Создание макетов 3d пазлов из фанеры. Пазлы из фанеры – основные виды изделий и их особенности. Что нужно для работы

Скачать Viber 17.02.2019
Скачать Viber

Второй интерфейс внешней памяти – SCSI (Small Computer System Interface – системный интерфейс малых компьютеров) был разработан и принят ANSI в 1986 г. (он получил позднее название SCSI-1). Скорость передачи данных при использовании этого 8-разрядного параллельного интерфейса составляла (при тактовой частоте шины 5 МГц) 4 Мбайта/с в асинхронном режиме и 5 Мбайт/с в синхронном режиме. В отличие от интерфейса IDE/ATA, к интерфейсу SCSI можно подключать не только внутренние, но и внешние устройства: принтеры, сканеры и т.д. Максимальное количество подключаемых к шине SCSI устройств было равно 8, а максимальная длина кабеля – 6 м.

Разработкой стандартов и поддержкой интерфейса SCSI занимается комитет T10 INCITS, т.е. той же организации, которая разрабатывает стандарты IDE (ATA). В 1996 г. для продвижения стандарта SCSI была создана Торговая ассоциация SCSI – STA (SCSI Trade Association). В эту ассоциацию входят около тридцати фирм-производителей компьютерной техники.

В следующих стандартах SCSI – SCSI-2 (1994 г.) и SCSI-3 (1995 г.) введен общий набор команд CCS (Common Command Set) – 18 базовых команд, необходимых для поддержки любого устройства SCSI, добавлена возможность хранения в устройстве очередей команд, полученных с компьютера и их обработка в соответствии с заданными приоритетами. Кроме этого, в этих стандартах, наряду с 8-разрядной, определена и 16-разрядная шина, тактовая частота увеличена до 20 МГц и скорость передачи данных – до 20 Мбайт/с.

Развитием стандарта SCSI-3 являются используемые в настоящее время стандарты Ultra3 SCSI (1999 г.), для которого определена частота шины 40 МГц и скорость передачи 160 Мбайт/с и Ultra320 SCSI (2002 г.) – частота шины 80 МГц и скорость передачи 320 Мбайт/с.

Обмен данными по этим стандартам реализуется с помощью метода LDVS (так же, как в шине PCI Express). Максимальное количество подключаемых устройств для Ultra3 SCSI и Ultra320 SCSI равно 16, а максимальная длина кабеля – 12 м.

Разработан также стандарт Ultra640 SCSI (2003 г.) с частотой шины 160 МГц и со скоростью 640 Мбайт/с, но этот стандарт не получил широкого распространения, в связи с тем, что из-за малой длины кабеля к нему нельзя подключить более двух устройств.

Связь между устройством SCSI и шиной ввода/вывода выполняется с помощью специального адаптера (контроллера) SCSI, вставляемого в разъем PCI, или встроенного в материнскую плату. Кроме адаптера SCSI (рис. 1.3.8а), называемого хост-адаптером (host adapter) каждое устройство имеет свой встроенный адаптер, который позволяет ему взаимодействовать с шиной SCSI. Если устройство – последнее в цепочке устройств шины SCSI, после него подключается специальное устройство – терминатор (terminator) для того чтобы исключить отражение сигналов, передающихся по шине (рис. 1.3.8б).


В Ultra3 SCSI и Ultra320 SCSI используются два типа разъемов: 68-контактный (рис. 1.3.8в) и 80-контактный (рис. 1.3.8г). Второй тип разъема, помимо линий передачи данных и команд, содержит также линии электропитания устройств и обеспечивает возможность «горячего» подключения устройства к компьютеру.

Рис. 1.3.8. Устройства SCSI: а) адаптер SCSI: 1 – разъемы для подключения внешних устройств; 2 – разъем для подключения внутреннего устройства; 3 – контроллер SCSI;

б) шина SCSI: 1 – разъем для подключения адаптера; 2 – разъемы для подключения устройств; 3 – терминатор; в) 68-контактный разъем SCSI; г) 80-контактный разъем SCSI

Данные при использовании SCSI передаются параллельно, так же, как и в IDE (ATA). По тем же причинам, что и в IDE (ATA), была начата разработка последовательно подключаемого SCSI – SAS (Serial Attached SCSI). Интерфейс SAS является совместимым с интерфейсом SATA и в тоже время использует команды SCSI, возможность «горячего» подключения внешних устройств, а также возможность подключения, помимо жестких и оптических дисководов, других периферийных устройств, например, принтера или сканера. В настоящее время интерфейс SAS постепенно заменяет интерфейс SCSI в компьютерах и периферийных устройствах.

Первая спецификация SAS – SAS 1.0 была выпущена Комитетом T10 в 2003 году. В ней была определена скорости передачи данных 1,5 и 3 Гбита/с для подключения устройств внутри системного блока компьютера с максимальной длиной кабеля 1 м и внешнего подключения устройств с максимальной длиной кабеля 8 м.

В 2005 году была выпущена спецификация SAS 1.1, в которой были исправлены ошибки спецификации SAS 1.0.

В спецификации SAS 2.0 (2009 г.) добавлена скорость 6 Гбит/с и максимальная длина кабеля увеличена до 10 м.

Обмен данными в SAS, так же, как и в SCSI, реализуется с помощью метода LDVS.

Две дифференциальные сигнальные пары (приемная и передающая) образуют в SAS физический канал. Один или несколько физических каналов, в свою очередь, образуют порт. Количество физических каналов в порту обозначается с помощью цифры, за которой следует символ «x». Так, обозначение 4x означает, что порт содержит 4 канала (8 сигнальных пар). Каждый порт имеет уникальный 64-битовый адрес, присваиваемый производителем оборудования SAS. Устройство с интерфейсом SAS может иметь один или несколько портов. Порт, имеющий только один канал, называется узким портом (narrow port), а порт, имеющий два и более каналов, называется широким портом (wide port).

Так два порта со скоростью по 3 Гбит/с можно использовать либо как два отдельных каналов связи с разными устройствами, либо как единый канал связи со скоростью 6 Гбит/с. Кроме того, в спецификации SAS 2.0 добавлена возможность разбиения порта со скоростью 6 Гбит/с на два канала со скоростью по 3 Гбит/с.

При подключении устройств в SAS используются разъемы, стандартизированные Комитетом по малым форм-факторам – Small Form Factor (SFF) Committee. Этот комитет разрабатывает и готовит спецификации по разъемам, используемым в различных устройствах. Каждый разъем идентифицируется префиксом «SFF-», за которым следует четырехзначный номер разъема, начинающийся с цифры 8.

Основными разъемами, используемыми в SATA являются:

· разъем SFF-8482 для подключения внутреннего устройства (рис. 1.3.9а);

· разъем SFF-8484 – разъем 4x для подключения внутренних устройств (рис. 1.3.9б);

· разъем SFF-8087 – разъем 4x (miniSAS) для подключения внутренних устройств (рис. 1.3.9в);

· разъем SFF-8470 – разъем 4x для подключения внешних устройств (рис. 1.3.9г);

· разъем SFF-8088 – разъем 4x (miniSAS) для подключения внешних устройств (рис. 1.3.9д).

Интерфейс SAS поддерживает набор команд, совместимый с набором команд SATA, поэтому к расширителю SAS можно подключать устройства SATA (для этого обычно используется разъем SFF-8482).

Наиболее распространенный кабель для подключения внешних устройств SAS с разъемами SFF-8088 на концах кабеля приведен на рис. 1.3.9е. Для подключения внешних устройств по интерфейсу eSATA можно использовать кабель, на одном конце которого разъем SFF-8088, а на другом – 4 разъема eSATA (рис. 1.3.9ж).

Рис. 1.3.9. Разъемы SAS: а) 29-контактный штекер разъема SAS для внутреннего устройства (SFF-8482) б) 32-контактный 4x штекер разъема SAS для подключения внутренних устройств (SFF-8484); в) 26-контактный 4x штекер разъема mini-SAS для внутренних устройств (SFF-8087); г) 26-контактный 4x штекер разъема SAS для внешнего устройства (SFF-8470); д) 26-контакный 4x штекер разъема mini-SAS для внешнего устройства (SFF-8088); е) кабель SFF-8088 – SFF-8088; ж) кабель SFF-8088 – 4 eSATA

Система с интерфейсом SAS состоит из следующих компонент:

· инициатор (Initiator) – порождает запросы на обслуживание для целевых устройств и получает подтверждения об исполнении запросов (реализуется в виде микросхемы на материнской плате или на карте, подключенной к шине материнской платы);

· целевое устройство (Target Device) – содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса (может быть как отдельным жёстким диском, так и целым набором дисков).

· подсистема доставки данных (Service Delivery Subsystem) – осуществляет передачу данных между инициаторами и целевыми устройствами (состоит из кабелей и расширителей SAS).

· расширитель SAS (SAS Expander) – подключает несколько устройств SAS к одному порту инициатора.

В настольных компьютерах расширитель SAS выполняется в виде карты, которая подключается к шине PCI Express, и содержит контроллер SAS, выполняющий функции инициатора, а также один или несколько внутренних и/или внешних гнезд разъемов SAS, к которым подключаются устройства с интерфейсом SAS или SATA (eSATA) (рис. ?????а и рис. ?????б).

Дисководы SAS (eSATA) могут быть помещены в корпус (рис. ?????в). Такое устройство называется дисковым массивом. Помимо дисководов, дисковый массив содержит встроенную плату расширителя SAS (рис. ?????г), разъем электропитания, а также гнездо для подключения к управляющему компьютеру (входного гнезда) и 1 или 2 гнезда для подключения к другим компьютером (входные гнезда). Наличие этих гнезд позволяет нескольким компьютером совместно использовать данные на дисководах дискового массива.

Пример подключения дисководов eSATA к компьютеру с использованием кабеля, изображенного на рис. 1.3.9ж, и компьютеров к дисковому массиву с использованием кабеля, изображенного на рис. 1.3.9е, приведен на рис. рис. ?????д.

Рис. ??????. Средства SAS: а) карта для подключения двух внутренних устройств:

1 – контроллер (инициатор) SAS; 2 – гнезда SF-8087; б) карта для подключения двух внешних устройств: 2 – гнезда SF-8088; 1 – контроллер (инициатор) SAS; в) дисковый массив на 15 дисководов SAS (eSATA); г) расширитель SAS дискового массива;

д) пример использования SAS для подключения внешних дисководов: 1 – дисководы eSATA; 2 – дисковый массив, подключенный к двум компьютерам

Аппаратная реализация SAS, как и ранее SCSI, на компьютере обходится дороже, чем реализация ATA и SATA (eSATA). Это связано, во-первых, с тем, что контроллер ATA и SATA, как правило, встроен в материнскую плату, а материнские платы для настольных компьютеров с встроенным интерфейсом SCSI и SAS практически не выпускаются, поэтому необходимо приобретение карты контроллера SCSI или SAS. Во-вторых, устройства с интерфейсом SAS имеют большие возможности, чем устройства ATA и SATA (eSATA). Например, дисководы SAS могут быть двухпортовыми, т.е. их можно либо подключить к двум компьютерам, либо выполнять обмен данными с компьютером на вдвое болей скорости по сравнению с использованием одного порта. Однако это приводит к более высокой стоимости дисководов SAS.

Поэтому основной областью применения SAS, как и SCSI, являются мощные компьютеры (сервера) с повышенными требованиями к скорости обмена, надежности и безопасности данных.

За счет использования расширителей, подсистема доставки данных SAS предлагает больше возможностей, чем система SATA (eSATA). Кроме того, в этой подсистеме можно использовать и более дешевые устройства SATA (eSATA).

Отдельная система, состоящая из связанных между собой компьютеров, периферийных устройств, расширителей SAS и кабелей SAS, SATA и eSATA, называется доменом. Максимальное количество расширителей и устройств в домене равно 16256. Система SAS может состоять из нескольких доменов, причем отдельные инициаторы и устройства могут входить в два соседних домена.

В домене могут использоваться два типа расширителей: расширитель-коммутатор и оконечный расширитель.

Расширитель-коммутатор (fanout expander) (рис. ?????а) выполняет в домене SAS маршрутизацию потоков данных от инициаторов к целевым устройствам домена. В домене должен быть только один расширитель-коммутатор.

Оконечный расширитель (edge expander) (рис. ?????б) подключается либо к расширителю-коммутатору, либо к другому оконечному расширителю и используется для маршрутизации потоков данных подключенных к нему устройств и расширителей. Максимальное количество обслуживаемых оконечным расширителем устройств равно 128.

Устройства могут подключаться как к расширителю-коммутатору, так и к оконечному расширителю. Если в домене не задействован расширитель-коммутатор, то количество оконечных расширителей должно быть не более 2.

При включении электропитания все устройства системы SAS обмениваются друг с другом своими адресами, и система переходит в активное состояние, при котором выполняется обмен командами, пакетами данных и управляющими сообщениями. Добавление в систему нового устройства («горячее» подключение) или отключение устройства приводит к генерации управляющего сообщения, при получении которого все расширители перестраивают свою схему маршрутизации и оповещают инициаторы об изменении конфигурации системы.

Пример конфигурации доменов SAS приведен на рис. рис. ?????в.

Рис. ?????. Использование SAS в серверах: а) 12-портовый расширитель-коммутатор с гнездами SFF-8470 (вид спереди и сзади); б) 12-портовый оконечный расширитель с гнездами SFF-8470 (вид спереди и сзади); в) пример доменов SAS:

1 – серверы-инициаторы с картами расширения SAS; 2 - оконечные расширители SAS;

3 – однопортовые дисководы с интерфейсом SAS; 4 – расширитель-коммутатор SAS;

5 – дисководы с интерфейсом eSATA; 6 – двухпортовые дисководы с интерфейсом SAS;

7 – дисковый массив с встроенным расширителем SAS

Добрый день хабралюди!

Блог компании HGST после некоторого перерыва снова с вами. И сегодня мы хотели бы поговорить о преимуществах твердотельных накопителей SAS перед накопителями с интерфейсом SATA.

Интерфейс SAS, поддерживающий связь между устройствами, предназначен для использования на корпоративном уровне и обеспечивает масштабируемость, надежность работы и высокую доступность данных, в то время, как устройства с интерфейсом SATA оптимизированы для более дешевых пользовательских приложений.

Поскольку изготовители дисков используют интерфейс SAS для высокопроизводительных накопителей, а интерфейс SATA для клиентских дисков и запоминающих устройств большой емкости, производители твердотельных накопителей (SSD), в основном, продолжают использовать такое же разделение. В настоящее время на рынке также имеются SSD-накопители корпоративного класса с интерфейсом SATA, обеспечивающие высокую производительность. Однако, используя интерфейс SAS с более устойчивыми к ошибкам флеш-устройствами, контроллерами и программно-аппаратными средствами, мы получаем превосходное решение для рабочих нагрузок корпоративного уровня, таких, как оперативная обработка транзакций (OLTP), высокопроизводительные вычисления (HPC), ускорение работы базы данных, организация хранилищ данных/ регистрация данных, виртуализация и инфраструктура виртуальных ПК, работа с большими объемами данных и гипермасштабируемыми данными, передача сообщений и совместная работа, интерфейс с веб-серверами, передача мультимедийных потоков и предоставление видеопрограмм по требованию (VOD), облачные вычисления и хранение данных на устройстве Tier-0 для сетей SAN и NAS.

Благодаря характеристикам интерфейса SAS и ведущим в отрасли технологиям компании HGST, таким как CellCare, PowerSafe и Data Path Protection, вы получаете следующие преимущества:

Стабильная, высокопроизводительная работа SSD в течение всего срока службы
Долговечность
Масштабируемость
Надежность в эксплуатации
Высокая доступность данных
Управляемость данными на устройстве
Взаимодействие с модернизируемой архитектурой системы

Рабочие нагрузки, которые должны поддерживать твердотельные SAS-накопители корпоративного класса, включают в себя:
Оперативная обработка транзакций (OLTP)
Высокопроизводительные вычисления (HPC)
Ускорение работы базы данных
Организация хранилищ данных и хранение пользовательских данных
Виртуализация и инфраструктура виртуальных ПК
Анализ больших объемов данных и гипермасштабируемых данных
Программы для обмена сообщениями и совместной работы
Интерфейс с веб-серверами
Потоковое мультимедиа и предоставление видеопрограмм по требованию (VOD)
Облачные вычисления
Устройства хранения данных Tier-0 для систем SAN и NAS

SAS (последовательный SCSI) и SATA (последовательный ATA) - стандартные протоколы передачи данных между подключенными устройствами. Они предназначены для обеспечения взаимодействия компьютеров с периферийными устройствами, такими, как контроллеры внешней памяти и жесткие диски. Оба интерфейса (SAS и SATA) имеют долгую историю развития: они впервые появились в 1980-е годы как параллельные интерфейсы, а примерно 10 лет назад были преобразованы в последовательные протоколы в целях дальнейшего повышения производительности. При использовании с контроллером внешней памяти интерфейс SAS или SATA может использоваться как внешний интерфейс серверов, а также как внутренний интерфейс для подключения жестких дисков и SSD. Контроллер может поддерживать множество типов интерфейсов, однако диски имеют только один тип интерфейса - SAS или SATA. Интерфейс не зависит от накопителя информации (например, флеш-память, жесткий диск) или качества компонентов или программно-аппаратных средств внутри диска. С этой точки зрения интерфейсы SAS и SATA ведут себя одинаково.

Давайте рассмотрим теперь основные параметры накопителей

Производительность
Протокол SCSI. Протокол SCSI, используемый интерфейсом SAS, работает быстрее и производит множественные, одновременные операции ввода/вывода данных более эффективно по сравнению с набором команд параллельного интерфейса ATA (SATA).
Увеличение скорости передачи данных - от 6 Гб/с до 12 Гб/с, а затем до 24 Гб/с. Интерфейс SAS позволяет увеличить скорость передачи данных с 6 Гб/с до 12 Гб/с; кроме того, имеется четкий roadmap для дальнейшего увеличения скорости до 24 Гб/с. В настоящее время интерфейс SATA поддерживает скорость передачи данных до 6 Гб/с, при этом, отсутствуют конкретные планы по увеличению скорости в будущем.
Очереди помеченных команд. Большинство накопителей SAS поддерживают очередь команд глубиной 128 (предел протокола – 65 536), что позволяет уменьшить латентность и повысить производительность при высоких рабочих нагрузках. Аппаратная установка очередности команд интерфейса SATA поддерживает только 32 команды.
Сдвоенные порты и многоканальный ввод-вывод. Диски с интерфейсом SAS оснащены сдвоенными портами и поддерживают множество инициаторов в системе хранения данных; таким образом, многоканальный ввод-вывод и балансирование нагрузки позволяют увеличивать производительность. В интерфейсе SATA отсутствует поддержка нескольких инициаторов, и большинство дисков SATA не имеют сдвоенных портов.
Полнодуплексная передача данных. Диски SAS поддерживают полнодуплексный режим (одновременная передача данных в двух направлениях), в то время, как накопители SATA работают в полудуплексном режиме (передача данных в одном направлении).

Масштабируемость
К одному порту можно подключить множество дисков. Интерфейс SAS поддерживает расширитель портов до 255 устройств (двухъярусная структура), таким образом, к одному порту инициатора можно подключить до 65 635 дисков. Интерфейс SATA использует только соединение «точка-точка».
Использование удлиненных кабелей. Использование SAS-устройств обеспечит более удобный процесс расширения ЦОД (центра обработки данных), поскольку они позволяют использовать пассивные медные кабели длиной до 10 м и оптические кабели длиной до 100 м. SATA не позволяет использовать кабели длиной свыше 2 метров.
Масштабируемая производительность. Производительность твердотельных SAS-накопителей в конфигурации RAID является более масштабируемой по сравнению с дисками SATA.
Совместимость с интерфейсом SATA. Контроллеры внешней памяти с интерфейсом SAS поддерживают диски SATA, что обеспечивает ярусное хранение данных с использованием как накопителей SAS, так и SATA в одном массиве. Однако, в свою очередь, SATA не поддерживает диски SAS.

Высокая доступность данных
Сдвоенные порты для обеспечения отказоустойчивости. SAS поддерживает сдвоенные порты, в то время как большинство дисков SATA их не имеет.
Несколько инициаторов. Интерфейс SAS позволяет подключение нескольких контроллеров к набору жестких дисков в системе хранения данных, что обеспечивает их быструю замену и переход на другой ресурс при сбое. Интерфейс SATA не обладает такими возможностями.
Подключение в «горячем» режиме. Диски с интерфейсом SAS и SATA могут подключаться в режиме «горячей» замены.

Взаимодействие с модернизируемой архитектурой системы
Roadmap для расширения функциональных возможностей в будущем. В планах производителей устройств с интерфейсом SAS - увеличение скорости передачи данных до 24 Гб/с и, вероятно, даже выше, в то время как для SATA такой roadmap отсутствует и скорость передачи данных ограничивается текущим значением - 6 Гб/с. Благодаря использованию SAS предприятия могут модернизировать свой парк устройств и переходить на более быстрые диски в будущем, сохраняя при этом совместимость с предыдущими версиями, используемыми в существующей инфраструктуре.
SCSI. Поскольку большинство накопителей, установленных на предприятии, используют набор команд SCSI, интерфейс SAS сохраняет совместимость с системами хранения данных различных поколений.

SSD накопители HGST отличает высокая производительность в течение всего срока службы диска. В них используются инновационные технологии Advanced Flash Management и CellCare, обеспечивающие исключительно высокую скорость в режиме последовательного и произвольного чтения/записи. Твердотельные накопители работают гораздо быстрее по сравнению с жесткими дисками, хотя со временем ячейки флеш-памяти изнашиваются и скорость их работы снижается, особенно с нарастанием количества циклов установки программ/удаления файлов с диска. Технология Advanced Flash Management компании HGST использует традиционный алгоритм нивелирования износа, а также схемы обнаружения и коррекции ошибок, восстановления поврежденных блоков и устранения избыточности данных для увеличения срока службы, надежности и производительности SSD.

HGST CellCare - запатентованная технология производства контроллеров флеш-памяти, позволяющая обеспечить долговечность, производительность и надежность устройств корпоративного класса при помощи экономичных, логических микросхем с высокой плотностью элементов для устройств с флеш-памятью. Технология CellCare заключается в динамическом отслеживании параметров ячеек памяти по мере их износа и использовании технологий прогнозирования для сведения к минимуму износа NAND чипов флеш-памяти путем создания адаптивной обратной связи между флеш-памятью и контроллером. Не менее важным аспектом технологии Cellcare является возможность контролировать эффект старения флеш-памяти и не допускать снижения скорости работы SSD-накопителей по мере увеличения их срока службы. Эта особенность уникальной технологии Cellcare обеспечивает безотказность в работе и высокую производительность в течение всего срока службы именно SSD компании HGST.

Сейчас, когда стоимость хранения данных значительно выросла в связи с изменениями валютных курсов, при выборе компонентов IT-инфраструктуры приходится проявлять изобретательность и идти на компромиссы. На наш взгляд, неоднократно доказанная надежность и высокая производительность в течение всего рока службы, однозначно должны учитываться наряду с другими факторами. Ведь в среднесрочной и долгосрочной перспективе, такое решение окупит себя сполна.

В следующем посте мы продолжим разговор о SSD накопителях и рассмотрим другие преимущества HGST в этой области.

Мы останавливаемся перед выбором: какой вид винчестеров установить. Наиболее популярными являются следующие типы жестких дисков: SAS, SATA и NL-SAS. Эти три вида относятся к самым быстрым носителям информации, на них хранится большая часть данных в мире. Наша статья посвящена первому типу. Мы рассмотрим, что представляют собой SAS-диски, каковы их параметры, и в чем заключается разница между основными типами упомянутых устройств.

Технические характеристики

SAS-диски пришли на смену SCSI-типу. Они стали новым стандартом в хранении информации корпоративного класса. Из трех перечисленных видов SAS-диски считаются наиболее надежными, они способны поддерживать производительность в весьма сложных эксплуатационных условиях. Жесткие диски SASработают намного лучше винчестеров типа NL или SATA. Показателем их надежности выступает такой параметр, как коэффициент ошибок. Он определяет, с какой вероятностью один бит ошибки может возникнуть в медиа-данных. Коэффициент ошибок для винчестеров типа SAS обычно составляет единицу из 10 16 бит. То есть это значит, что вероятность ошибки может возникнуть в одном из десяти квадрильонов бит. Для примера можно сравнить этот показатель со значением ошибки в жестких дисках типа SATA, где он составляет единицу из 10 15 (или на один квадрильон). Как видно, защита SATA-винчестеров тоже довольно высока, однако, когда встает вопрос о защите сохраняемой информации, то разница на один порядок весьма существенна.

SAS-диски производят, придерживаясь более строгих стандартов, чем при разработке других типов винчестеров. Так, данная технология характеризуется средним временем наработки на отказ, составляющим 1,6 миллиона часов, а SATA-технология - 1,2 миллиона. Кроме перечисленных параметров, контроллеры и диски рассматриваемого типа имеют много дополнительных команд, предназначенных для диагностики. Эти функции делают эту технологию более эффективной, чем SATA. Особенно это проявляется в форс-мажорных ситуациях.

NL-винчестеры

Это технология является "новым игроком" на рынке. NL-диски представляют собой гибрид: SATA-винчестер с разъемом типа SAS. То есть скорость, начинка и головка взяты от SATA-технологии, а интерфейс полностью совместим с SAS. NL-технология уступает рассматриваемым дискам в производительности (из-за относительно низкой скорости вращения). Однако она полностью соответствует им в очередности команд, а также многопоточной передаче данных и поддержке нескольких хостов.

Тагированная очередность отправки команд и многопоточная передача

Одновременная координация нескольких комплектов инструкций хранения, а также упорядоченная контроллером хранения информация передается наиболее эффективно. SAS-технология предусматривает несколько полнодуплексных каналов которые обеспечивают быстрый доступ к сохраняемой информации. Одним винчестером SAS-типа можно управлять сразу с нескольких персональных компьютеров без применения свитчей.

Заключение

По сути, технологии SAS и SATA предназначены для различных целей: первая для отказоустойчивости и производительности, а вторая - для обеспечения емкости. Поэтому они не должны конкурировать между собой.

Данная статья призвана объяснить разницу между типами жестких дисков и помочь вам определиться с выбором при покупке выделенного сервера.

SATA - Serial ATA

В настоящее время SATA диски используются на большинстве персональных компьютеров в мире и на бюджетных конфигурациях серверного оборудования. По сравнению с SAS и SSD дисками скорость чтения и записи SATA дисков заметно ниже, но их выбирают из-за больших объемов хранимой информации.

Диски SATA хорошо подойдут для игровых серверов, работа которых не требует частой записи и чтения информации. Также SATA диски целесообразно использовать для следующих целей:

  • потоковые операции, например, кодирование видео;
  • хранилища данных;
  • системы резервного копирования;
  • объемные, но не нагруженные файл-серверы.

SAS - Serial Attached SCSI

Диски SAS изначально разработаны с учетом корпоративных и промышленных нагрузок, что положительно сказывается на их производительности. Скорость вращения SAS дисков вдвое выше, чем у SATA, поэтому их стоит выбирать для задач, которые чувствительны к скорости и требуют многопоточного доступа. Также диски SAS (в отличие от SSD) могут обеспечить надежную и многократную перезапись данных.

Для организации хостинга диски SAS будут оптимальны, так как они могут обеспечить высокую надежность хранения данных. Помимо этого жесткие диски SAS хорошо подойдут для реализации следующих задач:

Единственным недостатком SAS дисков (как и у SSD) является их небольшой объем и высокая цена.

SSD - Solid-state Drive

В последнее время SSD становятся все более и более популярными. SSD не использует для записи магнитные диски, а содержит только микросхемы энергонезависимой памяти, аналогичные тем, что используются в USB-флешках.

В SSD дисках нет движущихся частей, что обеспечивает высокую механическую стойкость, сниженное энергопотребление и высокую скорость работы. В данный момент SSD диски обеспечивают максимально возможную скорость чтения и записи, что позволяет использовать их для любых высоконагруженных проектов.

Главным минусом SSD дисков является то, что они ограничены по объему информации, которую можно перезаписать на диск. Соответственно, если в день ваша система перезаписывает более 20 Гб данных, будьте готовы через некоторое время сменить SSD диск. Кстати цена таких дисков выше, чем у обоих вышеперечисленных типов.

Многие современные CMS при генерации страницы зачастую требуют одновременного обращения к нескольким файлам на диске. Именно для работы с подобными системами SSD диски - идеальный выбор. Использование SSD дисков для нагруженных сайтов является гарантией того, что вы получите максимум скорости чтения данных.

В IT-области существует множество мифов. «От спама можно отписаться», «Два антивируса лучше, чем один», «Серверные жёсткие диски должны быть только фирменными». При замене и расширении парка ЖД нужно учитывать немало нюансов и тонкостей, и без своих предубеждений здесь тоже не обошлось. Какие бывают ЖД для серверов, чем они отличаются, на что нужно обращать внимание, и должны ли они быть с логотипом производителя сервера - об этом читайте под катом.

Если диск установлен в сервер, то он должен удовлетворять жёстким требованиям по:

  • Надёжности . Невосстановимая потеря данных может обернуться многомиллионными убытками и репутационными потерями.
  • Производительности . Серверы априори предназначены для обработки многочисленных запросов.
  • Времени отклика . Пользователи не должны ждать, пока серверный диск «пробудится» и обработает их запросы.
Иными словами, жёсткий диск в сервере должны быть как пионер - всегда готов обрабатывать многочисленные запросы с минимальным уровнем задержки, обеспечивая высокий уровень сохранности данных. В высоконагруженных серверах жёсткие диски годами работают интенсивно и безостановочно.

Существует четыре основных категории (не берем в расчёт SSD, SAS SSD, PCI-e SSD) жёстких дисков:

  • SATA (обычные, «бытовые» SATA) - частота вращения шпинделя 5400 и 7200 об/мин.
  • SATA RAID Edition (SATA RE) - частота вращения шпинделя 7200 об/мин, поддержка команд RAID-контроллера.
  • SAS Near Line (SAS NL) - частота вращения шпинделя 7200 об/мин.
  • SAS Enterprise - частота вращения шпинделя 10 000 или 15 000 об/мин.
Прежде всего, необходимо определиться с интерфейсом подключения - SATA или SAS.

SATA или SAS?

Изначально интерфейс SAS имел более высокую пропускную способность, чем SATA. Но прогресс не стоит на месте, и третье поколение SATA III имеет максимальную пропускную способность на уровне 6 Гбит/сек, как и второе поколение SAS. Однако на рынке уже доступны серверы с SAS-контроллером третьего поколения, с пропускной способностью до 12 Гбит/сек.

Для подключения SAS-дисков сервер должен быть оснащён соответствующим контроллером. При этом обеспечивается обратная совместимость интерфейсов: к SAS-контроллеру можно подключить SATA-диски, а наоборот - нельзя.

Заключение

При выборе жёстких дисков необходимо в первую очередь отталкиваться от задач, которые будет выполнять сервер :
  • Если вам не нужна высокая скорость доступа и надёжность хранения данных, а количество дисков не будет превышать четырёх, то мы рекомендуем ставить диски SATA RAID Edition. Это вариант для недорогих серверов начального уровня, обслуживающих небольшое количество пользователей.
  • Если сервер будет обслуживать базы данных, или количество дисков в массиве будет 5 и более, то лучше выбрать SAS NL. Чаще всего такие диски ставятся в серверы, работающие в компаниях среднего размера: под бухгалтерские системы, CMS, корпоративные репозитории и т.д.
  • А если вам нужна максимальная производительность и/или надёжность хранения данных, например, при обработке финансовых транзакций, то ваш выбор - диски SAS Enterprise. Это носители для высоконагруженных серверов, обслуживающих большое количество пользователей, а также для систем, работающих с наиболее важными данными.
Но главное - не верьте мифам. Вовсе не обязательно покупать диски с таким же логотипом, как на вашем сервере. При грамотном подходе можно существенно сэкономить на апгрейде дисковой подсистемы, ничуть не потеряв в надёжности и скорости работы.

Теги: Добавить метки



Рекомендуем почитать

Наверх