Системы снижения шумов в современных автомобилях. Активное шумоподавление с помощью адаптивного КИХ-фильтра с дополнительной фильтрацией выходного сигнала

Faq 05.09.2019
Faq

Данный пример демонстрирует применение адаптивных фильтров для ослабления акустического шума в системах активного шумоподавления.

Активное шумоподавление.

Системы активного шумоподавления (active noise control) применяются для ослабления распространяющегося по воздуху нежелательного шума с помощью электроакустических приборов: измерительных устройств (микрофонов) и возбудителей сигнала (динамиков). Шумовой сигнал обычно исходит от некоторого устройства, например вращающегося механизма, и имеется возможность измерить шум рядом с его источником. Целью системы активного шумоподавления является создание «анти-шумового» сигнала с помощью адаптивного фильтра, который ослабит шум в определенной тихой области. Эта проблема отличается от обычного адаптивного шумоподавления тем, что: - ответный сигнал не может быть тут же измерен, а доступна только его ослабленная версия; - при адаптации система активного шумоподавления должна учитывать вторичную ошибку распространения сигнала от динамиков до микрофона.

Более детально задачи активного шумоподавления рассмотрены в книге S.M. Kuo и D.R. Morgan, "Active Noise Control Systems: Algorithms and DSP Implementations", Wiley- Interscience, New York, 1996.

Путь вторичного распространения.

Путь вторичного распространения – это путь, который проходит «анти-шумовой» сигнал с выхода динамиков до измеряющего ошибку микрофона, находящегося в тихой зоне. Следующие команды описывают импульсную характеристику пути динамик-микрофон с ограниченной полосой 160-2000 Гц и длиной фильтра равной 0.1 с. Для этой задачи активного шумоподавления мы будем использовать частоту дискретизации равную 8000 Гц.

Fs = 8e3; % 8 КГц N = 800; % 800 отсчетов на 8 КГц = 0.1 секунды Flow = 160; % нижняя частота среза: 160 Гц Fhigh = 2000; % верхняя частота среза: 2000 Гц delayS = 7; Ast = 20; % подавление 20 дБ Nfilt = 8; % порядок фильтра % Создание полосового фильтра для имитации канала с ограниченной полосой % пропускания Fd = fdesign.bandpass("N,Fst1,Fst2,Ast" ,Nfilt,Flow,Fhigh,Ast,Fs); Hd = design(Fd,"cheby2" ,"FilterStructure" ,"df2tsos" ,... "SystemObject" ,true); % Фильтрация шума для получения импульсной характеристики канала H = step(Hd,); H = H/norm(H); t = (1:N)/Fs; plot(t,H,"b" ); xlabel("Время, с" ); ylabel("Значения коэффициентов" ); title("Импульсная характеристика вторичного пути распространения сигнала" );

Определение вторичного пути распространения.

Первой задачей системы активного шумоподавления является определение импульсной характеристики пути вторичного распространения. Этот шаг обычно выполняется перед шумоподавлением с помощью синтезированного случайного сигнала, проигрываемого динамиками, при отсутствии шума. Нижеприведенные команды генерируют случайный сигнал длительностью 3.75 с, а также измеренный микрофоном сигнал с ошибкой.

NtrS = 30000; s = randn(ntrS,1); % синтез случайного сигнал Hfir = dsp.FIRFilter("Numerator" ,H."); dS = step(Hfir,s) + ... % случайный сигнал прошедший через вторичный канал 0.01*randn(ntrS,1); % шум микрофона

Создание фильтра для оценки вторичного пути распространения.

В большинстве случаев для адекватного управления алгоритмом длительность отклика фильтра, оценивающего вторичный путь распространения, должна быть короче самого вторичного пути. Мы будем использовать фильтр 250 порядка, что соответствует импульсной характеристике длиной 31 мс. Для этой цели подходит любой алгоритм адаптивной КИХ- фильтрации, но обычно используют нормализованный алгоритм нахождения минимальной среднеквадратической ошибки (normalized LMS-алгоритм) ввиду его простоты и устойчивости.

M = 250; muS = 0.1; hNLMS = dsp.LMSFilter("Method" ,"Normalized LMS" ,"StepSize" , muS,... "Length" , M); = step(hNLMS,s,dS); n = 1:ntrS; plot(n,dS,n,yS,n,eS); xlabel("Число итераций" ); ylabel("Уровень сигнала" ); title("Идентификация вторичного пути распространения с NLMS-алгоритма" ); legend("Ожидаемый сигнал" ,"Сигнал на выходе" ,"Сигнал ошибки" );

Точность полученной оценки.

Как точно оценивается импульсная характеристика вторичного пути? Этот график показывает коэффициенты настоящего пути и пути, рассчитанного алгоритмом. Только конец полученной импульсной характеристики имеет неточности. Эта остаточная ошибка не навредит производительности системы активного шумоподавления во время ее работы над выбранной задачей.

Plot(t,H,t(1:M),Hhat,t,); xlabel("Время, с" ); ylabel("Значения коэффициентов" ); title("Определение импульсной характеристики вторичного пути распространения" ); legend("Действительная" ,"Оцененная" ,"Ошибка" );

Основной путь распространения сигнала.

Путь распространения шума, который должен быть подавлен, может быть также описан с помощью линейного фильтра. Следующие команды генерируют импульсную характеристику пути источник шума-микрофон с ограниченной полосой 200-800 Гц и имеет длительность отклика равную 0.1 с.

DelayW = 15; Flow = 200; % нижняя частота среза: 200 Hz Fhigh = 800; % верхняя частота среза: 800 Hz Ast = 20; % подавление 20 дБ Nfilt = 10; % порядок фильтра % Создание полосового фильтра для имитации импульсного отклика с % ограниченной полосой Fd2 = fdesign.bandpass("N,Fst1,Fst2,Ast" ,Nfilt,Flow,Fhigh,Ast,Fs); Hd2 = design(Fd2,"cheby2" ,"FilterStructure" ,"df2tsos" ,... "SystemObject" ,true); % Фильтрация шума для получения импульсной характеристики G = step(Hd2,); G = G/norm(G); plot(t,G,"b" ); xlabel("Время, с" ); ylabel("Значения коэффициентов" ); title("Импульсная характеристика первичного пути распространения" );

Подавляемый шум.

Типичная область применения активного шумоподавления – приглушение звука от вращающихся механизмов из-за его раздражающих свойств. Здесь мы искусственно сгенерируем шум, который может поступать от обычного электрического мотора.

Инициализация системы.

Самым распространенным алгоритмом для систем активного шумоподавления является LMS- алгоритм с дополнительной фильтрацией выходного сигнала фильтра перед формированием сигнала ошибки (Filtered-x LMS algorithm). Этот алгоритм использует оценку вторичного пути распространения для расчета выходного сигнала, который разрушительно влияет на нежелательный шум в области датчика измерения ошибки. Опорным сигналом является зашумленная версия нежелательного звука, измеренная вблизи его источника. Мы будем использовать управляемый фильтр с длительностью отклика около 44 мс и шагом подстройки равным 0.0001.

% КИХ фильтр используемый для моделирования первичного пути распространения Hfir = dsp.FIRFilter("Numerator" ,G."); % Адаптивный фильтр реализующий алгоритм Filtered-X LMS L = 350; muW = 0.0001; Hfx = dsp.FilteredXLMSFilter("Length" ,L,"StepSize" ,muW,... "SecondaryPathCoefficients" ,Hhat); % Синтез шума с помощью синусоид A = [.01 .01 .02 .2 .3 .4 .3 .2 .1 .07 .02 .01]; La = length(A); F0 = 60; k = 1:La; F = F0*k; phase = rand(1,La); % случайная начальная фаза Hsin = dsp.SineWave("Amplitude" ,A,"Frequency" ,F,"PhaseOffset" ,phase,... "SamplesPerFrame" ,512,"SampleRate" ,Fs); % Проигрыватель аудио для воспроизведения результатов работы алгоритма Hpa = dsp.AudioPlayer("SampleRate" ,Fs,"QueueDuration" ,2); % Анализотор спектра Hsa = dsp.SpectrumAnalyzer("SampleRate" ,Fs,"OverlapPercent" ,80,... "SpectralAverages" ,20,"PlotAsTwoSidedSpectrum" ,false,... "ShowLegend" ,true);

Симуляция разработанной системы активного шумоподавления.

Здесь мы сымитируем работу системы активного шумоподавления. Чтобы подчеркнуть разницу первые 200 итераций шумоподавление будет отключено. Звук на микрофоне до подавления представляет характерный «вой» промышленных моторов.

Результирующий алгоритм сходится примерно через 5 с (имитационных) после включения адаптивного фильтра. Сравнивая спектры сигнала остаточной ошибки и исходного зашумленного сигнала, можно наблюдать, что большая часть периодичных компонент была успешно подавлена. Однако эффективность стационарного шумоподавления может быть неравномерна по всем частотам. Такое часто бывает в реальных системах, применяемых для задач активной борьбы с шумом. При прослушивании сигнала ошибки раздражающий «вой» значительно снижается.

for m = 1:400 s = step(Hsin); % генерация синусоид со случайной фазой x = sum(s,2); % генерация шума сложением всех синусоид d = step(Hfir,x) + ... % распространение шума через первичный канал 0.1*randn(size(x)); % добавление шума, сопроводающего процесс измерения if m <= 200 % отключение шумоподавления на первые 200 итераций e = d; else % включение алгоритма шумоподавления xhat = x + 0.1*randn(size(x)); = step(Hfx,xhat,d); end step(Hpa,e); % воспроизведение сигнала на выходе step(Hsa,); % спектр исходного (канал 1) и ослабленного (канал 2) сигналов end release(Hpa); % отключение динамиков release(Hsa); % отключение спектроанализатора Warning: The queue has underrun by 3456 samples. Try increasing queue duration, buffer size, or throughput rate.

Самым важным компонентом работы автомобиля является процесс воспламенения смеси топлива и воздуха в цилиндрах двигателя внутреннего сгорания. Двигатели внутреннего сгорания появились довольно давно, и все это время инженеры работали над системой подавления низкочастотных шумов, возникающих при работе машины. Технологии энергосбережения позволили создать более экологически чистые и экономичные автомобили, но проблема шума в кабине все еще осталась. Уменьшение количества цилиндров с более эффективными и более экологически чистыми двигателями снижает частоту и повышает вероятность более интенсивной и раздражающей езды для пассажиров.

Технология активного контроля шума (англ. active-noise-control (ANC)) использует аудиосистему автомобиля для уменьшения нежелательного шума, создаваемого двигателем. Чтобы уменьшить этот шум, инженеры используют активное акустическое управление или ANC для генерации сигналов шумоподавления, которые воспроизводятся на динамиках в кабине автомобиля.

Более внимательный взгляд на систему активного шумоподавления

Активное управление аудио звуками – это методология обработки сигналов, которая уменьшает эффективную амплитуду звука для улучшения отношения сигнал/шум (SNR), что позволяет частично «заглушить» нежелательные шумы. Технология активного контроля шума также еще называют шумоподавлением (англ. audio noise reduction (ANR)). Данная методология основана на когерентной акустике, которая точно воспроизводит исходное звуковое поле во всех его формах. Она использует усилители и микрофоны внутри автомобиля, а также цифровую обработку сигналов (DSP) для подавления шумов. Звук можно описать как волну давления, состоящую из амплитуды и фазы.

Система шумоподавления встраивается в звуковое устройство, излучающее волну с одинаковой амплитудой, но с фазой на 180 ° (инвертированная фаза, также известная как противофаза) сдвинутой относительно исходной волны. Процесс рекомбинации двух волн основан на физическом принципе, называемом деструктивной интерференцией. ANC достигается с помощью схем смешанного сигнала или DSP с алгоритмом управления для анализа формы сигнала звука для генерации усиленной противофазовой волны для преобразователя.

Эти системы все больше полагаются на интегрированные системы (SoC), оснащенные высокопроизводительными стандартными процессорами и программной инфраструктурой. Ресурсы в режиме реального времени необходимы для быстрого внедрения и завершения циклов управления обратной связью, чтобы решение ANC работало должным образом.

Идеальный метод для реализации такого решения использует цифровую обработку сигнала (рисунок выше). Типичная автомобильная система на базе ANC использует четыре или пять сабвуферов звуковой системы и добавляет три-шесть микрофонов. При такой настройке система может уменьшить шум в диапазоне от 30 до 250 Гц (спектр охватывает частоты зажигания четырехцилиндрового двигателя) в пассажирском салоне.

Особенности разработки

ANC генерирует противофазу (180 °), которая идеально подходит к этому источнику помех. Чтобы получить максимально эффективные результаты, система ANC также должна быть расположена достаточно близко к источнику шума, главным образом передаваемого в одном направлении.

Системы ANC используют один из двух основных методов:

  • Адаптивный метод удаления: он основан на одном или нескольких микрофонах для обнаружения шума и генерации противошумовой волны.
  • Метод синтеза: он включает в себя выборку и сохранение ряда шумовых циклов и генерирование сигнала шумоподавления на основе сохраненной информации.

Такая система особенно полезна для таких приложений, как промышленное оборудование, динамические системы и бытовая техника.

На данной схеме блок Dff представляет собой звено задержки поступления звукового сигнала на динамик. Микрофон воспринимает звуковой сигнал и посылает его на фильтр G(ω), после чего происходит смешивание звуков для компенсации.

Система, как правило, строится либо на основании прогнозирования, где когерентный входной звуковой сигнал обнаруживается прежде, чем распространится далее, либо же используется управление с обратной связью, в которой активный регулятор шума пытается преодолеть помехи без входного звукового сигнала. Вариант 1 показан на блок-схеме выше, второй – на блок схеме ниже.

В типичной конфигурации Гарвардская архитектура цифровой обработки сигналов представляет собой ядро системы — она может выполнять математическую обработку и манипулирование реальными сигналами, такими как голос, звук и видео. В приложении для подавления шума цифровая обработка сигнала исследует характеристики формы сигнала входного шума и затем генерирует его противошумовую форму. Поэтому человеческое ухо получает меньше «белого» шума, так как «фильтрация» происходит в реальном или почти реальном времени.

Кодеки необходимы в аудио приложениях, поскольку он может преобразовывать аналоговые сигналы реального мира (например, звук) в цифровые сигналы для обработки микропроцессором и обратно к аналоговым для человеческого уха. Как правило, используют фильтры, работающие по методу наименьших средних квадратов (LMS) или с конечным импульсным откликом (FIR), которые могут изменять коэффициенты во время работы, эффективно решать проблему фактической оценки шума и, таким образом, максимизировать производительность системы в реальных условиях.

Пассивный контроль

Методы управления шумом в основном пассивны и активны с точки зрения контроля. Пассивная техника идентифицирует частотный диапазон шума и увеличивает коэффициент усиления сигнала (голос или музыку) таким образом, чтобы он максимизировал отношение сигнал / шум этой полосы и, в свою очередь, получал более четкую разборчивость сигнала. Пассивная технология не очень сложна в реализации, хотя может потребоваться серия измерений в частотной области. Метод шумового контроля, который считается пассивным, называется «шумовым шлюзом».

Выводы

Управление звуковыми помехами в транспортном средстве задача сложная, так как звук производится многими механическими компонентами, а также при взаимодействии объектов с дорогой и воздухом. Промышленные усилия во многом привели к снижению шума от автомобиля. В то же время были подняты опасения относительно полной тишины транспортных средств — они могут представлять опасность для пешеходов, которые, возможно, не смогут услышать приближающуюся машину.

Технология активного контроля шума довольно эффективна и способна снизить его примерно на 20 дБ.

Вот вы, вы любите тишину? - А я люблю. Сколько даже не саму тишину, а отсутствие внешних раздражителей. Во время учебы, работы нужно сосредоточиться на решаемой проблеме/задаче и сделать это, когда вокруг пляшут домочадцы или по всему офису разрывается телефон, достаточно сложно… Безусловно, бывают такие моменты когда ты с особой страстью кипишь над работой, когда ты уже во влечен в процесс и ничто тебя не может отвлечь. Но что делать когда и так особого желания выполнять работу нет, а тут еще и сосредоточится невозможно? Для себя я нашел выход в лице наушниках с активной системой шумоподавления.

Начнем с того что о наушниках с активной системой шумоподавления я впервые узнал после прочтения вот
, где хабражители активно делились фотографиями и обсуждали свои рабочие места. Автор того треда упомянул о достаточно дорогих наушниках Bose QC-15 (~$500 по СНГ) поэтому была развернута операция по поиску более дешевых альтернатив. В итоге выбор пал на Audio-Technica ANC7b - наушники от известного японского производителя хорошо зарекомендовавшего себя во всем мире.

▐ Технические характеристики

Логично было бы продолжить статью описанием упаковки и комплекта поставки обозреваемого устройства, но в связи с частыми переездами за последние полгода вся комплектация была утеряна и на руках остались только сами наушники и коробка. Изначально в последней можно было найти: жесткий кейс для транспортировки (понятие не имею где я его профукал), съемный кабель (аналогично), батарейку типа ААА, адаптер для использования наушников в самолетах + переходик на 6.3 мм коннектор и пару сменных кабелей (с микрофоном и без).


Чего только стоил комплектный чехол… Ну да ладно, не будем о грустном, последние несколько месяцев я использую наушники с кабелем от Philips, который был нагло отжат вежливо одолжен мне юзером . По случаю передаю привет и обязуюсь вернуть кабель. ;)

▐ Дизайн, конструкция, удобство ношения

При первом знакомстве наушники Audio-Technica ANC7b не произвели на меня каких либо ярких впечатлений. Аскетичный дизайн из-за использования в материалах корпуса исключительно пластика, классическая форма с дуговым креплением, небольшие поскрипывания при сгибании наушников и повороте чашек. Последние имеют две степени свободы: поворот на 90 градусов по вертикальной оси и 45 по горизонтальной.


Механизм регулировки размера оголовья имеет 15 положений с шагом 3 мм. Никаких обозначений нет, поэтому предполагается, что пользователь должен единожды установить нужный размер или же каждый раз ориентироваться по щелчкам, которые издают направляющие при изменении размера.


Чашки наушников имеют средние (по отношению к другим накладным мониторам) размеры. По традиции с наружной стороны расположены логотип производителя, модель наушников и маркировка «левый-правый».


Микрофоны в нижней части чашек – это часть системы активного шумоподавления. Сюда же выведен батарейный отсек, который скрывается за фальшпанелью. Подойдут любые элементы питания типа ААА напряжением до 1.5 В.


На левом «ухе», помимо уже упомянутых элементов, находится выключатель системы АШП. Об активации последней сигнализирует ярко-синий вырвиглазный светодиод. Здесь же находиться разъем для подключения 3.5 мм аудиокабеля, но стоит отметить, что штекер с большим диаметром может не «вписаться» в данный порт.


Кстати, на оси соединяющую правую чашку с оголовьем есть небольшая рельефная точка, благодаря которой можно вслепую определить где правое, а где левое «ухо».


Амбушюры средних размеров, в меру упругие, также как и оголовье покрыты кожзамом. Наушники плотно обхватывают голову, но при этом не причиняют какого-либо неудобства.


Что касается моих личных впечатлений об удобстве, то эти строки я пишу спустя 5 (а может и того больше) часов пребывания в наушниках. За бортом зима, в комнате в районе 20 градусов - уши в комфорте. Летом, конечно, есть небольшой дискомфорт, так как уши потеют, но с другой стороны – покажите мне наушники в которых ваши уши останутся сухими в тридцатиградусную жару?

▐ Звук, совместимость, некоторые аспекты эксплуатации

Для начала не стоит пугаться сопротивления в 300 Ом. Во-первых, это показатель при выключенной системе АШП. К сожалению, значение этого параметра со включенным «шумодавом» производитель не предоставил, но судя по изменению уровня громкости в наушники встроен весьма «бодрый» усилитель.


Во-вторых, учитывая чувствительность в 109 дБ/мВт наушники даже с выключенной фирменной технологией можно использовать в паре со смартфоном или плеером. Но тут стоит учесть, что запаса по громкости не будет. Так, даже для обычного прослушивания музыки приходится выкручивать громкость на максимум. И вообще, для комфортного прослушивания музыки в данных наушниках без «шумодава» стоит обзавестись более серьезным источником, например - .

АЧХ

Что касается самого качества звучания, которое на самом деле является понятием сугубо субъективным и в идеале бы перед покупкой послушать наушники IRL , меня звук чуть более чем устраивает. Я использую наушники преимущественно дома, в паре с внешним ЦАП-ом, так что в обоих режимах не ощущаю нехватки громкости. Причем использую достаточно часто - не менее 3-5 часов в день и зачастую со включенным шумоподавлением (+звуки прибивающих природы или легкая музыка). Такой сет дает возможность полностью абстрагироваться от грохота старичка холодильника, разговоров сожителей и перемещений оных по комнате. В тоже время более громкие разговоры просачиваются, что лично для меня является плюсом.

Если бы не столь громадные размеры (на моей и так далеко не маленькой голове такие наушники смотрятся весьма плачевно), то с удовольствием катался бы с этими наушниками в метро. Суть в том, что АШП лучше всего справляется с нижними частотами, т.е. гул метро отсекает полностью, а женский голос объявляющий станции остается слышим (при условии прослушивании аудиокниги/подкаста или музыки на низкой громкости). Здесь же был замечен один из основных недостатков: за счет использования активной электроники устройство имеет свойство ловить наводки от мобильных телефонов, пусть и периодически, но данный эффект вызывает некий дискомфорт.

▐ Устройство активной системы шумоподавления

А что вообще из себя представляет система шумоподавления? Для начала нужно понимать, что шумоподавление есть как активное , так и пассивное . Последнее - это в основном прерогатива закрытых мониторных наушников. Корпуса чашек таких устройств не содержат никаких отверстий с наружной стороны, а стенки таких наушников обычно достаточно массивные и материал, из которых они сделаны, часто обладает способностью гасить звуковые колебания. Наушники с самым хорошим пассивным шумоподавлением имеют показатели 35-37 дБ.

Активное шумоподавление, в свою очередь, требует внедрения в наушники электроники. Принцип работы данной системы достаточно просто понять, даже если вы прогуливали уроки физики в школе. Звук - физическое явление, представляющее собой распространение упругих волн в определенной среде. Если еще точнее, то звук - это волна. Музыка, грохот отбойного молотка, вопли младенца - все это звуковые волны с которыми мы сталкиваемся повсеместно. Одним из основных явлений присущих волнам является интерференция.

Интерференция волн - взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. (с) Wikipedia
Но каким образом система активного шумоподавления зависит от явления интерференции? - А таким, что данный способ шумоподавления основан на интерференции! Если волны приходят к точке среды (встречаются) в противофазе, то смещение частиц будет разнонаправленным, что приводит к уменьшению амплитуды колебаний, т.е. звуковые колебания поступающие извне гасятся. Из-за ограничений (возможно временных, ведь прогресс не стоит на месте) накладываемых внутренней электроникой «шумодава» полностью компенсировать внешние шумы, к сожалению, не является возможным.


Именно так и работает система АШП. Специальные микрофоны, которые находятся в чашках наушников, улавливают внешние звуки, а встроенная электроника инвертирует их и добавляет в проигрываемую музыку, тем самым убирая внешние шумы.

▐ Внутренности, автономность

В последнее время модно ставить устройствам оценку за их ремонтопригодность, дабы не отставать от трендов проведем препарацию наушников, а заодно и посмотрим, что за магия скрывается в корпусе оных. Отклеиваем амбушюры:


Под тоненьким поролоновым фильтром (на фото отсутствует) находится микрофон системы АШП и динамический излучатель. Для получения объемного звука чашки наушников заполнены поролоном.


В очередной раз убеждаемся, что корпус наушников целиком и полностью изготовлен из пластика. На левой чашке расположены три винта под отвертку CR-VT8 - они удерживают фальш-панель под которой скрывается электроника системы активного шумоподавления.


Дальше-больше: печатная плата овальной формы (по клику на картинку ниже - полноразмер) занимает почти все внутренне пространство левой чашки. Грязь в районе аудиоразъёма слегка портит впечатление, но в целом все хорошо.


С обратной стороны два одиноких электролитических конденсатора и стандартный 3.5 мм TRS-разъем.


В производстве данных наушников использовались серийные компоненты, например, восьминогая микросхема в правой части платы - это MAX660, инвертор напряжения, который может выступать как в роли источника отрицательного напряжения, так и в качестве повышающего преобразователя для усилителя. В левом верхнем углу - ST V324 (14 выводов) - четырехканальный усилитель с THD (коэффициент нелинейных искажений) не более 0.01%. К сожалению, назначение МС находящейся выше установить так и не удалось. И да, синий светодиод я в последствии заменил на теплый ламповый желтый.


Пару слов об автономности. Для работы системы АШП я использую Ni-MH аккумулятор формата ААА. Как вы уже знаете в наушниках я провожу ~2-3 часа на день, соответственно заряжать аккумулятор емкостью 700 мАч приходится раз в две недели. Не понравилось отсутствие какого-либо индикатора заряда - узнать о совсем уж севшем элементе питания можно только посредством периодических похрапываний в ушах, сопровождающихся медленным затуханием светодиода. Также советую следить за выключением шумоподавления, ибо никакой функции автоотключения обнаружено не было.

▐ Цена, итоги

Audio-Technica ANC7b - отличные наушники закрытого типа с активной системой шумоподавления. Со своей основной задачей - отсекать внешние шумы справляется относительно неплохо. Не смотря на скромный дизайн и дешевые материалы корпуса, наушники неплохо собраны, имеют удобную посадку и достойное звучание. Из основных огрехов выделяются: отсутствие индикатора заряда, периодические наводки от сотовых телефонов… Цена, как на мировом, так и на рынке СНГ колеблется в районе 5-7 тысяч рублей (140 - 190 долларов).
Достоинства и недостатки
Система активного шумоподавления
Автономность
Звучание
Отсутствие индикатора заряда/разряда
Наводки от мобильных телефонов

При покупке наушников для улицы и транспорта, одной из важнейших характеристик является степень их шумоизоляции. Но насколько бы она ни была хороша, увы, невозможно изолировать все внешние шумы. Для желающих оценить все мельчайшие детали музыкального произведения в любых условиях были придуманы наушники с активным шумоподавлением, принцип работы которых и будет рассмотрен далее.

В отличие от шумоизоляции, которая сама по себе пассивна и определяется конструкцией наушников, шумоподавление подразумевает воздействие на приходящий из вне шум. Поэтому оно, собственно, и активное

Активное шумоподавление

Активное шумоподавление реализуется за счет специальной электрической схемы, встраиваемой в наушники или располагаемой на кабеле.

Разумеется, такая схема требует дополнительного источника питания, поэтому наушники с активным шумоподавлением всегда снабжены отсеком для батарей или аккумуляторов.


Сложение сигналов с разными фазами

Для понимания принципа активного шумоподавления придется немного погрузиться в понятие фазы. Если речь заходит о взаимодействии двух сигналов, фазы которых отличаются, то в первую очередь стоит рассмотреть два крайних случая (для простоты будем считать, что рассматриваются два одинаковых сигнала):

Случай 1: сигналы синфазны — т.е. оба находятся в одной фазе. Когда два таких сигнала встречаются, то они просто складываются. В каждый момент времени итоговый сигнал будет равен сумме двух исходных.


Случай 2: сигналы противофазны — т.е один сигнал перевернут относительно второго. Такие сигналы будут вычитаться.

Иначе говоря если мы сложим один и тот же сигнал в фазе с ним же в противофазе, то получим полное отсутствие сигнала, т.к. они друг друга полностью нейтрализуют (в идеале ).


Все остальные варианты, находящиеся между синфазностью и противофазностью приводят к частичному подавлению или усилению сигналами друг друга.

К чему это я так долго рассказываю вам о фазе, а вот почему:

А ктивное шумоподавление построено именно на факте взаимоподавления противофазных сигналов .

Как реализуется активное шумоподавление

Идея достаточна проста. В прослушиваемую вами музыку подмешивается шум, который берется из окружающего пространства. Этот шум улавливается встроенными микрофонами. Но фишкой является то, что фаза подмешиваемого шума изменяется на противоположную.

В итоге получается, что в ухе встречаются внешние шумы и шумы, добавленные системой шумоподавления. Из-за противоположности фаз они подавляют друг друга. Вот и всё. Не правда ли гениально?)

Реальность

Конечно, подавить шум на все 100.00% невозможно, мир не идеален. Шум на улице далекоо не такая красивая и простая волнушка. Но в сравнении с пассивным шумоподавлением разница колоссальна.

Для представления возможностей активного шумоподавления, представьте, что работая отбойным молотком настройке вы можете вполне комфортно наслаждаться музыкой, если используете наушники с активным шумоподавлением.

Какие бывают наушники с активным шумоподавлением

На сегодняшний день, наушники с активным шумоподавлением бывают как полноразмерными или накладными, так и обычными затычками.


Для лучшего шумоподавления микрофоны, улавливающие вешние шумы должны быть расположенны непосредственно на самих чашах наушников. А сигнал каждого микрофона должен подмешиваться в свой канал.

Часто активное шумоподавление реализуется в беспроводных наушниках. Это удобно, т.к. питание и часть электроники в них уже имеется, а с современными технологиями не трудно дополнить наушники парой микрофонов и лишней микросхемой.


Однако часто производители, для упрощения конструкции и сокращения затрат на производство, размещают микрофон на пульте провода. Такой вариант хуже, но активное шумоподавление все равно вносит вклад в шумоизоляцию.

Активное шумоподавление для наушников можно реализовать и собственноручно. Вариант схемы и объяснение ее работы будут рассмотрены в одной из следующих статей.

Отличного всем звука!



Рекомендуем почитать

Наверх