключения в статье о . Но это еще не все. В классе Thread есть метод run() и start() , которые созданы чтобы делать вычисления и запускать выполнение кода соответственно. То есть в методе run() мы пишем, что хотим выполнить, а когда вызываем метод start(), он автоматически запускает наш код в run. Вот такая многоходовочка)). Все гораздо проще, когда смотришь на код.

    package com.java ;

    Runnable {

    public int i = 0 ;

    public void run() {

    new Thread (myMultithread) .start () ; //третий!!! порядок потоков в методе вовсе не означает, что они выполняться в таком порядке

Результат работы программы может быть разным при каждом запуске:

Как я уже прокомментировал в коде: результат будет не всегда совпадать с порядком следования вызовов в коде. Это зависит от множества факторов. Можно выставить приоритетность потоков. Тогда у каждого потока будет свой приоритет и результат будет более предсказуем, но из опыта скажу, что даже это не гарантирует строгий порядок выполнения потоков по приоритетам:

    package com.java ;

    public class MyMultithreadClass implements Runnable { //создаем наш многопоточный класс имплементируя его от Runnable

    public int i = 0 ;

    public void run() { //делаем реализацию метода run

    // TODO Auto-generated method stub

    MyMultithreadClass myMultithread = new MyMultithreadClass() ; //создаем екземпляр нашего класса

    thread1.setPriority (1) ; //можно задавать приоритет от 0 до 10

    thread2.setPriority (9) ; //теперь результат будет более предсказуем

    thread3.setPriority (5) ;

    thread1.start () ;

    thread2.start () ;

    thread3.start () ;

Теперь предлагаю посмотреть на второй метод создания многопоточности: унаследование от класса. Полагаю, Вы помните из статьи , что унаследоваться в Java можно только от одного класса. В этом и недостаток такого метода. Ваш класс уже не сможет унаследовать другие классы:

    package com.java ;

    public class MyMultithreadClass extends Thread { //создаем наш многопоточный класс унаследуя его от Thread

    public static int i = 0 ; //изменили переменную на static, чтобы она не была привязана к классу.

    public void run() { //делаем реализацию метода run

    // TODO Auto-generated method stub

    MyMultithreadClass thread1 = new MyMultithreadClass() ;

    MyMultithreadClass thread2 = new MyMultithreadClass() ;

    MyMultithreadClass thread3 = new MyMultithreadClass() ;

    thread1.start () ;

    thread2.start () ;

    thread3.start () ;

Результат выполнения все еще не предсказуем:

Как видите, создавать потоки совсем не сложно. Несколько сложнее — это управлять ими и ресурсами, которые они используют. Нужно быть очень внимательным при работе с потоками, так как результаты могут быть не такими, которых вы ожидаете.

Потоки имеют определенные состояния. Всего их 4:

  • создание (когда мы написали new Thread();
  • старт (thread1.start());
  • выполнение (пока выполняется метод run());
  • завершение (когда поток выполнил свою работу).

Вот Вам полезная картинка:

Как видим на рисунке, поток может еще и ожидать. Для того, чтобы на время заставить поток прекратить свою работу в классе есть метод wait() , который приостанавливает выполнение пока не будет вызван метод notify() . Неправильно говорить, что это методы класса потока. Это методы объекта. Может у Вас когда то будет вопрос на тесте или собеседовании назвать методы класса Object; тогда к тем методам что Вы вспомните можете смело называть wait() и notify().

Из статических методов есть метод sleep() , который принимает целочисленную переменную в качестве миллисекунд на который следует приостановить поток. Вызов этого метода можно осуществлять в любом месте кода, где Вы желаете приостановить или замедлить выполнение. Я часто использовал этот метод в циклах, когда нужно было в консоли увидеть большое количество данных и найти нужное. Да, поначалу, я дебажил в консоли)).

Таким образом переменная будет выводиться с задержкой в 500 миллисекунд. Не забывайте только, что данный метод может выбрасывать InterruptedException поэтому, при его вызове нужно или оборачивать его в блок try-catch или прописать throws InterruptedException после названия метода.

Есть еще метод yield(), при вызове которого, поток на время прекращает работу, позволяя другим потокам тоже выполниться.

Чтобы уничтожить потоки есть методы stop() и destroy() . Разница между ними в том, что при вызове destroy() поток уже нельзя возобновить. Можно прервать выполнение потока вызвав метод interrupt() .

Есть еще много других методов, но для начала этого Вам будет достаточно. Многопоточность это очень объемная тема, которую сложно охватить одной статьей. Следите за обновлениями сайта и возможно еще будет туториал посвящен многопоточности, но уже с более практичными примерами и задачами.

Здравствуйте! В этой статье я вкратце расскажу вам о процессах, потоках, и об основах многопоточного программирования на языке Java.
Наиболее очевидная область применения многопоточности – это программирование интерфейсов. Многопоточность незаменима тогда, когда необходимо, чтобы графический интерфейс продолжал отзываться на действия пользователя во время выполнения некоторой обработки информации. Например, поток, отвечающий за интерфейс, может ждать завершения другого потока, загружающего файл из интернета, и в это время выводить некоторую анимацию или обновлять прогресс-бар. Кроме того он может остановить поток загружающий файл, если была нажата кнопка «отмена».

Еще одна популярная и, пожалуй, одна из самых хардкорных областей применения многопоточности – игры. В играх различные потоки могут отвечать за работу с сетью, анимацию, расчет физики и т.п.

Давайте начнем. Сначала о процессах.

Процессы

Процесс - это совокупность кода и данных, разделяющих общее виртуальное адресное пространство. Чаще всего одна программа состоит из одного процесса, но бывают и исключения (например, браузер Chrome создает отдельный процесс для каждой вкладки, что дает ему некоторые преимущества, вроде независимости вкладок друг от друга). Процессы изолированы друг от друга, поэтому прямой доступ к памяти чужого процесса невозможен (взаимодействие между процессами осуществляется с помощью специальных средств).

Для каждого процесса ОС создает так называемое «виртуальное адресное пространство», к которому процесс имеет прямой доступ. Это пространство принадлежит процессу, содержит только его данные и находится в полном его распоряжении. Операционная система же отвечает за то, как виртуальное пространство процесса проецируется на физическую память.

Схема этого взаимодействия представлена на картинке. Операционная система оперирует так называемыми страницами памяти, которые представляют собой просто область определенного фиксированного размера. Если процессу становится недостаточно памяти, система выделяет ему дополнительные страницы из физической памяти. Страницы виртуальной памяти могут проецироваться на физическую память в произвольном порядке.

При запуске программы операционная система создает процесс, загружая в его адресное пространство код и данные программы, а затем запускает главный поток созданного процесса.

Потоки

Один поток – это одна единица исполнения кода. Каждый поток последовательно выполняет инструкции процесса, которому он принадлежит, параллельно с другими потоками этого процесса.

Следует отдельно обговорить фразу «параллельно с другими потоками». Известно, что на одно ядро процессора, в каждый момент времени, приходится одна единица исполнения. То есть одноядерный процессор может обрабатывать команды только последовательно, по одной за раз (в упрощенном случае). Однако запуск нескольких параллельных потоков возможен и в системах с одноядерными процессорами. В этом случае система будет периодически переключаться между потоками, поочередно давая выполняться то одному, то другому потоку. Такая схема называется псевдо-параллелизмом. Система запоминает состояние (контекст) каждого потока, перед тем как переключиться на другой поток, и восстанавливает его по возвращению к выполнению потока. В контекст потока входят такие параметры, как стек, набор значений регистров процессора, адрес исполняемой команды и прочее…

Проще говоря, при псевдопараллельном выполнении потоков процессор мечется между выполнением нескольких потоков, выполняя по очереди часть каждого из них.

Вот как это выглядит:

Цветные квадраты на рисунке – это инструкции процессора (зеленые – инструкции главного потока, синие – побочного). Выполнение идет слева направо. После запуска побочного потока его инструкции начинают выполняться вперемешку с инструкциями главного потока. Кол-во выполняемых инструкций за каждый подход не определено.

То, что инструкции параллельных потоков выполняются вперемешку, в некоторых случаях может привести к конфликтам доступа к данным. Проблемам взаимодействия потоков будет посвящена следующая статья, а пока о том, как запускаются потоки в Java…

Запуск потоков

Каждый процесс имеет хотя бы один выполняющийся поток. Тот поток, с которого начинается выполнение программы, называется главным. В языке Java, после создания процесса, выполнение главного потока начинается с метода main(). Затем, по мере необходимости, в заданных программистом местах, и при выполнении заданных им же условий, запускаются другие, побочные потоки.

В языке Java поток представляется в виде объекта-потомка класса Thread. Этот класс инкапсулирует стандартные механизмы работы с потоком.

Запустить новый поток можно двумя способами:

Способ 1
Создать объект класса Thread, передав ему в конструкторе нечто, реализующее интерфейс Runnable. Этот интерфейс содержит метод run(), который будет выполняться в новом потоке. Поток закончит выполнение, когда завершится его метод run().

Выглядит это так:

Class SomeThing //Нечто, реализующее интерфейс Runnable implements Runnable //(содержащее метод run()) { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program //Класс с методом main() { static SomeThing mThing; //mThing - объект класса, реализующего интерфейс Runnable public static void main(String args) { mThing = new SomeThing(); Thread myThready = new Thread(mThing); //Создание потока "myThready" myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Для пущего укорочения кода можно передать в конструктор класса Thread объект безымянного внутреннего класса, реализующего интерфейс Runnable:

Public class Program //Класс с методом main(). { public static void main(String args) { //Создание потока Thread myThready = new Thread(new Runnable() { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } }); myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Способ 2
Создать потомка класса Thread и переопределить его метод run():

Class AffableThread extends Thread { @Override public void run() //Этот метод будет выполнен в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program { static AffableThread mSecondThread; public static void main(String args) { mSecondThread = new AffableThread(); //Создание потока mSecondThread.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

В приведённом выше примере в методе main() создается и запускается еще один поток. Важно отметить, что после вызова метода mSecondThread.start() главный поток продолжает своё выполнение, не дожидаясь пока порожденный им поток завершится. И те инструкции, которые идут после вызова метода start(), будут выполнены параллельно с инструкциями потока mSecondThread.

Для демонстрации параллельной работы потоков давайте рассмотрим программу, в которой два потока спорят на предмет философского вопроса «что было раньше, яйцо или курица?». Главный поток уверен, что первой была курица, о чем он и будет сообщать каждую секунду. Второй же поток раз в секунду будет опровергать своего оппонента. Всего спор продлится 5 секунд. Победит тот поток, который последним изречет свой ответ на этот, без сомнения, животрепещущий философский вопрос. В примере используются средства, о которых пока не было сказано (isAlive() sleep() и join()). К ним даны комментарии, а более подробно они будут разобраны дальше.

Class EggVoice extends Thread { @Override public void run() { for(int i = 0; i < 5; i++) { try{ sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("яйцо!"); } //Слово «яйцо» сказано 5 раз } } public class ChickenVoice //Класс с методом main() { static EggVoice mAnotherOpinion; //Побочный поток public static void main(String args) { mAnotherOpinion = new EggVoice(); //Создание потока System.out.println("Спор начат..."); mAnotherOpinion.start(); //Запуск потока for(int i = 0; i < 5; i++) { try{ Thread.sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("курица!"); } //Слово «курица» сказано 5 раз if(mAnotherOpinion.isAlive()) //Если оппонент еще не сказал последнее слово { try{ mAnotherOpinion.join(); //Подождать пока оппонент закончит высказываться. }catch(InterruptedException e){} System.out.println("Первым появилось яйцо!"); } else //если оппонент уже закончил высказываться { System.out.println("Первой появилась курица!"); } System.out.println("Спор закончен!"); } } Консоль: Спор начат... курица! яйцо! яйцо! курица! яйцо! курица! яйцо! курица! яйцо! курица! Первой появилась курица! Спор закончен!

В приведенном примере два потока параллельно в течении 5 секунд выводят информацию на консоль. Точно предсказать, какой поток закончит высказываться последним, невозможно. Можно попытаться, и можно даже угадать, но есть большая вероятность того, что та же программа при следующем запуске будет иметь другого «победителя». Это происходит из-за так называемого «асинхронного выполнения кода». Асинхронность означает то, что нельзя утверждать, что какая-либо инструкция одного потока, выполнится раньше или позже инструкции другого. Или, другими словами, параллельные потоки независимы друг от друга, за исключением тех случаев, когда программист сам описывает зависимости между потоками с помощью предусмотренных для этого средств языка.

Теперь немного о завершении процессов…

Завершение процесса и демоны

В Java процесс завершается тогда, когда завершается последний его поток. Даже если метод main() уже завершился, но еще выполняются порожденные им потоки, система будет ждать их завершения.

Однако это правило не относится к особому виду потоков – демонам. Если завершился последний обычный поток процесса, и остались только потоки-демоны, то они будут принудительно завершены и выполнение процесса закончится. Чаще всего потоки-демоны используются для выполнения фоновых задач, обслуживающих процесс в течение его жизни.

Объявить поток демоном достаточно просто - нужно перед запуском потока вызвать его метод setDaemon(true) ;
Проверить, является ли поток демоном, можно вызвав его метод boolean isDaemon() ;

Завершение потоков

В Java существуют (существовали) средства для принудительного завершения потока. В частности метод Thread.stop() завершает поток незамедлительно после своего выполнения. Однако этот метод, а также Thread.suspend(), приостанавливающий поток, и Thread.resume(), продолжающий выполнение потока, были объявлены устаревшими и их использование отныне крайне нежелательно. Дело в том что поток может быть «убит» во время выполнения операции, обрыв которой на полуслове оставит некоторый объект в неправильном состоянии, что приведет к появлению трудноотлавливаемой и случайным образом возникающей ошибке.

Вместо принудительного завершения потока применяется схема, в которой каждый поток сам ответственен за своё завершение. Поток может остановиться либо тогда, когда он закончит выполнение метода run(), (main() - для главного потока) либо по сигналу из другого потока. Причем как реагировать на такой сигнал - дело, опять же, самого потока. Получив его, поток может выполнить некоторые операции и завершить выполнение, а может и вовсе его проигнорировать и продолжить выполняться. Описание реакции на сигнал завершения потока лежит на плечах программиста.

Java имеет встроенный механизм оповещения потока, который называется Interruption (прерывание, вмешательство), и скоро мы его рассмотрим, но сначала посмотрите на следующую программку:

Incremenator - поток, который каждую секунду прибавляет или вычитает единицу из значения статической переменной Program.mValue. Incremenator содержит два закрытых поля – mIsIncrement и mFinish. То, какое действие выполняется, определяется булевой переменной mIsIncrement - если оно равно true, то выполняется прибавление единицы, иначе - вычитание. А завершение потока происходит, когда значение mFinish становится равно true.

Class Incremenator extends Thread { //О ключевом слове volatile - чуть ниже private volatile boolean mIsIncrement = true; private volatile boolean mFinish = false; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } public void finish() //Инициирует завершение потока { mFinish = true; } @Override public void run() { do { if(!mFinish) //Проверка на необходимость завершения { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){} } while(true); } } public class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.finish(); //Инициация завершения побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Взаимодействовать с потоком можно с помощью метода changeAction() (для смены вычитания на сложение и наоборот) и метода finish() (для завершения потока).

В объявлении переменных mIsIncrement и mFinish было использовано ключевое слово volatile (изменчивый, не постоянный). Его необходимо использовать для переменных, которые используются разными потоками. Это связано с тем, что значение переменной, объявленной без volatile, может кэшироваться отдельно для каждого потока, и значение из этого кэша может различаться для каждого из них. Объявление переменной с ключевым словом volatile отключает для неё такое кэширование и все запросы к переменной будут направляться непосредственно в память.

В этом примере показано, каким образом можно организовать взаимодействие между потоками. Однако есть одна проблема при таком подходе к завершению потока - Incremenator проверяет значение поля mFinish раз в секунду, поэтому может пройти до секунды времени между тем, когда будет выполнен метод finish(), и фактическим завершения потока. Было бы замечательно, если бы при получении сигнала извне, метод sleep() возвращал выполнение и поток незамедлительно начинал своё завершение. Для выполнения такого сценария существует встроенное средство оповещения потока, которое называется Interruption (прерывание, вмешательство).

Interruption

Класс Thread содержит в себе скрытое булево поле, подобное полю mFinish в программе Incremenator, которое называется флагом прерывания. Установить этот флаг можно вызвав метод interrupt() потока. Проверить же, установлен ли этот флаг, можно двумя способами. Первый способ - вызвать метод bool isInterrupted() объекта потока, второй - вызвать статический метод bool Thread.interrupted(). Первый метод возвращает состояние флага прерывания и оставляет этот флаг нетронутым. Второй метод возвращает состояние флага и сбрасывает его. Заметьте что Thread.interrupted() - статический метод класса Thread, и его вызов возвращает значение флага прерывания того потока, из которого он был вызван. Поэтому этот метод вызывается только изнутри потока и позволяет потоку проверить своё состояние прерывания.

Итак, вернемся к нашей программе. Механизм прерывания позволит нам решить проблему с засыпанием потока. У методов, приостанавливающих выполнение потока, таких как sleep(), wait() и join() есть одна особенность - если во время их выполнения будет вызван метод interrupt() этого потока, они, не дожидаясь конца времени ожидания, сгенерируют исключение InterruptedException.

Переделаем программу Incremenator – теперь вместо завершения потока с помощью метода finish() будем использовать стандартный метод interrupt(). А вместо проверки флага mFinish будем вызывать метод bool Thread.interrupted();
Так будет выглядеть класс Incremenator после добавления поддержки прерываний:

Class Incremenator extends Thread { private volatile boolean mIsIncrement = true; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } @Override public void run() { do { if(!Thread.interrupted()) //Проверка прерывания { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){ return; //Завершение потока после прерывания } } while(true); } } class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.interrupt(); //Прерывание побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Как видите, мы избавились от метода finish() и реализовали тот же механизм завершения потока с помощью встроенной системы прерываний. В этой реализации мы получили одно преимущество - метод sleep() вернет управление (сгенерирует исключение) незамедлительно после прерывания потока.

Заметьте что методы sleep() и join() обёрнуты в конструкции try-catch. Это необходимое условие работы этих методов. Вызывающий их код должен перехватывать исключение InterruptedException, которое они бросают при прерывании во время ожидания.

С запуском и завершением потоков разобрались, дальше я расскажу о методах, использующихся при работе с потоками.

Метод Thread.sleep()

Thread.sleep() - статический метод класса Thread, который приостанавливает выполнение потока, в котором он был вызван. Во время выполнения метода sleep() система перестает выделять потоку процессорное время, распределяя его между другими потоками. Метод sleep() может выполняться либо заданное кол-во времени (миллисекунды или наносекунды) либо до тех пор пока он не будет остановлен прерыванием (в этом случае он сгенерирует исключение InterruptedException).

Thread.sleep(1500); //Ждет полторы секунды Thread.sleep(2000, 100); //Ждет 2 секунды и 100 наносекунд

Несмотря на то, что метод sleep() может принимать в качестве времени ожидания наносекунды, не стоит принимать это всерьез. Во многих системах время ожидания все равно округляется до миллисекунд а то и до их десятков.

Метод yield()

Статический метод Thread.yield() заставляет процессор переключиться на обработку других потоков системы. Метод может быть полезным, например, когда поток ожидает наступления какого-либо события и необходимо чтобы проверка его наступления происходила как можно чаще. В этом случае можно поместить проверку события и метод Thread.yield() в цикл:

//Ожидание поступления сообщения while(!msgQueue.hasMessages()) //Пока в очереди нет сообщений { Thread.yield(); //Передать управление другим потокам }

Метод join()

В Java предусмотрен механизм, позволяющий одному потоку ждать завершения выполнения другого. Для этого используется метод join(). Например, чтобы главный поток подождал завершения побочного потока myThready, необходимо выполнить инструкцию myThready.join() в главном потоке. Как только поток myThready завершится, метод join() вернет управление, и главный поток сможет продолжить выполнение.

Метод join() имеет перегруженную версию, которая получает в качестве параметра время ожидания. В этом случае join() возвращает управление либо когда завершится ожидаемый поток, либо когда закончится время ожидания. Подобно методу Thread.sleep() метод join может ждать в течение миллисекунд и наносекунд – аргументы те же.

С помощью задания времени ожидания потока можно, например, выполнять обновление анимированной картинки пока главный (или любой другой) поток ждёт завершения побочного потока, выполняющего ресурсоёмкие операции:

Thinker brain = new Thinker(); //Thinker - потомок класса Thread. brain.start(); //Начать "обдумывание". do { mThinkIndicator.refresh(); //mThinkIndicator - анимированная картинка. try{ brain.join(250); //Подождать окончания мысли четверть секунды. }catch(InterruptedException e){} } while(brain.isAlive()); //Пока brain думает... //brain закончил думать (звучат овации).

В этом примере поток brain (мозг) думает над чем-то, и предполагается, что это занимает у него длительное время. Главный поток ждет его четверть секунды и, в случае, если этого времени на раздумье не хватило, обновляет «индикатор раздумий» (некоторая анимированная картинка). В итоге, во время раздумий, пользователь наблюдает на экране индикатор мыслительного процесса, что дает ему знать, что электронные мозги чем то заняты.

Приоритеты потоков

Каждый поток в системе имеет свой приоритет. Приоритет – это некоторое число в объекте потока, более высокое значение которого означает больший приоритет. Система в первую очередь выполняет потоки с большим приоритетом, а потоки с меньшим приоритетом получают процессорное время только тогда, когда их более привилегированные собратья простаивают.

Работать с приоритетами потока можно с помощью двух функций:

void setPriority(int priority) – устанавливает приоритет потока.
Возможные значения priority - MIN_PRIORITY, NORM_PRIORITY и MAX_PRIORITY.

int getPriority() – получает приоритет потока.

Некоторые полезные методы класса Thread

Это практически всё. Напоследок приведу несколько полезных методов работы с потоками.

boolean isAlive() - возвращает true если myThready() выполняется и false если поток еще не был запущен или был завершен.

setName(String threadName) – Задает имя потока.
String getName() – Получает имя потока.
Имя потока – ассоциированная с ним строка, которая в некоторых случаях помогает понять, какой поток выполняет некоторое действие. Иногда это бывает полезным.

static Thread Thread.currentThread() - статический метод, возвращающий объект потока, в котором он был вызван.

long getId() – возвращает идентификатор потока. Идентификатор – уникальное число, присвоенное потоку.

Заключение

Отмечу, что в статье рассказано далеко не про все нюансы многопоточного программирования. И коду, приведенному в примерах, для полной корректности не хватает некоторых нюансов. В частности, в примерах не используется синхронизация. Синхронизация потоков - тема, не изучив которую, программировать правильные многопоточные приложения не получится. Почитать о ней вы можете, например, в книге «Java Concurrency in Practice» или

Последнее обновление: 27.04.2018

Большинство языков программирования поддерживают такую важную функциональность как многопоточность, и Java в этом плане не исключение. При помощи многопоточности мы можем выделить в приложении несколько потоков, которые будут выполнять различные задачи одновременно. Если у нас, допустим, графическое приложение, которое посылает запрос к какому-нибудь серверу или считывает и обрабатывает огромный файл, то без многопоточности у нас бы блокировался графический интерфейс на время выполнения задачи. А благодаря потокам мы можем выделить отправку запроса или любую другую задачу, которая может долго обрабатываться, в отдельный поток. Поэтому большинство реальных приложений, которые многим из нас приходится использовать, практически не мыслимы без многопоточности.

Класс Thread

В Java функциональность отдельного потока заключается в классе Thread . И чтобы создать новый поток, нам надо создать объект этого класса. Но все потоки не создаются сами по себе. Когда запускается программа, начинает работать главный поток этой программы. От этого главного потока порождаются все остальные дочерние потоки.

С помощью статического метода Thread.currentThread() мы можем получить текущий поток выполнения:

Public static void main(String args) { Thread t = Thread.currentThread(); // получаем главный поток System.out.println(t.getName()); // main }

По умолчанию именем главного потока будет main .

Для управления потоком класс Thread предоставляет еще ряд методов. Наиболее используемые из них:

    getName() : возвращает имя потока

    setName(String name) : устанавливает имя потока

    getPriority() : возвращает приоритет потока

    setPriority(int proirity) : устанавливает приоритет потока. Приоритет является одним из ключевых факторов для выбора системой потока из кучи потоков для выполнения. В этот метод в качестве параметра передается числовое значение приоритета - от 1 до 10. По умолчанию главному потоку выставляется средний приоритет - 5.

    isAlive() : возвращает true, если поток активен

    isInterrupted() : возвращает true, если поток был прерван

    join() : ожидает завершение потока

    run() : определяет точку входа в поток

    sleep() : приостанавливает поток на заданное количество миллисекунд

    start() : запускает поток, вызывая его метод run()

Мы можем вывести всю информацию о потоке:

Public static void main(String args) { Thread t = Thread.currentThread(); // получаем главный поток System.out.println(t); // main }

Консольный вывод:

Thread

Первое main будет представлять имя потока (что можно получить через t.getName()), второе значение 5 предоставляет приоритет потока (также можно получить через t.getPriority()), и последнее main представляет имя группы потоков, к которому относится текущий - по умолчанию также main (также можно получить через t.getThreadGroup().getName())

Недостатки при использовании потоков

Далее мы рассмотрим, как создавать и использовать потоки. Это довольно легко. Однако при создании многопоточного приложения нам следует учитывать ряд обстоятельств, которые негативно могут сказаться на работе приложения.

На некоторых платформах запуск новых потоков может замедлить работу приложения. Что может иметь большое значение, если нам критичная производительность приложения.

Для каждого потока создается свой собственный стек в памяти, куда помещаются все локальные переменные и ряд других данных, связанных с выполнением потока. Соответственно, чем больше потоков создается, тем больше памяти используется. При этом надо помнить, в любой системе размеры используемой памяти ограничены. Кроме того, во многих системах может быть ограничение на количество потоков. Но даже если такого ограничения нет, то в любом случае имеется естественное ограничение в виде максимальной скорости процессора.

Здравствуйте! В этой статье я вкратце расскажу вам о процессах, потоках, и об основах многопоточного программирования на языке Java.
Наиболее очевидная область применения многопоточности – это программирование интерфейсов. Многопоточность незаменима тогда, когда необходимо, чтобы графический интерфейс продолжал отзываться на действия пользователя во время выполнения некоторой обработки информации. Например, поток, отвечающий за интерфейс, может ждать завершения другого потока, загружающего файл из интернета, и в это время выводить некоторую анимацию или обновлять прогресс-бар. Кроме того он может остановить поток загружающий файл, если была нажата кнопка «отмена».

Еще одна популярная и, пожалуй, одна из самых хардкорных областей применения многопоточности – игры. В играх различные потоки могут отвечать за работу с сетью, анимацию, расчет физики и т.п.

Давайте начнем. Сначала о процессах.

Процессы

Процесс - это совокупность кода и данных, разделяющих общее виртуальное адресное пространство. Чаще всего одна программа состоит из одного процесса, но бывают и исключения (например, браузер Chrome создает отдельный процесс для каждой вкладки, что дает ему некоторые преимущества, вроде независимости вкладок друг от друга). Процессы изолированы друг от друга, поэтому прямой доступ к памяти чужого процесса невозможен (взаимодействие между процессами осуществляется с помощью специальных средств).

Для каждого процесса ОС создает так называемое «виртуальное адресное пространство», к которому процесс имеет прямой доступ. Это пространство принадлежит процессу, содержит только его данные и находится в полном его распоряжении. Операционная система же отвечает за то, как виртуальное пространство процесса проецируется на физическую память.

Схема этого взаимодействия представлена на картинке. Операционная система оперирует так называемыми страницами памяти, которые представляют собой просто область определенного фиксированного размера. Если процессу становится недостаточно памяти, система выделяет ему дополнительные страницы из физической памяти. Страницы виртуальной памяти могут проецироваться на физическую память в произвольном порядке.

При запуске программы операционная система создает процесс, загружая в его адресное пространство код и данные программы, а затем запускает главный поток созданного процесса.

Потоки

Один поток – это одна единица исполнения кода. Каждый поток последовательно выполняет инструкции процесса, которому он принадлежит, параллельно с другими потоками этого процесса.

Следует отдельно обговорить фразу «параллельно с другими потоками». Известно, что на одно ядро процессора, в каждый момент времени, приходится одна единица исполнения. То есть одноядерный процессор может обрабатывать команды только последовательно, по одной за раз (в упрощенном случае). Однако запуск нескольких параллельных потоков возможен и в системах с одноядерными процессорами. В этом случае система будет периодически переключаться между потоками, поочередно давая выполняться то одному, то другому потоку. Такая схема называется псевдо-параллелизмом. Система запоминает состояние (контекст) каждого потока, перед тем как переключиться на другой поток, и восстанавливает его по возвращению к выполнению потока. В контекст потока входят такие параметры, как стек, набор значений регистров процессора, адрес исполняемой команды и прочее…

Проще говоря, при псевдопараллельном выполнении потоков процессор мечется между выполнением нескольких потоков, выполняя по очереди часть каждого из них.

Вот как это выглядит:

Цветные квадраты на рисунке – это инструкции процессора (зеленые – инструкции главного потока, синие – побочного). Выполнение идет слева направо. После запуска побочного потока его инструкции начинают выполняться вперемешку с инструкциями главного потока. Кол-во выполняемых инструкций за каждый подход не определено.

То, что инструкции параллельных потоков выполняются вперемешку, в некоторых случаях может привести к конфликтам доступа к данным. Проблемам взаимодействия потоков будет посвящена следующая статья, а пока о том, как запускаются потоки в Java…

Запуск потоков

Каждый процесс имеет хотя бы один выполняющийся поток. Тот поток, с которого начинается выполнение программы, называется главным. В языке Java, после создания процесса, выполнение главного потока начинается с метода main(). Затем, по мере необходимости, в заданных программистом местах, и при выполнении заданных им же условий, запускаются другие, побочные потоки.

В языке Java поток представляется в виде объекта-потомка класса Thread. Этот класс инкапсулирует стандартные механизмы работы с потоком.

Запустить новый поток можно двумя способами:

Способ 1
Создать объект класса Thread, передав ему в конструкторе нечто, реализующее интерфейс Runnable. Этот интерфейс содержит метод run(), который будет выполняться в новом потоке. Поток закончит выполнение, когда завершится его метод run().

Выглядит это так:

Class SomeThing //Нечто, реализующее интерфейс Runnable implements Runnable //(содержащее метод run()) { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program //Класс с методом main() { static SomeThing mThing; //mThing - объект класса, реализующего интерфейс Runnable public static void main(String args) { mThing = new SomeThing(); Thread myThready = new Thread(mThing); //Создание потока "myThready" myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Для пущего укорочения кода можно передать в конструктор класса Thread объект безымянного внутреннего класса, реализующего интерфейс Runnable:

Public class Program //Класс с методом main(). { public static void main(String args) { //Создание потока Thread myThready = new Thread(new Runnable() { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } }); myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Способ 2
Создать потомка класса Thread и переопределить его метод run():

Class AffableThread extends Thread { @Override public void run() //Этот метод будет выполнен в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program { static AffableThread mSecondThread; public static void main(String args) { mSecondThread = new AffableThread(); //Создание потока mSecondThread.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

В приведённом выше примере в методе main() создается и запускается еще один поток. Важно отметить, что после вызова метода mSecondThread.start() главный поток продолжает своё выполнение, не дожидаясь пока порожденный им поток завершится. И те инструкции, которые идут после вызова метода start(), будут выполнены параллельно с инструкциями потока mSecondThread.

Для демонстрации параллельной работы потоков давайте рассмотрим программу, в которой два потока спорят на предмет философского вопроса «что было раньше, яйцо или курица?». Главный поток уверен, что первой была курица, о чем он и будет сообщать каждую секунду. Второй же поток раз в секунду будет опровергать своего оппонента. Всего спор продлится 5 секунд. Победит тот поток, который последним изречет свой ответ на этот, без сомнения, животрепещущий философский вопрос. В примере используются средства, о которых пока не было сказано (isAlive() sleep() и join()). К ним даны комментарии, а более подробно они будут разобраны дальше.

Class EggVoice extends Thread { @Override public void run() { for(int i = 0; i < 5; i++) { try{ sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("яйцо!"); } //Слово «яйцо» сказано 5 раз } } public class ChickenVoice //Класс с методом main() { static EggVoice mAnotherOpinion; //Побочный поток public static void main(String args) { mAnotherOpinion = new EggVoice(); //Создание потока System.out.println("Спор начат..."); mAnotherOpinion.start(); //Запуск потока for(int i = 0; i < 5; i++) { try{ Thread.sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("курица!"); } //Слово «курица» сказано 5 раз if(mAnotherOpinion.isAlive()) //Если оппонент еще не сказал последнее слово { try{ mAnotherOpinion.join(); //Подождать пока оппонент закончит высказываться. }catch(InterruptedException e){} System.out.println("Первым появилось яйцо!"); } else //если оппонент уже закончил высказываться { System.out.println("Первой появилась курица!"); } System.out.println("Спор закончен!"); } } Консоль: Спор начат... курица! яйцо! яйцо! курица! яйцо! курица! яйцо! курица! яйцо! курица! Первой появилась курица! Спор закончен!

В приведенном примере два потока параллельно в течении 5 секунд выводят информацию на консоль. Точно предсказать, какой поток закончит высказываться последним, невозможно. Можно попытаться, и можно даже угадать, но есть большая вероятность того, что та же программа при следующем запуске будет иметь другого «победителя». Это происходит из-за так называемого «асинхронного выполнения кода». Асинхронность означает то, что нельзя утверждать, что какая-либо инструкция одного потока, выполнится раньше или позже инструкции другого. Или, другими словами, параллельные потоки независимы друг от друга, за исключением тех случаев, когда программист сам описывает зависимости между потоками с помощью предусмотренных для этого средств языка.

Теперь немного о завершении процессов…

Завершение процесса и демоны

В Java процесс завершается тогда, когда завершается последний его поток. Даже если метод main() уже завершился, но еще выполняются порожденные им потоки, система будет ждать их завершения.

Однако это правило не относится к особому виду потоков – демонам. Если завершился последний обычный поток процесса, и остались только потоки-демоны, то они будут принудительно завершены и выполнение процесса закончится. Чаще всего потоки-демоны используются для выполнения фоновых задач, обслуживающих процесс в течение его жизни.

Объявить поток демоном достаточно просто - нужно перед запуском потока вызвать его метод setDaemon(true) ;
Проверить, является ли поток демоном, можно вызвав его метод boolean isDaemon() ;

Завершение потоков

В Java существуют (существовали) средства для принудительного завершения потока. В частности метод Thread.stop() завершает поток незамедлительно после своего выполнения. Однако этот метод, а также Thread.suspend(), приостанавливающий поток, и Thread.resume(), продолжающий выполнение потока, были объявлены устаревшими и их использование отныне крайне нежелательно. Дело в том что поток может быть «убит» во время выполнения операции, обрыв которой на полуслове оставит некоторый объект в неправильном состоянии, что приведет к появлению трудноотлавливаемой и случайным образом возникающей ошибке.

Вместо принудительного завершения потока применяется схема, в которой каждый поток сам ответственен за своё завершение. Поток может остановиться либо тогда, когда он закончит выполнение метода run(), (main() - для главного потока) либо по сигналу из другого потока. Причем как реагировать на такой сигнал - дело, опять же, самого потока. Получив его, поток может выполнить некоторые операции и завершить выполнение, а может и вовсе его проигнорировать и продолжить выполняться. Описание реакции на сигнал завершения потока лежит на плечах программиста.

Java имеет встроенный механизм оповещения потока, который называется Interruption (прерывание, вмешательство), и скоро мы его рассмотрим, но сначала посмотрите на следующую программку:

Incremenator - поток, который каждую секунду прибавляет или вычитает единицу из значения статической переменной Program.mValue. Incremenator содержит два закрытых поля – mIsIncrement и mFinish. То, какое действие выполняется, определяется булевой переменной mIsIncrement - если оно равно true, то выполняется прибавление единицы, иначе - вычитание. А завершение потока происходит, когда значение mFinish становится равно true.

Class Incremenator extends Thread { //О ключевом слове volatile - чуть ниже private volatile boolean mIsIncrement = true; private volatile boolean mFinish = false; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } public void finish() //Инициирует завершение потока { mFinish = true; } @Override public void run() { do { if(!mFinish) //Проверка на необходимость завершения { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){} } while(true); } } public class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.finish(); //Инициация завершения побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Взаимодействовать с потоком можно с помощью метода changeAction() (для смены вычитания на сложение и наоборот) и метода finish() (для завершения потока).

В объявлении переменных mIsIncrement и mFinish было использовано ключевое слово volatile (изменчивый, не постоянный). Его необходимо использовать для переменных, которые используются разными потоками. Это связано с тем, что значение переменной, объявленной без volatile, может кэшироваться отдельно для каждого потока, и значение из этого кэша может различаться для каждого из них. Объявление переменной с ключевым словом volatile отключает для неё такое кэширование и все запросы к переменной будут направляться непосредственно в память.

В этом примере показано, каким образом можно организовать взаимодействие между потоками. Однако есть одна проблема при таком подходе к завершению потока - Incremenator проверяет значение поля mFinish раз в секунду, поэтому может пройти до секунды времени между тем, когда будет выполнен метод finish(), и фактическим завершения потока. Было бы замечательно, если бы при получении сигнала извне, метод sleep() возвращал выполнение и поток незамедлительно начинал своё завершение. Для выполнения такого сценария существует встроенное средство оповещения потока, которое называется Interruption (прерывание, вмешательство).

Interruption

Класс Thread содержит в себе скрытое булево поле, подобное полю mFinish в программе Incremenator, которое называется флагом прерывания. Установить этот флаг можно вызвав метод interrupt() потока. Проверить же, установлен ли этот флаг, можно двумя способами. Первый способ - вызвать метод bool isInterrupted() объекта потока, второй - вызвать статический метод bool Thread.interrupted(). Первый метод возвращает состояние флага прерывания и оставляет этот флаг нетронутым. Второй метод возвращает состояние флага и сбрасывает его. Заметьте что Thread.interrupted() - статический метод класса Thread, и его вызов возвращает значение флага прерывания того потока, из которого он был вызван. Поэтому этот метод вызывается только изнутри потока и позволяет потоку проверить своё состояние прерывания.

Итак, вернемся к нашей программе. Механизм прерывания позволит нам решить проблему с засыпанием потока. У методов, приостанавливающих выполнение потока, таких как sleep(), wait() и join() есть одна особенность - если во время их выполнения будет вызван метод interrupt() этого потока, они, не дожидаясь конца времени ожидания, сгенерируют исключение InterruptedException.

Переделаем программу Incremenator – теперь вместо завершения потока с помощью метода finish() будем использовать стандартный метод interrupt(). А вместо проверки флага mFinish будем вызывать метод bool Thread.interrupted();
Так будет выглядеть класс Incremenator после добавления поддержки прерываний:

Class Incremenator extends Thread { private volatile boolean mIsIncrement = true; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } @Override public void run() { do { if(!Thread.interrupted()) //Проверка прерывания { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){ return; //Завершение потока после прерывания } } while(true); } } class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.interrupt(); //Прерывание побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Как видите, мы избавились от метода finish() и реализовали тот же механизм завершения потока с помощью встроенной системы прерываний. В этой реализации мы получили одно преимущество - метод sleep() вернет управление (сгенерирует исключение) незамедлительно после прерывания потока.

Заметьте что методы sleep() и join() обёрнуты в конструкции try-catch. Это необходимое условие работы этих методов. Вызывающий их код должен перехватывать исключение InterruptedException, которое они бросают при прерывании во время ожидания.

С запуском и завершением потоков разобрались, дальше я расскажу о методах, использующихся при работе с потоками.

Метод Thread.sleep()

Thread.sleep() - статический метод класса Thread, который приостанавливает выполнение потока, в котором он был вызван. Во время выполнения метода sleep() система перестает выделять потоку процессорное время, распределяя его между другими потоками. Метод sleep() может выполняться либо заданное кол-во времени (миллисекунды или наносекунды) либо до тех пор пока он не будет остановлен прерыванием (в этом случае он сгенерирует исключение InterruptedException).

Thread.sleep(1500); //Ждет полторы секунды Thread.sleep(2000, 100); //Ждет 2 секунды и 100 наносекунд

Несмотря на то, что метод sleep() может принимать в качестве времени ожидания наносекунды, не стоит принимать это всерьез. Во многих системах время ожидания все равно округляется до миллисекунд а то и до их десятков.

Метод yield()

Статический метод Thread.yield() заставляет процессор переключиться на обработку других потоков системы. Метод может быть полезным, например, когда поток ожидает наступления какого-либо события и необходимо чтобы проверка его наступления происходила как можно чаще. В этом случае можно поместить проверку события и метод Thread.yield() в цикл:

//Ожидание поступления сообщения while(!msgQueue.hasMessages()) //Пока в очереди нет сообщений { Thread.yield(); //Передать управление другим потокам }

Метод join()

В Java предусмотрен механизм, позволяющий одному потоку ждать завершения выполнения другого. Для этого используется метод join(). Например, чтобы главный поток подождал завершения побочного потока myThready, необходимо выполнить инструкцию myThready.join() в главном потоке. Как только поток myThready завершится, метод join() вернет управление, и главный поток сможет продолжить выполнение.

Метод join() имеет перегруженную версию, которая получает в качестве параметра время ожидания. В этом случае join() возвращает управление либо когда завершится ожидаемый поток, либо когда закончится время ожидания. Подобно методу Thread.sleep() метод join может ждать в течение миллисекунд и наносекунд – аргументы те же.

С помощью задания времени ожидания потока можно, например, выполнять обновление анимированной картинки пока главный (или любой другой) поток ждёт завершения побочного потока, выполняющего ресурсоёмкие операции:

Thinker brain = new Thinker(); //Thinker - потомок класса Thread. brain.start(); //Начать "обдумывание". do { mThinkIndicator.refresh(); //mThinkIndicator - анимированная картинка. try{ brain.join(250); //Подождать окончания мысли четверть секунды. }catch(InterruptedException e){} } while(brain.isAlive()); //Пока brain думает... //brain закончил думать (звучат овации).

В этом примере поток brain (мозг) думает над чем-то, и предполагается, что это занимает у него длительное время. Главный поток ждет его четверть секунды и, в случае, если этого времени на раздумье не хватило, обновляет «индикатор раздумий» (некоторая анимированная картинка). В итоге, во время раздумий, пользователь наблюдает на экране индикатор мыслительного процесса, что дает ему знать, что электронные мозги чем то заняты.

Приоритеты потоков

Каждый поток в системе имеет свой приоритет. Приоритет – это некоторое число в объекте потока, более высокое значение которого означает больший приоритет. Система в первую очередь выполняет потоки с большим приоритетом, а потоки с меньшим приоритетом получают процессорное время только тогда, когда их более привилегированные собратья простаивают.

Работать с приоритетами потока можно с помощью двух функций:

void setPriority(int priority) – устанавливает приоритет потока.
Возможные значения priority - MIN_PRIORITY, NORM_PRIORITY и MAX_PRIORITY.

int getPriority() – получает приоритет потока.

Некоторые полезные методы класса Thread

Это практически всё. Напоследок приведу несколько полезных методов работы с потоками.

boolean isAlive() - возвращает true если myThready() выполняется и false если поток еще не был запущен или был завершен.

setName(String threadName) – Задает имя потока.
String getName() – Получает имя потока.
Имя потока – ассоциированная с ним строка, которая в некоторых случаях помогает понять, какой поток выполняет некоторое действие. Иногда это бывает полезным.

static Thread Thread.currentThread() - статический метод, возвращающий объект потока, в котором он был вызван.

long getId() – возвращает идентификатор потока. Идентификатор – уникальное число, присвоенное потоку.

Заключение

Отмечу, что в статье рассказано далеко не про все нюансы многопоточного программирования. И коду, приведенному в примерах, для полной корректности не хватает некоторых нюансов. В частности, в примерах не используется синхронизация. Синхронизация потоков - тема, не изучив которую, программировать правильные многопоточные приложения не получится. Почитать о ней вы можете, например, в книге «Java Concurrency in Practice» или Прежде, чем узнать про потоки Java, давайте заглянем в недалёкое будущее. Представьте, что вы подали резюме и прошли собеседование. Вас и пару дюжин будущих коллег пригласили на работу в большую Software-компанию. Среди прочих хлопот нужно подать бумажные документы для трудоустройства уставшему сотруднику HR-отдела.

Чтобы ускорить процесс, претендентов на должность можно разделить на две группы и распределить их между двумя HR-менеджерами (если таковые есть в компании). В результате мы получаем ускорение процесса за счёт параллельной (parallel ) работы по оформлению.

Если же кадровик в компании один, то придётся как-то выкручиваться. Например, можно снова- таки разбить всех на две группы, например, собеседовать поочерёдно девушек и юношей.

Или по другому принципу: так как в нижней группе больше народа, будем чередовать на одного юношу двух девушек.

Такой способ организации работы называется многопоточным . Наш утомлённый кадровик переключается на разные группы для оформления из них очередного сотрудника. Групп, может быть, одиннадцать, а кадровиков – четыре. В этом случае многопоточная (multithreading ) обработка будет происходить параллельно несколькими HR-ами, которые могут брать очередного человека из любой группы для обработки его документов.

Процессы

Процессом (process ) в данном случае будет организация работы приёма документов. В организации можно выделить несколько процессов: бухгалтерский учёт, разработка ПО, встречи с клиентами, работа склада и т. д. На каждый процесс выделены ресурсы: помещение, сотрудники для его исполнения. Процессы изолированы друг от друга: у кадровиков отсутствует доступ в бухгалтерскую базу, а менеджеры по работе с клиентами не бегают по складу. Если процесс должен получить доступ к чужим ресурсам, необходимо наладить межпроцессное взаимодействие: служебные записки, совместные совещания.

Потоки

Работа в процессе организована в виде потоков (java thread). Для отдела кадров, поток – это организация работы по обслуживанию группы. На самой первой картинке – один поток, последующих трёх – два. Внутри процесса потоки могут выполняться параллельно – два кадровика принимают две или более группы будущих сотрудников. Взаимодействие кадровиков с группами – обработку потоков внутри процесса – называют синхронизацией потоков . На рисунках оформления одним кадровиком двух групп видны показаны способы: равномерный (девушка – юноша – девушка – юноша) и с разными приоритетами (две девушки чередуются с одним юношей). Потоки имеют доступ к ресурсам процесса, к которому они относятся: группам к кадровику даны образцы бланков заявлений, ручки для заполнения документов. Но если потоки взаимодействуют с общими для них вещами – то возможны казусы. Если кадровик попросит крикнуть имя последнего человека в очереди – то, в случае с двумя группами, он не уверен заранее, что услышит женское имя или мужское. Подобные конфликты доступа к данным, блокировки и способы их разрешения – очень важная тема.

Состояния потока

Каждый поток пребывает в одном из следующих состояний (state):
  • Создан (New) – очередь к кадровику готовится, люди организуются.
  • Запущен (Runnable) – наша очередь выстроилась к кадровику и обрабатывается.
  • Заблокирован (Blocked) – последний в очереди юноша пытается выкрикнуть имя, но услышав, что девушка в соседней группе начала делать это раньше него, замолчал.
  • Завершён (Terminated) - вся очередь оформилась у кадровика и в ней нет необходимости.
  • Ожидает(Waiting) – одна очередь ждёт сигнала от другой.
Организация потоков и их взаимодействие – это основа эффективной работы процессов.

Вернемся в IT-мир

В XXI веке многопоточное и параллельное выполнение стало актуальным. С 90-х годов прошлого века многозадачные операционные системы Windows, MacOS и Linux прочно обосновались на домашних компьютерах. В них часто можно встретить четырёх- и более ядерные процессоры. Число параллельных блоков GPU-видеокарт уже перевалило за тысячу. Популярные программы пишутся с учетом многопоточности (multithreading), например, современные версии ПО обработки графики, видео или оперирующих большим объемом данных: Adobe Photoshop, WinRar, Mathematica, современные игры. Многопоточность Java – очень важная, востребованная и сложная тема. Поэтому в курсе JavaRush встречается много задач, чтобы разобраться с ней очень хорошо. Java-примеры на многопоточность помогут освоить основные нюансы и тонкости этой области, синхронизации работы потоков.

Процесс

Process (процесс) – выполняющийся экземпляр программы, которому Операционная Система (ОС) выделила память, процессорное время/ядра и прочие ресурсы. Важно, что память выделяется отдельно, адресные пространства различных процессов недоступны друг другу. Если процессам необходимо обмениваться данными, они могут это сделать с помощью файлов, каналов и иных способов межпроцессного взаимодействия.

Поток

Java Thread (поток). Иногда, чтобы не путать с другими классами Java – Stream и подобными, потоки Java часто переводят как нить. Они используют выделенные для процесса ресурсы и являются способом выполнения процесса. Главный поток выполняет метод main и завершается. При выполнении процесса могут порождаться дополнительные потоки (дочерние). Потоки одного процесса могут между собой обмениваться данными. Многопоточность Java требует учитывать синхронизацию данных, не забывайте об этом. В Java процесс завершается тогда, когда закончил работу последний его поток. Для фоновых задач поток можно запустить как демон (daemon), отличие которого от обычного в том, что они будут принудительно завершены при окончании работы всех не- daemon потоков процесса.

Первое многопоточное приложение

Существует более полудюжины способов создания потоков, в рамках JavaRush курса мы их подробно разберём. Для начала познакомимся с одним из базовых. Имеется специальный класс Thread в методе run() которого необходимо написать код, реализующий логику программы. После создания потока, можно запустить его, вызвав метод start() . Напишем демонстрационную программу, реализующую пример многопоточности Java. class PeopleQueue extends Thread { // Наша очередь из сотрудников, наследник класса Thread private String names; PeopleQueue (String. . . names) { // Конструктор, аргумент- массив имен сотрудников this . names = names; } @Override public void run () { // Этот метод будет вызван при старте потока for (int i = 0 ; i < names. length; i++ ) { // Вывод в цикле с паузой 0.5 сек очередного сотрудника System. out. println ("Обработаны документы: " + names[ i] ) ; try { sleep (500 ) ; // Задержка в 0.5 сек } catch (Exception e) { } } } } public class HR { // Класс для демонстрации работы потока public static void main (String args) { // Создаем две очереди PeopleQueue queue1 = new PeopleQueue ("Иван" , "Сергей" , "Николай" , "Фердинанд" , "Василий" ) ; PeopleQueue queue2 = new PeopleQueue ("Мария" , "Людмила" , "Алиса" , "Карина" , "Ольга" ) ; System. out. println ("Начали!" ) ; // Сообщение из главного потока программы queue1. start () ; //Запускаем одну очередь (дочерний поток) queue2. start () ; //Запускаем вторую (дочерний поток) } } Запустим программу. В консоли виден вывод сообщения главным потоком. Далее, каждый дочерний поток queue1 и queue2 поочередно выводят сообщения в общую для них консоль об очередном обработанном сотруднике. Один из возможных вариантов работы программы: Начали! Обработаны документы: Мария Обработаны документы: Иван Обработаны документы: Людмила Обработаны документы: Сергей Обработаны документы: Алиса Обработаны документы: Николай Обработаны документы: Карина Обработаны документы: Фердинанд Обработаны документы: Ольга Обработаны документы: Василий Process finished with exit code 0 Многопоточность в Java – тема трудная и многосторонняя. Умение писать код с использованием параллельных, многозадачных и многопоточных вычислений поможет вам эффективно реализовать задачи на современных многоядерных процессорах и кластерах, состоящих из множества компьютеров.

Рекомендуем почитать

Наверх