Система водяного охлаждения для компьютера — Подробное описание. Водяное охлаждение своими руками: теория и практика

Новости 11.10.2019
Новости

То мы решили написать специальную статью, посвященную системам водяного охлаждения компьютеров . Мы постараемся рассказать обо всех аспектах водяного охлаждения для компьютеров , в частности мы расскажем о том, что такое система водяного охлаждения, из чего она состоит и как работает . Также мы затронем такие популярные вопросы, как сборка системы водяного охлаждения, обслуживание системы водяного охлаждения и многие смежные темы.

Что такое система водяного охлаждения

Система водяного охлаждения - это система охлаждения , которая для переноса тепла использует воду в качестве теплоносителя. В отличии от систем воздушного охлаждения, которые передают тепло напрямую воздуху, система водяного охлаждения сначала передает тепло воде .

Принцип работы системы водяного охлаждения

В системе водяного охлаждения компьютера тепло , вырабатываемое процессором, передается воде через специальный теплообменник , называемый ватерблоком . Нагретая таким образом вода, в свою очередь, переноситься в следующий теплообменник - радиатор , в котором тепло из воды передается воздуху и выходит за пределы компьютера. Движение воды в системе осуществляется с помощь специального насоса , который, чаще всего, называют помпой .

Превосходство систем водяного охлаждения над воздушными объясняется тем, что вода имеет более высокие, чем у воздуха, теплоемкость (4,183 кДж·кг -1 ·K -1 у воды против 1,005 кДж·кг -1 ·K -1 у воздуха) и теплопроводность (0,6 Вт/(м·K) у воды против 0,024-0,031Вт/(м·K) у воздуха). СВО обеспечивает более быстрый и эффективный отвод тепла от охлаждаемых элементов и, соответственно, более низкие температуры на них.

Эффективность и надежность систем водяного охлаждения доказана временем и применением в большом количестве различных механизмов и устройств, нуждающихся в мощном и надежном охлаждении, например двигателях внутреннего сгорания, мощных лазерах, радиолампах, заводских станках и даже АЭС .

Зачем компьютеру водяное охлаждение

Благодаря своей высокой эффективности, используя систему водяного охлаждения можно добиться как более продуктивного охлаждения, которое положительно скажется на разгоне, периоде жизни и стабильности системы, так и более низкого уровня шума от компьютера. При желании также можно собрать систему водяного охлаждения , которая позволит работать разогнанному компьютеру при минимуме шума . По этой причине системы водяного охлаждения в первую очередь актуальны для пользователей особо мощных компьютеров, любителей мощного разгона, а также людей, которые хотят сделать свой компьютер тише , но в тоже время не хотят идти на компромиссы с его мощностью.

Довольно-таки часто можно увидеть геймеров с трех и четырех чиповыми видео подсистемами (3-Way SLI, Quad SLI, CrossFire X) , которые жалуются на высокие температуры работы (более 90 градусов ) и постоянный перегрев видеокарт, которые при этом создают очень высокий уровень шума своими системами охлаждения . Иной раз кажется, что системы охлаждения современных видеокарт проектируются без учета возможности их использования в мультичиповых конфигурациях, что приводит к плачевным последствиям, когда видеокарты устанавливаются вплотную одна к другой - холодный воздух для нормального охлаждения им просто неоткуда черпать. Не спасают и альтернативные системы воздушного охлаждения , ведь всего несколько доступных на рынке моделей обеспечивают совместимость с мультичиповыми конфигурациями. В такой ситуации именно водяное охлаждение способно решить проблему - радикально понизить температуры, улучшить стабильность и повысить надежность функционирования мощного компьютера.

Компоненты системы водяного охлаждения

Компьютерные системы водяного охлаждения состоят из определенного набора компонентов, которые можно условно разделить на обязательные и необязательные, которые устанавливаются в СВО по своему желанию.

К обязательным компонентам системы водяного охлаждения компьютера относятся:

  • ватерблок (минимум один в системе, но можно и больше)
  • радиатор
  • помпа
  • шланги
  • фитинги
  • вода

Хотя данный список и не является исчерпывающим, к необязательным можно отнести такие компоненты как:

  • резервуар
  • термодатчики
  • контролеры помпы и вентиляторов
  • сливные краны
  • индикаторы и измерители (потока, давления, расхода, температуры)
  • второстепенные ватерблоки (для силовых транзисторов, модулей памяти, жестких дисков и т.д.)
  • присадки к воде и готовые водные смеси
  • бэкплейты
  • фильтры

Для начала мы рассмотрим обязательные компоненты, без которых СВО попросту не может работать.

Ватерблок (от англ. waterblock) - это специальный теплообменник , с помощь которого тепло от греющегося элемента (процессора, видео чипа или иного элемента) передается воде . Обычно, конструкция ватерблока состоит из медного основания , а также металлической или пластиковой крышки и набора креплений, которые позволяют закрепить ватерблок на охлаждаемом элементе. Ватерблоки существуют для всех тепловыделяющих элементов компьютера, даже для тех, которым они не очень-то и нужны .

К основным типам ватерблоков можно смело отнести процессорные ватерблоки, ватерблоки для видеокарт , а также ватерблоки на системный чип (северный мост ). В свою очередь, ватерблоки для видеокарт также бывают двух типов:

  • Ватерблоки, закрывающие только графический чип - так называемые «gpu only» ватерблоки
  • Ватерблоки, закрывающие все нагревающиеся элементы видеокарты (графический чип, видеопамять, регуляторы напряжения и т.д.) - так называемые фулкавер (от англ. fullcover) ватерблоки

Хотя первые ватерблоки обычно делались из довольно-таки толстой меди (1 – 1.5 см), в соответствии с современными тенденциями в ватерблокостроении, для более эффективной работы ватерблоков их основания стараются делать тонкими. Также, для увеличения поверхности теплопередачи , в современных ватерблоках обычно применяют микроканальную или микроигольчатую структуру. В тех же случаях, когда производительность не столь критична и не ведется борьба за каждый отыгранный градус, например на системном чипе, ватерблоки делают без изощренной внутренней структуры, иногда с простыми каналами или вообще плоским дном.

Радиатор . Радиатором в системах водяного охлаждения называют водно-воздушный теплообменник, который передает воздуху тепло воды, набранное в ватерблоке. Радиаторы систем водяного охлаждения подразделяются на два подтипа :

  • Пассивные, т.е. безвентиляторные
  • Активные, т.е. продуваемые вентиляторами

Безвентиляторные (пассивные) радиаторы для систем водяного охлаждения встречаются сравнительно редко (например, радиатор в СВО Zalman Reserator) из-за того, что, помимо очевидных плюсов (отсутствие шума от вентиляторов), данный тип радиаторов отличается более низкой эффективностью (по сравнению с активными радиаторами ), что характерно для всех пассивных систем охлаждения. Помимо низкой производительности, радиаторы данного типа, обычно, занимают много места и редко помещаются даже в модифицированные корпуса.

Продуваемые вентиляторами (активные) радиаторы являются более распространенными в компьютерных системах водяного охлаждения так как обладают намного более высокой эффективностью . При этом, в случае использования тихих или бесшумных вентиляторов, можно добиться, соответственно, тихой или бесшумной работы системы охлаждения - основного преимущества пассивных радиаторов. Радиаторы данного типа бывают самого разного размера, но размер большинства популярных моделей радиаторов идет кратным к размеру 120 мм или 140мм вентилятора, то есть радиатор на три 120 мм вентилятора будет обладать размером примерно в 360 мм в длинну и 120 мм в ширину - для простоты, радиаторы такого размера, обычно, называют тройными или 360 миллиметровыми.

Не смотря на то, что редко в каких компьютерных корпусах есть места для установки радиаторов водяного охлаждения большего чем 120 мм размера, для настоящего моддера установить радиатор не составит труда.

Помпа - это электрический насос, ответственный за циркуляцию воды в контуре системы водяного охлаждения компьютера, без которого СВО бы попросту не работала. Помпы применяемые в системах водяного охлаждения бывают как работающие от 220 вольт, так и от 12 вольт. Ранее, когда в продаже редко можно было встретить специализированные компоненты для СВО, энтузиасты, в основном, использовали аквариумные помпы, которые работали от 220 вольт, что создавало определенные трудности так как помпу необходимо было включать синхронно с компьютером - для этого, чаще всего, применяли реле, которое включало помпу автоматически при старте компьютера. С развитием систем водяного охлаждения стали появляться специализированные помпы , например Laing DDC, которые обладали компактными размерами и высокой производительностью , при этом питались от стандартных компьютерных 12 вольт.

Поскольку современные ватерблоки обладают довольно-таки высоким коэффициентом гидросопротивления , что является платой за высокую производительность, то с ними рекомендуется применять специализированные мощные помпы, так как с аквариумной помпой (даже мощной) современная СВО не полностью раскроет свою производительность. Особо гнаться за мощностью, применяя в одном контуре по 2 – 3 последовательно установленные помпы или используя циркуляционный насос от системы домашнего отопления, тоже не стоит так как это не приведет к росту производительности системы в целом, ведь она, в первую очередь, ограничена максимальной теплорассеивающей способностью радиатора и эффективностью ватерблока.

Шланги или трубки , как бы их не называли , также являются одним из обязательных компоненто в любой системы водяного охлаждения, ведь именно по ним вода течет от одного компонента СВО к другому. Чаще всего, в компьютерной системе водяного охлаждения применяются шланги изготовленные из ПВХ, реже из силикона. Несмотря на популярные заблуждения, размер шланга не оказывает сильного влияния на производительность СВО в целом, главное не брать слишком тонкие (внутренний диаметр, которых меньше 8 миллиметров ) шланги и все будет ОК

Фитинги - это специальные соединительные элементы, которые позволяют подключить шланги к компонентам СВО (ватерблокам, радиатору, помпе). Фитинг и вкручиваться в отверстие с резьбой на компоненте СВО , сильно вкручивать их не нужно (никаких гаечных ключей) так как уплотнение соединения чаще всего осуществляется при помощи уплотнительного кольца из резины. Современные тенденции на рынке комплектующих для СВО таковы, что подавляющее большинство компонентов поставляются без фитингов в комплекте. Делается это для того, чтобы пользователь имел возможность самостоятельно подобрать фитинги , необходимые конкретно для его системы водяного охлаждения, ведь существуют фитинги разного типа и под разный размер шлангов. Самые популярные типом фитингов можно считать компрессионные фитинги (фитинги с накидной гайкой) и фитинги типа ёлочка (штуцеры). Фитинги бывают как прямыми, так и угловыми (которые часто идут поворотными) и ставятся они в зависимости от того, как вы собираетесь размещать систему водяного охлаждения у себя в компьютере. Фитинги также различаются по типу резьбы, чаще всего, в компьютерных системах водяного охлаждения встречается резьба стандарта G1/4, но в редких случаях встречаются также резьбы стандартов G1/8 или G3/8.

Также является обязательным компонентом СВО Для заправки систем водяного охлаждения лучше всего использовать дистиллированную воду , то есть воду, очищенную от всех примесей методом дистилляции. Иногда на западных сайтах можно встретить упоминания о деионизированной воде - существенных отличий у нее от дистиллированной нет, разве что производят ее другим способом. Иногда, вместо воды применяют специально приготовленные смеси или воду с различными присадками - существенных отличий в этом нет, поэтому данные варианты мы рассмотрим в рубрике необязательных компонентов систем водяного охлаждения. В любом случае, заливать воду из под крана или минеральную/бутилированную воду для питья крайне не рекомендуется.

Теперь остановимся подробнее на необязательных компонентах для систем водяного охлаждения .

Необязательные компоненты - это компоненты без которых система водяного охлаждения может стабильно и без проблем работать, обычно, они никак не влияют на производительность СВО, хотя в некоторых случаях могут немного ее уменьшить . Основной смысл необязательных компонентов в том, чтобы сделать эксплуатацию системы водяного охлаждения более удобной и красивой или вызывать у пользователя чувство безопасности эксплуатации СВО. Итак, перейдем к рассмотрению необязательных компонентов:

Резервуар (расширительный бачек) не является обязательным компонентом системы водяного охлаждения , несмотря на то, что большинство систем водяного охлаждения всетаки оснащены ими. Достаточно часто для удобной заправки системы жидкостью вместо резервуара применяют фитинг-тройник (T-Line) и заливную горловину. Преимущество безрезервуарных систем в том, что в случае установки СВО в компактный корпус ее можно разместить более удобно. Преимущество систем с резервуаром в более удобной заправке системы (хотя это зависит от резервуара) и более удобном удалении пузырей воздуха из системы. Резервуары встречаются самого разного размера и формы и выбирать их необходимо по критериям удобства установки и внешнего вида.

Cливной кран - это компонент, который позволяет более удобно сливать воду из контура системы водяного охлаждения . В обычном состоянии он перекрыт, но, когда появляется необходимость слить из системы воду, то его открывают. Достаточно простой компонент, который может сильно повысить удобство пользования, а точнее обслуживания , системы водяного охлаждения.

Датчики, индикаторы и измерители. Поскольку энтузиасты, обычно, любят всякие примочки и навороты, то производители просто не могли остаться в стороне и выпустили довольно много различных контролеров, измерителей и датчиков для СВО, хотя система водяного охлаждения может совершенно спокойно (и при этом надежно) работать и без них. Среди таких компонентов встречаются электронные датчики давления и потока воды, температуры воды, контролеры, подстраивающие работу вентиляторов под температуру, механически индикаторы движения воды, контролеры помп и так далее. Тем не менее, по нашему мнению, например, датчики давления и расхода воды имеет смысл ставить только в системы, предназначенные для тестирования компонентов СВО, так как особого смысла с этой информации для обычного пользователя просто нету . Ставить по несколько термодатчиков в разные места контура СВО, надеясь увидеть большой перепад температур, тоже особого смысла нет, так как вода имеет очень высокую теплоемкость, то есть нагреваясь буквально один градус вода «впитывает» большое количество тепла, при этом в контуре СВО она движется с довольно большой скоростью, что приводит к тому, что температура воды в разных местах контура СВО в одно время довольно слабо отличается, так что впечатляющих значений вам не увидеть Да и не стоит забывать, что большинство компьютерных термодатчиков имеют погрешность в ±1 градус.

Фильтр. В некоторых системах водяного охлаждения можно встретить фильтр, подключенный в контур. Его задача состоит в том, чтобы отфильтровывать разнообразные мелкие частицы , попавшие в систему - это может быть пыль которая была в шлангах, остатки пайки в радиаторе, осадок, появившийся от использования красителя или антикоррозионной добавки.

Присадки к воде и готовые смеси. В дополнение к воде, в контуре СВО можно применять различные присадки для воды, некоторые из них защищают от коррозии, другие предотвращают развитие бактерий в системе, а третьи позволяют подкрасить воду в системе водяного охлаждения нужным вам цветом. Существуют также готовые смеси, которые содержат воду в качестве основного компонента с антикоррозионными присадками и красителем. Также бывают готовые смеси в состав которых входят присадки, повышающие производительность СВО, хотя повышение производительности от них незначительное. В продаже также можно встретить жидкости для систем водяного охлаждения, сделанные не на основе воды, а на основе специальной диэлектрической жидкости, которая не проводит электрический ток и, соответственно, не вызовет короткого замыкания при утечке на компоненты ПК. Обычная дистиллированная вода, в принципе, тоже не проводит ток, но, пролившись на запыленные компоненты ПК, может стать электропроводной. Особого смысла в диэлектрической жидкости нет так как нормально собранная и протестированная система водяного охлаждения не протекает и достаточно надежна. Также стоит заметить, что антикоррозионные присадки, иногда, в процессе своей роботы выпадают в осадок мелкой пылью, а красящие присадки могут немного прокрасить шланги и акрил в компонентах СВО, но, по нашему опыту, на это не стоит обращать внимание, так как это не критично. Главное соблюдать инструкцию к присадкам и не лить их сверх меры, так как это уже может привести к более плачевным последствиям. Применять ли в системе просто дистиллированную воду, воду с присадками или готовую смесь - особой разницы нет, а оптимальный вариант зависит от того, что вам необходимо.

Бэкплейт - это специальная крепежная пластина, которая помогает разгрузить текстолит материнской платы или видеокарты от усилия, создаваемого креплениями ватерблока, соответственно, уменьшая изгиб текстолита и шанс угробить дорогостоящее железо. Хотя бэкплейт и не является обязательным компонентом, его можно довольно-таки часто встреть в СВО, некоторые модели ватерблоков идут сразу укомплектованными бэкплейтами, а к другим он доступен ввиде опционального аксессуара.

Второстепенные ватерблоки. Помимо охлаждения водой важных и сильно греющихся компонентов, некоторые энтузиасты ставят дополнительные ватерблоки на компоненты, которые либо слабо греются, либо не требуют мощного активного охлаждения, например. К компонентам, которым водяное охлаждение необходимо разве что для вида, относятся: силовые транзисторы цепей питания, оперативная память, южный мост и жесткие диски. Необязательность данных компонентов в системе водяного охлаждения заключается в том, что, даже если вы и поставите на эти компоненты водяное охлаждение, то никакой дополнительной стабильности системы, улучшения разгона или других заметных результатов вы не получите - связано это, в первую очередь, с малым тепловыделением данных элементов, а также с неэффективностью ватерблоков для этих компонентов. Из четких плюсов установки данных ватерблоком можно выделить лишь внешний вид, а из минусов - повышение гидросопротивления в контуре СВО, увеличение стоимости всей системы (при этом значительное) и, обычно, малая апгрейдопригодность данных ватерблоков.

Помимо обязательных и необязательных компонентов для систем водяного охлаждения также можно выделить категорию так называемых гибридных компонентов. Иногда, в продаже можно встретить компоненты, представляющие собой два или более компонента СВО, соединенных в одно устройство. Среди таких устройств бывают: гибриды помпы и процессорного ватерблока, радиаторы для сво со встроенными помпой и резервуаром, очень распространены помпы, совмещенные с резервуаром. Смысл таких компонентов заключается в уменьшении занимаемого места и более удобной установке. Минусом таких компонентов, обычно, является их ограниченная пригодность к апгрейду.

Отдельно стоит категория самодельных компонентов для систем водяного охлаждения. Первоначально, примерно с 2000 года, все компоненты для систем водяного охлаждения изготавливались или дорабатывались энтузиастами своими руками, ведь специализированных компонентов для СВО тогда попросту не производилось. Поэтому, если человек хотел установить себе СВО, то ему приходилось делать все своими руками. После относительной популяризации водяного охлаждения для компьютеров, компоненты для них начали производить большое количество фирм и сейчас можно без особых проблем купить как готовую систему водяного охлаждения, так и все необходимые компоненты для ее самостоятельной сборки. Так что, в принципе, можно сказать, что сейчас нет необходимости самостоятельно изготавливать компоненты СВО для того чтобы установить на свой компьютер водяное охлаждение. Единственными причинами, по которым сейчас, некоторые, энтузиасты занимаются самостоятельным изготовлением компонентов СВО являются желание сэкономить или попробовать свои силы в изготовлении таких компонентов. Тем не менее, желание сэкономить не всегда удается осуществить, ведь помимо стоимости работы и компонентов изготовляемой детали, также есть затраты времени, которые, обычно, не учитываются людьми, желающими сэкономить, но реальность такова, что времени на самостоятельное изготовление прийдется потратить уйму и результат при этом не будет гарантирован. Да и производительность и надежность у самодельных компонентов, зачастую, оказывается далеко не на самом высоком уровне, так как для изготовления комплектующих серийного уровня необходимо иметь очень прямые (золотые) руки Если решитесь на самостоятельно изготовление, к примеру, ватреблока, то учитывайте данные факты.

Внешняя или внутренняя СВО

Помимо прочих признаков, системы водяного охлаждения делятся на внешние и внутренние. Внешние системы водяного охлаждения, обычно, выполнены ввиде отдельного «ящика», т.е. модуля, который при помощи шлангов подключается к ватерблокам, установленным на комплектующих в корпусе вашего ПК. В корпусе внешней системы водяного охлаждения почти всегда располагается радиатор с вентиляторами, помпа, резервуар и, иногда, блок питания для помпы с датчиками температуры и/или потока жидкости. К внешним системам относятся, например, системы водяного охлаждения Zalman семейства Reserator. Системы, устанавливаемые ввиде отдельного модуля, удобны тем, что для пользователя нет необходимости дорабатывать корпус своего компьютера, но очень неудобны, если вы планируете перемещать свой компьютер даже на минимальные расстояния, например, в соседнюю комнату

Внутренние системы водяного охлаждения, в идеале, располагаются полностью внутри корпуса ПК, но, из-за того, что далеко не все компьютерные корпуса хорошо приспособлены для установки СВО, некоторые компоненты внутренней системы водяного охлаждения (чаще всего радиатор), можно часто увидеть, установленными на внешней поверхности корпуса. К плюсам внутренних СВО можно отнести то, что они очень удобны при переноски компьютера так как они не будут мешать вам и не будут требовать сливать жидкость при транспортировке. Еще одним плюсом внутренних СВО можно назвать то, что при внутренней установки СВО ни в коей мере не страдает внешний вид корпуса, причем при моддинге компьютера система водяного охлаждения может служить отличным украшением корпуса.

К минусам внутренних систем водяного охлаждения можно отнести относительную сложность их установки, по сравнению с внешними, а также необходимость модификации корпуса для установки СВО во многих случаях. Еще одним негативным моментом можно назвать то, что внутренняя СВО добавят вашему корпусу пару килограмм веса

Готовые системы или самостоятельная сборка

Системы водяного охлаждения, среди прочих признаков, также подразделяются по варианту сборки и комплектации на:

  • Готовые системы, в которых все компоненты СВО покупаются в одном наборе, с инструкцией по установке
  • Самодельные системы, которые собираются самостоятельно из отдельных компонентов

Обычно, многими энтузиастами считается, что все «системы из коробки» показывают низкую производительность, но это далеко не так - комплекты водяного охлаждения от таких известных марок, как Swiftech, Danger Dan, Koolance и Alphacool демонстрируют вполне приличную производительность и про них уж точно нельзя сказать, что они слабые, да и данные фирмы являются зарекомендовавшими себя производителями высокопроизводительных компонентов систем водяного охлаждения.

Среди плюсов готовых систем можно отметить удобство - вы покупаете сразу всё, что необходимо для установки водяного охлаждения в одном наборе, да и инструкция по сборке идет в комплекте. Кроме того, производители готовых систем водяного охлаждения, обычно, стараются предусмотреть все возможные ситуации, чтобы у пользователя, например, не возникло проблем с установкой и креплением компонентов. К минусам таких систем можно отнести то, что они не гибкие в плане конфигурации, к примеру, у производителя есть несколько вариантов готовых систем водяного охлаждения и изменить их комплектацию, чтобы подобрать комплектующие лучше подходящие именно вам, вы, обычно, не имеете возможности.

Покупая же комплектующие водяного охлаждения по отдельности вы можете подобрать именно те компоненты, которые, по вашему мнению, лучше всего подойдут вам. Помимо этого, покупая систему из отдельных компонентов, иногда, можно сэкономить, но тут уже всё зависит от вас. Из минусов такого подхода можно выделить некоторую сложность в сборке таких систем для новичков, например, нам доводилось видеть случаи, когда люди, недостаточно разбирающиеся в теме, покупали не все необходимые компоненты и/или несовместимые между собой компоненты и попадали впросак (понимали что что-то здесь не так) только когда садились за сборку СВО.

Плюсы и минусы систем водяного охлаждения

К основным плюсам водяного охлаждения компьютеров можно отнести: возможность сборки тихого и мощного ПК, расширенные возможности по разгону, улучшенная стабильность при разгоне, отличный внешний вид и долгий срок службы. Благодаря высокой эффективности водяного охлаждения, можно собрать такую СВО, которая позволила бы эксплуатировать очень мощный разогнанный игровой компьютер с несколькими видеокартами при относительно низком уровне шума, недостижимом для воздушных систем охлаждения. Опять же, благодаря своей высокой эффективности, систем водяного охлаждения позволяют достичь более высокого уровня разгона процессора или видеокарты, недостижимого с помощью воздушного охлаждения. Системы водяного охлаждения, чаще всего, имеют отличный внешний вид и отлично смотрятся в модифицированном (или не очень) компьютере.

Из минусов систем водяного охлаждения, обычно, выделают: сложность сборки, дороговизну и ненадежность. Наше мнение таково, что эти минусы имеют под собой мало реальных фактов и являются очень спорными и относительными. К примеру, сложность сборки системы водяного охлаждения однозначно нельзя назвать высокой - собрать СВО не сильно сложнее, чем собрать компьютер, да и вообще времена, когда все комплектующие необходимо было дорабатывать в обязательном порядке или делать все компоненты своими руками, давно прошли и на данный момент в сфере СВО практически все стандартизировано и доступно в продаже. Надежность, правильно собранных, систем водяного охлаждения компьютера тоже не вызывает сомнений, как не вызывает сомнения надежность автомобильной системы охлаждения или системы отопления частного дома - при правильной сборке и эксплуатации проблем быть не должно. Конечно, от брака или несчастного случая никто не застрахован, но вероятность таких событий существует не только при применении СВО, а и с самыми обычными видеокартами, жесткими дисками и прочими комплектующими. Стоимость же, по нашему мнению, также не стоит выделять как минус, так как такой «минус» тогда смело можно приписывать всей высокопроизводительной технике . Да и у каждого пользователя свое понимание про дороговизну или дешевизну. О стоимости СВО я хотел бы поговорить отдельно.

Стоимость системы водяного охлаждения

Стоимость, как фактор, является, наверное наиболее часто упоминаемым «минусом», который приписывают всем системам водяного охлаждения ПК . При этом все забывают, что стоимость системы водяного охлаждения сильно зависит от того, на каких компонентах ее собрать: можно собирать СВО, чтобы общая стоимость была подешевле не в ущерб производительности, а можно - выбирать комплектующие по максимальной цене При этом итоговая стоимость похожих по эффективности СВО будет отличатся в разы.

Стоимость системы водяного охлаждения также зависит от того, на какой компьютер ее будут ставить, ведь чем мощнее компьютер, тем, в принципе, и дороже будет СВО для него, так как для мощного компьютера и СВО нужна более мощная. По нашему мнению, стоимость СВО является вполне оправданной на фоне других комплектующих, ведь система водяного охлаждения по факту и является отдельным компонентом, причем, по нашему мнению, обязательным для по-настоящему мощных ПК. Еще одним фактором, который необходимо учитывать при оценки стоимости СВО, является ее долговечность так как, правильно подобранные, компоненты СВО могут служить не один год подряд, переживая многочисленные апгрейды всего остального железа - не многие компоненты ПК могут похвастаться такой живучестью (разве что корпус или, взятый с избытком, БП), соответственно трата относительно большой суммы на СВО плавно распределяется по времени и не выглядит расточительной.

Если же вам очень хочется установить себе СВО, а с финансами напряг и в ближайшее время улучшений не намечается, то никто не отменял самодельные компоненты

Водяное охлаждение в моддинге

Помимо высокой эффективности, системы водяного охлаждения для ПК отлично выглядят, что объясняет популярность использования систем водяного охлаждения в множестве моддинг проектов. Благодаря возможности применять цветные или флуоресцентные шланги и/или жидкости, возможности подсветить светодиодами водоблоки, подобрать комплектующие, которые будут подходить вам по цветовой гамме и стилю, систему водяного охлаждения можно отлично вписать в практически любой моддинг проект, и/или сделать ее основной фишкой вашего моддинг проекта. Использование СВО в моддинг проекте , при правильной установке, позволяет улучшить обзор некоторых комплектующих, обычно скрытых большими воздушными системами охлада.

About sTs

Люблю самоделки. Стремлюсь к здоровому, гармоничному образу жизни. В людях ценю открытость и честность. Своим хочу донести до молодёжи ценность созидательных качеств в человеке. Пусть каждый обретет новые знакомства и получит массу знаний и опыта , которые сделают из него целостную личность ! Подробнее о себе рассказываю в блоге . Продолжая тему повышения производительности игровых систем нельзя не сказать об эффективном охлаждении для нестандартных частот процессоров. Как правило в погоне за высокими частотами и максимальной производительностью многие пользователи уже давно используют компоненты в режимах далеких от штатных. Плюсы и минусы данного метода мы рассматривали в предыдущей рассылке .

Законы Физики.

Естественно, что с ростом тактовой частоты увеличивается температура на всех компонентах, - это законы физики. Слишком высокая температура может стать причиной термического повреждения кристалла процессора. Именно поэтому в современных компьютерах на аппаратном уровне реализован целый ряд защитных механизмов, направленных на то что бы уберечь процессор от повреждения в случае перегрева.

Один из таких механизмов называется Троттлинг (от английского throttling): чем выше температура на кристалле процессора, тем больше машинных тактов он пропускает. Такты пропускаются, соответственно снижается эффективность и производительность – это и есть троттлинг процессора.

Таким образом мы плавно подошли к сути нашей проблемы, с одной стороны нам нужна максимальная производительность нашей игровой системы, с другой стороны необходимо обеспечить максимально эффективное охлаждение и не допустить повышения температуры до уровня, при котором включаются защитные механизмы.


Основательность воздушного охлаждения

Классическим решением данной задачи является использование воздушных систем охлаждения, естественно стандартные кулера идущие в комплекте с процессором не способны эффективно отводить излишки тепла. Именно поэтому многие геймеры, профессионалы в области графики и даже инженеры предпочитают штатным системам более дорогие и производительные кулера от таких вендоров как Zalman , Noctua , Skythe , Cooler Master .

Огромные радиаторы, толстые тепловые трубки, большие вентиляторы – это все конечно отлично, но есть нечто более эффективное . То, что сразу переводит в разряд «настоящих энтузиастов».



Системы Водяного Охлаждения

Системы жидкостного охлаждения (СЖО) или системы водяного охлаждения (СВО) – решение для тех, кто знает цену каждому дополнительному мегагерцу. Качественная СВО способна подарить тишину, несколько сотен дополнительных мегагерц и уважение друзей и коллег

Что же такое эта СВО? Само название говорит за себя. В системе СВО в качестве теплоносителя используется вода. То есть сначала тепло от нагревающих элементов передается напрямую в воду, в отличии от воздушного, где передача происходит сразу в воздух.



Как это работает:

От процессора или графического чипа тепло сначала передается через теплообменник воде. Далее нагретая вода двигается в радиатор, где тепло из водной среды отдается воздуху и отрабатывается во внешнюю среду. Качает же водный поток, как водится, специальный насос – помпа. Весьма стандартная система, которая используется во многих сферах, таких как двигатели внутреннего сгорания (куда уж без нашей любимой автомобильной аналогии). Большим преимуществом выбора СВО объясняется просто, Вода имеет куда более высокий уровень теплоемкости, что позволяет намного эффективнее охлаждать элементы и поддерживать низкий температурный режим.

Какой же сделать выбор?

Сейчас, когда разгон процессоров стал достаточно привычным делом, никто не откажется от повышенных частот для более быстрого выполнения задач, будь то профессиональная деятельность, или компьютерные игры с богатой и тяжелой графикой или высоконагруженными сценами с большим кол-вом персонажей и полигонов. Очевидно, что в таких условиях вопрос о надежной и максимально эффективной системе теплоотвода стоит очень остро. Чем мощнее процессор или графическая карта, тем эффективнее должна работать система охлаждения компьютера. А воздушные кулера, как правило, имеют очень неприятную особенность – вентиляторы при работе в экстремальных режимах, шумят очень сильно и это может вызвать негативные эмоции особенно у пользователей или геймеров в ночное время.


Необслуживаемые СВО

Для тех, кто только начинает свой путь в мире компьютеров существуют необслуживаемые системы водяного охлаждения. Многие именитые производители предлагают готовые и надежные необслуживаемые (замкнутые) системы охлаждения по относительно невысокой цене, например: Corsair Hydro Series (существует несколько вариантов с разными типами радиаторов), Cooler Master Seidon , NZXT Kraken , Silverstone Tundra , да что там говорить, даже компания Intel рекомендует к своим процессорам Intel Core i7 в исполнении LGA 2011 в качестве штатной СО – систему водяного охлаждения от компании Asetek.


А это точно эффективнее?

Эффективность замкнутых систем водяного охлаждения можно оценить на графике приведенном справа.

Из дополнительных преимуществ необслуживаемых систем водяного охлаждения можно назвать освобождение места в пространстве рядом с сокетом для установки центрального процессора, поскольку аналогичные по производительности воздушные кулеры весьма громоздки и часто мешают установке памяти с высокими "рубашками". Снижается нагрузка на подложку системной платы, что может быть критично в случаях, когда компьютер часто транспортируется или отправляется через Транспортные компании.



Кастомные системы:

Но это лишь старт. Безусловно удобное и компактное решение не всегда дает выжать максимум производительности и раскрыть потенциал процессора. Тогда на помощь приходят системы водяного охлаждения, которые собираются по компонентам – “кастомные ”, от англ. custom (custom-made) - изготовленные на заказ, системы водяного охлаждения .

Cложность “кастомной СВО ” может быть просто космической, и ограничивается только количеством денег у энтузиаста. Преимущества такого подхода перед готовыми СВО следующие: более мощная помпа, радиатор большего размера, возможность включить в контур СВО другие компоненты (чипсет, систему питания материнской платы, видеокарту и даже оперативную память). В дальнейшем при замене материнской платы или процессора, можно проапгрейдить систему охлаждения, а не менять ее целиком. Или заменить радиатор на более мощный и тем самым еще увеличить частоты до запредельных значений.

В его состав включены две толстые, но мягкие прокладки, стальная монтажная пластина, винты и инструкция по установке:

С помощью данного набора помпу можно установить в любое удобное место, а демпфирующие прокладки будут способствовать снижению уровня шума.

⇡ Резервуар

Наконец, последним отдельным компонентом системы жидкостного охлаждения EK-Supermacy KIT H30 360 HFX является расширительный бачок (или резервуар) EK-Multioption RES X2 - 150 Basic :

В его комплект поставки входит крепление, винты и заглушки, а также инструкция по установке:

Цилиндрический резервуар высотой 150 мм, диаметром 60 мм и весом 270 граммов выполнен из толстого акрила и прикрыт двумя пластиковыми крышками сверху и снизу:

В верхней крышке одно отверстие с резьбой под фитинг, а в нижней - три, два из которых непосредственно в основании резервуара:


Кроме этого, внутри резервуара установлена дополнительная трубка диаметром 16 мм, играющая роль своеобразного «антициклона», и предотвращающая образование пузырьков воздуха. В инструкции к резервуару подробно описана его установка с помощью входящих в комплект креплений. EK-Multioption RES X2 - 150 Basic можно приобрести не только в составе системы EK-Supermacy KIT H30 360 HFX, но и отдельно за 32,95 евро.

⇡ Совместимость и установка

Установку системы можно начать с закрепления водоблока на процессоре. EK-Supremacy совместим со всеми без исключения современными платформами, а наличие в его комплекте сменных прижимных и усилительных пластин обеспечивает надёжный прижим как к процессорам AMD, так и к процессорам Intel. На платформе с LGA2011 водоблок вообще устанавливается элементарно - даже не приходится вынимать материнскую плату из корпуса системного блока. Нужно всего лишь ввернуть шпильки в отверстия пластины процессорного разъема и равномерно прижать водоблок гайками с насечкой и пружинами:

Никаких инструментов в этом случае не требуется, как не требуется их и для вворачивания во все отверстия компрессионных фитингов.

После этого остаётся разместить все компоненты в удобных местах и соединить их шлангами. Наиболее правильная с точки зрения достижения максимальной эффективности охлаждения последовательность соединения приведена на следующей схеме:

Так как мы собирали EK-Supermacy KIT H30 360 HFX только для проведения тестов, то разместили её рядом с открытым корпусом системного блока:

После прокачки системы и удаления из контура пузырьков воздуха цвет охлаждающей жидкости постепенно менялся с бледно-зелёного (как на фото) на прозрачный зелёный. Кстати, концентрат для хладагента разводится в 900 граммах дистиллированной воды и затем заправляется в систему через, например, отверстие вверху резервуара. Никаких сложностей во время сборки системы жидкостного охлаждения EK-Supermacy KIT H30 360 HFX не возникло.

Системы водяного охлаждения уже много лет используются как высокоэффективное средство отвода тепла от нагревающихся компонентов компьютера.

Качество охлаждения напрямую влияет на стабильность работы Вашего компьютера. При избыточном тепле компьютер начинает зависать и возможен выход из строя перегревшихся компонентов. Высокие температуры вредны для элементной базы (конденсаторы, микросхемы и пр.), а перегрев жесткого диска может привести к потере данных.

С ростом производительности компьютеров приходится использовать более эффективные системы для охлаждения. Традиционной считается воздушная система охлаждения, но воздух обладает низкой теплопроводностью и при большом потоке воздуха создаётся сильный шум. Мощные кулера издают довольно сильный рёв, хотя при этом могут обеспечить приемлемую эффективность.

В таких условиях все более популярными становятся водяные системы охлаждения. Превосходство водяного охлаждения над воздушным объясняется показателями теплоемкости (4,183 кДж·кг -1 ·K -1 для воды и 1,005 кДж·кг -1 ·K -1 для воздуха) и теплопроводности (0,6 Вт/(м·K) для воды и 0,024-0,031Вт/(м·K) для воздуха). Поэтому, при прочих равных условиях, системы водяного охлаждения всегда будут эффективнее воздушных.

В интернете можно найти много материалов по готовым системам водяного охлаждения от ведущих производителей и примеры самодельных систем охлаждения (последние, как правило, более эффективны).

Система водяного охлаждения (СВО) – система охлаждения, в которой для переноса тепла используется вода в качестве теплоносителя. В отличие от воздушного охлаждения, в котором тепло передается напрямую воздуху, в системе водяного охлаждения тепло сначала передается воде.

Принцип работы СВО

Охлаждение компьютера необходимо для отвода тепла от нагретого компонента (чипсета, процессора, …) и его рассеивания. Обычный воздушный кулер снабжен монолитным радиатором, который выполняет обе данные функции.

В СВО каждая часть выполняет свою функцию. Водоблок осуществляет теплосъем, а другая часть рассеивает тепловую энергию. Примерную схему соединения компонентов СВО можно посмотреть на схеме ниже.

Водоблоки могут включаться в контур параллельно и последовательно. Первый вариант предпочтительнее при наличии одинаковых теплосъемников. Можно эти варианты скомбинировать и получить параллельно-последовательное подключение, но наиболее правильным будет соединение водоблоков один за другим.

Отвод тепла происходит по такой схеме: жидкость из резервуара подводится к помпе, а затем перекачивается дальше к узлам, которые охлаждают компоненты ПК.

Причиной такого подключения является незначительный прогрев воды после прохождения первого водоблока и эффективный отвод тепла от чипсета, GPU, CPU. Прогретая жидкость попадает в радиатор и там охлаждается. Затем она снова попадает в резервуар, и начинается новый цикл.

По конструктивным особенностям СВО можно разделить на два типа:

  1. Охлаждающая жидкость циркулирует за счет помпы в виде отдельного механического узла.
  2. Безпомповые системы, в которых используются специальные хладагенты, проходящие через жидкую и газообразную фазы.

Система охлаждения с помпой

Принцип ее действия эффективность и прост. Жидкость (обычно дистиллированная вода) проходит через радиаторы охлаждаемых устройств.

Все компоненты конструкции соединяются между собой гибкими трубками (диаметр 6-12 мм). Жидкость, проходя через радиатор процессора и других устройств, забирает их тепло, а затем по трубкам попадает в радиатор теплообменника, где охлаждается сама. Система замкнутая, и жидкость в ней постоянно циркулирует.

Пример такого соединения можно показать на примере продукции фирмы CoolingFlow. В ней помпа совмещается с буферным резервуаром для жидкости. Стрелки показывают движение холодной и горячей жидкости.

Безпомповое жидкостное охлаждение

Есть системы жидкостного охлаждения, не использующие помпу. В них используется принцип испарителя и создается направленное давление, вызывающее движение охлаждающего вещества. В качестве хладагентов применяются жидкости с низкой точкой кипения. Физику происходящего процесса можно рассмотреть на схеме ниже.

Изначально радиатор и магистрали полностью заполнены жидкостью. Когда температура радиатора процессора становится выше определенного значения, то жидкость превращается в пар. Процесс превращения жидкости в пар поглощает тепловую энергию и повышает эффективность охлаждения. Горячим паром создается давление. Пар, через специальный односторонний клапан, может выходить только в одну сторону – в радиатор теплообменника-конденсатора. Там пар вытесняет холодную жидкость в направлении радиатора процессора, и, остывая, превращается снова в жидкость. Так жидкость-пар циркулирует в замкнутой системе трубопровода, пока температура радиатора высокая. Такая система получается очень компактной.

Возможен другой вариант такой системы охлаждения. Например, для видеокарты.

В радиатор графического чипа встраивается жидкостный испаритель. Теплообменник располагается рядом с боковой стенкой видеокарты. Конструкция изготовлена из медного сплава. Теплообменник охлаждается высокооборотным (7200 об./мин.) вентилятором центробежного типа.

Компоненты СВО

В системах водяного охлаждения используется определенный набор компонентов, обязательных и необязательных.

Обязательные компоненты СВО:

  • радиатор,
  • фитинги,
  • ватерблок,
  • помпа,
  • шланги,
  • вода.

Необязательными компонентами СВО являются: термодатчики, резервуар, сливные краны, контролеры помпы и вентиляторов, второстепенные ватерблоки, индикаторы и измерители (расхода, температуры, давления), водные смеси, фильтры, бэкплейты.

  • Рассмотрим обязательные компоненты.

Ватерблок (англ. waterblock) – теплообменник, передающий тепло от нагревшегося элемента (процессора, видео чипа и др.) воде. Он состоит из медного основания и металлической крышки с набором креплений.

Основные типы ватерблоков: процессорные, для видеокарт, на системный чип (северный мост). Ватерблоки для видеокарт могут быть двух типов: закрывающие только графический чип («gpu only») и закрывающие все нагревающиеся элементы – фулкавер (англ. fullcover).

Ватерблок Swiftech MCW60-R(gpu-only):

Ватерблок EK Waterblocks EK-FC-5970(Фулкавер):

Для увеличения площади теплопередачи применяется микроканальную и микроигольчатая структура. Ватерблоки делают без сложной внутренней структуры если производительность не столь критична.

Чипсетный ватерблок XSPC X2O Delta Chipset:

Радиатор. В СВО радиатором называют водно-воздушный теплообменник, передающий воздуху тепло от воды в ватерблоке. Есть два подтипа радиаторов СВО: пассивные (безвентиляторные), активные (продуваемые вентилятором).

Безвентиляторные можно встретить довольно редко (например, в СВО Zalman Reserator) потому, что данный тип радиаторов обладает более низкой эффективностью. Такие радиаторы занимают много места и их сложно поместить даже в модифицированном корпусе.

Пассивный радиатор Alphacool Cape Cora HF 642:

Активные радиаторы более распространенны в системах водяного охлаждения из-за лучшей эффективности. Если использовать тихие или бесшумные вентиляторы, то можно добиться тихой или бесшумной работы СВО. Эти радиаторы могут быть самого разного размера, но в основном их делают кратными к размеру 120 мм или 140мм вентилятора.

Радиатор Feser X-Changer Triple 120mm Xtreme

Радиатор СВО за компьютерным корпусом:

Помпа – электрический насос, отвечает за циркуляцию воды в контуре СВО. Помпы могут работать от 220 вольт или от 12 вольт. Когда в продаже было мало специализированных компонентов для СВО, то использовали аквариумные помпы, работающие от 220 вольт. Это создавало некоторые трудности, из-за необходимости включать помпу синхронно с компьютером. Для этого применяли реле, включающее помпу автоматически при старте компьютера. Сейчас есть специализированные помпы, обладающие компактными размерами и хорошей производительностью, работающие от 12 вольт.

Компактная помпа Laing DDC-1T

У современных ватерблоков довольно высокий коэффициент гидросопротивления, поэтому желательно применять специализированные помпы, так как аквариумные не позволят современной СВО работать на полную производительность.

Шланги или трубки также являются обязательными компонентами любой СВО, по ним вода течет от одного компонента к другому. В основном применяют шланги из ПВХ, иногда из силикона. Размер шланга не сильно влияет на производительность в целом, важно не брать слишком тонкие (менее 8 мм.) шланги.

Флуоресцентный шланг Feser Tube:

Фитингами называют специальные соединительные элементы для подключения шлангов к компонентам СВО (помпе, радиатору, ватерблокам). Фитинги нужно вкручивать в отверстие с резьбой находящееся на компоненте СВО. Вкручивать их нужно не очень сильно (гаечных ключей не понадобится). Герметичность достиается уплотнительным кольцом из резины. Подавляющее большинство компонентов продаются без фитингов в комплекте. Это делается затем, чтобы пользователь мог сам подобрать фитинги, под нужный шланг. Самый распространенный тип фитингов – компрессионный (с накидной гайкой) и ёлочка (используются штуцеры). Фитинги бывают прямыми и угловыми. Фитинги еще различаются по типу резьбы. В компьютерных СВО чаще встречается резьба стандарта G1/4″, реже G1/8″ или G3/8″.

Водяное охлаждение компьютера:

Фитинги типа ёлочка от Bitspower:

Компрессионные фитинги Bitspower:

Вода тоже относится к обязательным компонентом СВО. Лучше всего заправлять дистиллированную воду (очищенную от примесей методом дистилляции). Используется и деионизированная вода, но существенных отличий от дистиллированной у нее нет, только производится другим способом. Можно применять специальные смеси или воду с различными присадками. Но использовать воду из-под крана или бутилированную для питья не рекомендуется.

Необязательные компонентами являются компоненты, без которых СВО стабильно может работать, и не влияют на производительность. Они делают эксплуатацию СВО более удобной.

Резервуар (расширительный бачек) считается необязательным компонентом СВО, хотя и присутствует в большинстве систем водяного охлаждения. Системы с резервуаром более удобны в заправке. Объем воды резервуара не принципиален, он не влияет на производительность СВО. Формы резервуаров встречаются самые разные и выбирают их по критериям удобства установки.

Трубчатый резервуар Magicool:

Cливной кран используется для удобного слива воды из контура СВО. Он перекрыт в обычном состоянии, и открывается, когда необходимо слить воду из системы.

Сливной кран Koolance:

Датчики, индикаторы и измерители. Выпускается довольно много различных измерителей, контролеров, датчиков для СВО. Среди них встречаются электронные датчики температуры воды, давления и потока воды, контролеры, согласующие работу вентиляторов с температурой, индикаторы движения воды и так далее. Датчики давления и расхода воды нужны лишь в системах, предназначенных для тестирования компонентов СВО, так как эта информация для обычного пользователя просто несущественна.

Электронный датчик потока от AquaCompute:

Фильтр. Некоторые системы водяного охлаждения комплектуются фильтром, включенным в контур. Он предназначен для отфильтровывания разнообразных мелких частиц попавших в систему (пыль, остатки пайки, осадок).

Присадки к воде и различные смеси. Дополнительно к воде можно использовать различные присадки. Некоторые из них предназначены для защиты от коррозии, другие для предотвращения развития бактерий в системе или подкрашивания воды. Выпускают также готовые смеси, содержащие воду, антикоррозионные присадки и краситель. Бывают готовые смеси, повышающие производительность СВО, но повышение производительности от них возможно лишь незначительное. Можно встретить жидкости для СВО, которые сделаны не на основе воды, а использующие специальную диэлектрическую жидкость. Такая жидкость не проводит электрический ток и при утечке на компоненты ПК не вызовет короткого замыкания. Дистиллированная вода тоже не проводит ток, но, если пролившись, попадет на запыленные участки ПК, может стать электропроводной. Необходимости в диэлектрической жидкости нет, потому, что хорошо протестированная СВО не протекает и обладает достаточной надежностью. Важно также соблюдать инструкцию к присадкам. Не нужно лить их сверх меры, это может привести к плачевным последствиям.

Зеленый флуоресцентный краситель:

Бэкплейтом называют специальную крепежную пластину, которая нужна, чтобы разгрузить текстолит материнской платы либо видеокарты от создаваемого креплениями ватерблока усилия, и уменьшить изгиб текстолита, снижая риск поломки. Бэкплейт не является обязательным компонентом, но очень часто встречается в СВО.

Фирменный бэкплейт от Watercool:

Второстепенные ватерблоки. Иногда, ставят дополнительные ватерблоки на слабо греющиеся компоненты. К таким компонентам относятся: оперативная память, силовые транзисторы цепей питания, жесткие диски и южный мост. Необязательность таких компонентов для системы водяного охлаждения заключается в том, что, они не несут улучшения разгона и никакой дополнительной стабильности системы или других заметных результатов не дают. Это связано с малым тепловыделением таких элементов, и с неэффективностью применения ватерблоков для них. Положительной стороной установки таких ватерблоком можно назвать только внешний вид, а минусом является повышение гидросопротивления в контуре и соответственно увеличение стоимости всей системы.

Ватерблок для силовых транзисторов на материнской плате от EK Waterblocks

Кроме обязательных и необязательных компонентов СВО существует еще категория гибридных компонентов. В продаже встречаются компоненты, которые представляют собой два или более компонента СВО в одном устройстве. Среди таких устройств известны: гибриды помпы с процессорным ватерблоком, радиаторы для СВО совмещенные с встроенной помпой и резервуаром. Такие компоненты заметно уменьшают занимаемее ими место и более удобны в установке. Но такие компоненты мало пригодны к апгрейду.

Выбор системы СВО

Различают три основных типа СВО: внешние, внутренние и встроенные. Они различаются расположением по отношению к корпусу компьютера их основных компонентов (радиатор/теплообменник, резервуар, насос).

Внешние системы водяного охлаждения, выполняют в виде отдельного модуля («ящика») , который при помощи шлангов подключен к ватерблокам, которые установлены на комплектующих в самом корпусе ПК. В корпус внешней системы водяного охлаждения практически всегда выносится радиатор с вентиляторами, резервуар, помпа, и, иногда, для помпы с датчиками блок питания. Среди внешних систем хорошо известны системы водяного охлаждения Zalman семейства Reserator. Такие системы устанавливаются в виде отдельного модуля, и их удобство заключается в том, что пользователю не нужно дорабатывать и переделывать корпус своего компьютера. Их неудобство состоит только в габаритах и сложнее становится перемещать компьютер даже на небольшие расстояния, например, в другую комнату.

Внешняя пассивная СВО Zalman Reserator:

Встроенная охлаждающая система вмонтирована в корпус и продаётся в комплекте с ним. Такой вариант является самым простым в обращении, потому, что вся СВО уже смонтирована в корпусе, и снаружи нет громоздких конструкций. К недостаткам такой системы можно отнести высокую стоимость и то, что старый корпус ПК будет бесполезным.

Внутренние системы водяного охлаждения расположены полностью внутри корпуса ПК. Иногда, некоторые компоненты внутренней СВО (в основном радиатор), устанавливают на внешней поверхности корпуса. Достоинством внутренних СВО является удобство переноски. Нет необходимости слива жидкости при транспортировке. Также при установке внутренних СВО не страдает внешний вид корпуса, и при моддинге СВО может отлично украсить корпус вашего компьютера.

Проект Overclocked Orange:

Недостатками внутренних систем водяного охлаждения являются сложность их установки и необходимость модификации корпуса во многих случаях. Также внутренняя СВО прибавляет вашему корпусу несколько килограмм веса.

Планирование и установка СВО

Водяное охлаждение, в отличие от воздушного, требует некоторого планирования перед установкой. Ведь жидкостное охлаждение налагает некоторые ограничения, которые необходимо принять во внимание.

Во время установки нужно всегда помнить об удобстве. Необходимо оставлять свободное место, чтобы дальнейшая работа с СВО и комплектующими не вызывала трудностей. Нужно, чтобы трубки с водой свободно проходили внутрь корпуса и между компонентами.

Кроме того течение жидкости не должно ничем ограничиватся. При прохождении через каждый водоблок охлаждающая жидкость нагревается. Чтобы снизить эту проблему, продумывается схема с параллельными путями охлаждающей жидкости. При таком подходе поток воды менее нагружен, и в водоблок каждого компонента поступает вода, которая не нагрета другими компонентами.

Хорошо известен набор Koolance EXOS-2. Он предназначен для работы с соединительными трубками сечения 3/8″.

При планировании расположения своей СВО рекомендуется сначала начертить простую схему. Начертив план на бумаге, приступают к реальной сборке и установке. Необходимо разложить на столе все детали системы и приблизительно промерять нужную длину трубок. Желательно оставлять запас и не обрезать слишком коротко.

Когда подготовительные работы проделаны, можно начинать установку водоблоков. На задней стороне материнской платы за процессором устанавливается металлическая скоба крепления головки охлаждения Koolance для процессора. Эта скоба крепления комплектуется пластмассовой прокладкой, для предотвращения замыкания с материнской платой.

Затем снимается радиатор, прикреплённый к северному мосту материнской платы. В примере используется материнская плата Biostar 965PT, у которой охлаждение чипсета происходит с помощью пассивного радиатора.

Когда радиатор чипсета снят, нужно установить элементы крепления водоблока для чипсета. После установки этих элементов материнскую плату ставят снова в корпус ПК. Не забывайте удалять с процессора и чипсета старую термопасту перед нанесением тонким слоем новой.

После этого осторожно устанавливаются водоблоки на процессор. Не прижимайте их с силой. Применяя силу вы можете повредить комплектующие.

Потом проводятся работы с видеокартой. Необходимо удалить имеющийся на ней радиатор и заменить его водоблоком. Когда водоблоки установлены, можно подсоединить трубки и вставить видеокарту в слот PCI Express.

Когда все водоблоки установлены, следует подсоединить все оставшиеся трубки. Последней подключается трубка, ведущая к внешнему блоку СВО. Проверьте правильность направления движения воды: охлаждённая жидкость должна сначала поступать в водоблок процессора.

После выполнения всех этих работ вода заливается в резервуар. Наполнять резервуар нужно только до уровня, который указан в инструкции. Внимательно смотрите за всеми креплениями и при малейших признаках протечки, немедленно устраните проблему.

Если все правильно собрано и не возникло протечек, нужно прокачать охлаждающую жидкость для удаления пузырьков воздуха. Для системы Koolance EXOS-2 нужно замкнуть контакты на блоке питания ATX, и подать питание водяному насосу, не подавая питание на материнскую плату.

Пусть система немного поработает в таком режиме, а вы осторожно наклоняйте компьютер то в одну, то в другую стороны, чтобы избавится от пузырьков воздуха. После выхода всех пузырьков добавьте охлаждающей жидкости, если потребуется. Если пузырьков воздуха больше не видно, то можно запускать систему полностью. Теперь вы можете протестировать эффективность установленной СВО. Хотя водяное охлаждение для пк еще является редкостью для обычных пользователей, его преимущества неоспоримы.

Как полностью cвоими руками сделать систему водяного охлаждения компа


все в рабочем состоянии

Современные процессоры, графические или основные, становятся все мощнее. С прилагающимися кулерами, температура даже в простое может превышать 60 градусов. А как шумят вентиляторы! Поэтому появилось выражение:»Видеокарта пошла на взлет”))
Но есть альтернативное решение.

Инструкция

Уровень сложности: Непросто

Что вам понадобится:

  • Лист меди/алюминия, толщиной 1мм
  • Клей момент, нужен по-любому, может пригодиться и
  • Герметик
  • антенны от старых (или новых) радиоприемников
  • шланг ПВХ
  • аквариумная помпа
  • бутылка
  • монитор с помойки (ЭЛТ)

1 шаг

Садимся за стол.
Замеряем извлеченный из компа (будьте осторожны) процессор линейкой. Прикидываем размер будущего водоблока, он должен покрывать всю крышку процессора, но излишек большим быть не должен.
Допустим, 4см на 4см.

2 шаг

Разбираем старый монитор, в нем есть разные радиаторы, выберите самый близкий к размеру процессора. Помните, лучше излишек, чем недостаток. В радиаторе есть дырочка для болта, которым крепится транзистор. Изнутри ее залейте клеем, снаружи обмажьте термопастой (не в процессе сборки, конечно)) если размеры радиатора позволяют, можно вкрутить туда тот болт, обмазав клеем, процессор будет не на нем стоять, а на свободном месте). Свободное место зашкурить на доске самой мелкой шкуркой.

3 шаг

Из листа металла вырезаем крышку для радиатора, загибаем «крылышки”, которые будут прикрывать бока радиатора. «Крылышки” рисовать с учетом высоты ребер радиатора. Вырезаем, загибаем (в тисках под 90 гр), подставляем к радиатору, т.е. днищу. Вместо радиатора, если не нашли, можно использовать такую же крышку, только высота будущего водоблока должна быть минимальной.

4 шаг

Таким же образом выполняем детали водоблоков GPU , северного моста, только для них можно обойтись и без радиаторов, для видеокарты можно днище чуть поцарапать изнутри.
Вкладываем детали друг в друга, закрепляем в таком положении тисками,заливаем швы клеем, оставив маленькую дырочку, размер ее не принципиален, но чем меньше, тем лучше. Изнутри швы можно промазать герметиком)))

5 шаг

Для наглядности ребра… гм… в другой проекции

После высыхания деталей (через двое суток) берем антенну, разламываем сильным раздвижением. Самую толстую трубку раскусываем: если короткая, то на 2 части, если длинная, то на 4 (кусачками раскусываем, а не зубами).
Берем сверло по толщине трубки, сверлим в CPU -водоблоке 3 отверстия насквозь, кроме последнего ребра. См. картинку. Теперь замазываем среднюю дырочку клеем, и ту, размер которой не принципиален. Еще раз промазываем швы.

6 шаг

Высохло? Вставим трубки в боковые дырочки, обмажем клеем. То же самое с другими водоблоками.
Изготовляем крепления под сокеты, чтобы плотно прижималось.

7 шаг

Гыг-гыг

Отрежем у бутылки горловину, вставим туда погружной фильтр, иначе помпу. Крепим 5-мм-е шланги, думаем: не хватает радиатора. От печек, покупные брать не будем: сделаем сами!
Остался радиатор от процессора. Еще 3 подобных берем у друзей, если будем разгонять, или 2, если не будем.

8 шаг

Место на радиаторе, где лежит проц, закрываем крышкой, похожей на крышку от чипсета, но с четырьмя лепестками. Заливаем, сохнет, сверлим, вставляем – все по старому сценарию.

9 шаг

Собираем накоНЕЦ!
У меня такая схема: помпа в бутылке – радиатор♣ – радиатор – радиатор♣ – северный мост – CPU – помпа в бутылке.
♣ – вентилятор, все от 5 вольт

10 шаг

Смотрим температуру: при 20% разгоне 4 пня выше 70 не поднималась (сейчас разгон убран).

  • Все, что вы делаете, вы делаете на свой страх и риск
  • Протестируйте систему перед установкой
  • Воду можно заливать дистиллированную, но у меня год вода из-под крана крутится
  • Ни в коем случае не забывайте про щель, размер к-й не принципиален, ни в одном водоблоке, и в радиаторах, и не забывайте ее залить после просверливания дырочек.
  • Один радиатор лучше поставить между северным мостом и CPU.


Рекомендуем почитать

Наверх
Наименование технических характеристик EK-Supermacy KIT H3O 360 HFX
Радиатор EK-CoolStream RAD XTX 360 и вентиляторы GELID Silent 120
Размеры радиаторов (ДхШхВ), мм 400х130х64
Вес, г 1496
Материал радиатора медь, акриловое покрытие
Объём жидкости, мл ~600
Гарантированный срок работы без возникновения коррозии, лет 5
Количество вентиляторов, шт. 3
Типоразмер вентиляторов, мм 120х120х25
Номинальное напряжение, В 12
Максимальная сила тока, А 0,12
Скорость вращения вентиляторов, об/мин 1600
Статическое давление, мм водяного столба 1,7
Воздушный поток, CFM н/д
Уровень шума, дБА 25,8
Количество и тип подшипников вентиляторов 1, гидродинамический
Время наработки подшипника на отказ, час 50 000
94,95 + 5,95 x 3
Универсальный водоблок для процессора EK-Supremacy
Размеры (ДхШхВ), мм н/д
Вес, г н/д
Материал водоблока медь, акрил
Крышка водоблока матовая полупрозрачная
Возможность установки блока охлаждения на материнские платы с разъёмами LGA 775/1155/1156/1366/2011
Socket AM2(+)/AM3(+)/FM1
Стоимость при отдельной покупке, € 59,95
Помпа EK-DCP 4.0
Размеры (ДхШхВ), мм 75х54x66
Вес, г 670
Напряжение питания, В 12,0 (±10%)
Сила тока, А 1,8 (±10%)
Потребление, Вт 18 (±10%)
Производительность, л/час 800 (±10%)
Высота подъема жидкости, м 4,0 (±10%)
Развиваемое давление, бар н/д
Срок службы подшипника помпы, час 50 000
Температура жидкости, o C 25
Стоимость при отдельной покупке, € 44,95
Дополнительно
Расширительный бачок EK-Multioption RES X2 - 150 Basic
(150х60 мм, 160 мл, 270 г, € 32,95)
Хладагент (концентрат) EK-Ekoolant UV Blue
(антикоррозионный, нетоксичный, светящийся в ультрафиолете, объём 100 мл, 5 лет эксплуатации)
Шланг TUBE Masterkleer
(длина 2 м, внешний диаметр 13 мм, внутренний диаметр 10 мм, € 2,78)
Диаметр G-резьбы, дюйм 1/4
Фитинги EK-PSC, 8 шт. (€ 3,95x8)
Винты для вентиляторов, инструкции по сборке и установке, термопаста Gelid GC-Xtreme, крепление для помпы EK-DCP mounting plate KIT (€ 4,96)