Самодельный драйвер для фонарика. Экономическая целесообразность применения "драйвера" в светодиодном фонаре

Для Windows 12.07.2019
Для Windows

Этот фонарик был куплен на EBAY около 4-5 лет назад. Ссылка на продавца не сохранилась, да и врядли он еще продает этот товар. Но и сейчас я неоднократно вижу на многих торговых площадках братьев-близнецов этого фонарика, поэтому мне кажется этот обзор еще актуален.

Тем более принципы доработки этого фонарика можно применить и к другим подобным изделиям.

Фонарик верой и правдой отслужил мне несколько лет.

Светодиод я не могу опознать. Что-то маленькое, с низким тепловыделением, но достаточно яркое.

Я не пользовался им особенно интенсивно и он меня устраивал. В не было никаких ненужных мне режимов. Кнопка выключения в торце, как мне нравится. Есть уплотнительные резинки. Изначально он работал на трех элементах ААА. Потом у меня появились LiIon аккумуляторы 18650 и я попробовал запихнуть в фонарик такой элемент.

Как ни странно, он без проблем поместился. Почему я решил его разобрать и доработать? Просто мой маленький сын как-то вытащил мой другой фонарик, играл с ним целый день и в нем сгорел от перегрева светодиод. Я разобрал тот фонарик и увидел что светодиод установлен так что нет никакого теплоотвода и вообще нет драйвера. Ужас! Поэтому я решил глянуть как устроен герой моего сегодняшнего обзора. Не хотелось бы чтобы если вдруг придется им интенсивно воспользоваться он подвел в самое неподходящее время. Придется разбирать.

Выключатель разбирать незачем, а вот ту обойму в которой находится светодиод и драйвер придется посмотреть.

Видно что эта обойма металлическая, что уже неплохо. Мне попадались фонарики у которых эта деталь была из пластмассы.

Видно что внутри большое отверстие и плата светодиода касается обоймы только своими краями, площадь соприкосновения небольшая и без термопасты.

Приподнимаем плату светодиода. А где же драйвер?

Драйвер состоит из контактной платы и куска провода. Да уж, китайцы видно сделали ставку на надежность

На контактной площадке есть пружина. Вот почему был такой запас в размерах и элемент 18650 без проблем поместился в корпус.

Не могу налюбоваться на лаконичный китайский драйвер перед тем как отправить его в помойку.

По хорошему, поменять бы эту обойму на такую, чтобы внутри не было такой дырки, чтобы плата светодиода полностью прилегала ко всей поверхности для лучшего теплоотвода.

Но токарного станка у меня нет, а заказывать токарю на заводе изготовление этой детали нерентабельно, проще купить другой фонарик, цена будет сопоставима. Поэтому решаю здесь оставить все как есть, только улучшить контакт и помазать перед сборкай контактирующие поверхности термопастой.

Порывшись в своих закромах нахожу настоящий драйвер. Наверно это не самый лучший экземпляр, но он реально работает и он у меня уже есть, не нужно заказывать и ждать посылки. Вот он, красавец.

Тоже есть пружинка, это обязательно нужно, силиконовые провода и 3 режима.

Новый драйвер вошел в обойму плотно, с натягом, как здесь и был.

Чуть повредил дорожку на драйвере. Сам виноват. Пришлось соединить проволочкой. Работало бы и без нее, но припаял для надежности.

Заодно решил заменить светодиод на что-то более интересное. В закромах выкопал следующие:

Первый слишком большой, второй мощнее, но греется как печка. Выбираю третий, СREE XP-E.

Warm White / Cold White
LED Emitter: 1-3W
Model Type: CREE XPE LED
Lumens: 328Lumens/ 3W
DC Forward Voltage (VF) : 2.8-3.6Vdc
DC Forward Currect (IF) : 350-1000mA
Beam Angle: 115 degrees
Lens color: water clear
PCB board: Diameter 20mm base
Resin (Mold): Silicone Resin
Certificate: CE&ROSH
LifeSpan Time: > 50,000 hours
Power: 1W-3W
Model Name: CREE XPE
Emitted Color: Blue
Wavelength: 470-480nm
Brightness: 60LM~70LM


Maximum Pulse Voltage: 3.8V
Maximum Pulse Current: 1200mA
LED Viewing Angle: 115 degree
Diameter: 20mm
Usage: House/Street/Architecture Illumination
Power: 1W/3W
Model Name: CREE XPE
Emitted Color: Green
Wavelength: 520nm-530nm
Brightness: 90LM~100LM
DC Forward Voltage (VF): 3.2V-3.6Vdc
DC Forward Current (IF): 350mA~1000mA
Maximum Pulse Voltage: 3.8V
Maximum Pulse Current: 1200mA
LED Viewing Angle: 115 degree
Diameter: 20mm

Вот он крупнее.

А вот тот что стоял изначально. Может кто может его опознать?

Промазываю термопастой места соприкосновения обоймы и платы светодиода. Врядли это решит проблему кардинально, но чуть-чуть но это должно улучшить охлаждение светодиода. Чуть-чуть термопасты и на резьбу по которой обойма вкручивается в корпус фонарика для улучшения теплоотвода на корпус. Собираем.

Диаметр кристалла у светодиода CREE меньше чем у того что стоял раньше и он больше выступает вперед. Чтобы пучок света был без темного пятна в центре нужно чуть отодвинуть отражатель от светодиода. Но так как плата светодиода прижимается к теплоотводящей обойме самим отражателем, приходится подложить под отражатель фоторпластовую шайбочку.

Проверяем – работает. Яркость сопоставима с яркостью того светодиода что стоял изначально. Но ладно, пусть уж остается CREE. Надеюсь не перегреется…

Кнопка работает как и положено, включает-выключает. Если не нажимать на кнопку до конца, а только чуть-чуть придавливать, переключается режим работы фонарика. Режимов всего 3: полная яркость, половинная яркость и строб. Режима SOS, слава Богу, нет. Он мне точно не нужен. Я бы и от строба отказался, тем более что мне встречалась информация по перешивке таких драйверов. Но подумав, решил строб оставить, а вдруг пригодится?

Вот видео работы фонарика после доработки:

На видеосъемке видна модуляция света, результат работы драйвера. Так и должно быть, глазом это не видно, только на видео.

Здесь можно увидеть как работает фонарик в режимах полной и половинной яркости, а также в режиме строба.

Вывод: фонарик стоил очень недорого, имеет хороший прочный конструктив и хороший потенциал для доработки. После модернизации его эксплуатационные качества улучшились и теперь он вполне соответствует моим запросам.

Как известно диод - это токовый прибор, питать его нужно постоянным током, а не напряжением. Светодиоды – тоже диоды, и их тоже нужно питать стабильным током. При стационарной установке светодиода проблема его питания легко решается с помощью резистора, который задает ток через светодиод. Рассчитать номинал резистора помогает закон Ома: R=(Uпит-Uпад)/I , где Uпит – напряжение источника питания в вольтах, Uпад – напряжение, которое падает на светодиоде (примерно 3-3,5В, зависит от тока через светодиод), а I – желаемый ток через светодиод в амперах. Далее подбирается резистор ближайшего номинала, который есть в наличии и все хорошо работает. При больших токах резистор будет сильно греться, так что стоит его брать по мощнее.

Минусом стабилизатора на резисторе является неспособность реагировать на изменение напряжения питания (ток через светодиод и как следствие его яркость будут падать по мере разряда батареи), а также никому не нужная рассеиваемая мощность на резисторе. Для решения этой проблемы существуют так называемые драйвера светодиода (стабилизаторы тока). Стабилизаторы тока бывают повышающими (Boost) и понижающими (Buck). Boost стабилизаторы используются, когда напряжение на батареях меньше, чем падение напряжения на светодиоде, а Buck – когда напряжение на батарея больше падения на светодиоде.
При проектировании своего «неубиваемого» фонарика я задумал использовать параллельную связку из литиевых аккумуляторов или 3шт. АА батарейки (т.е. питающее входное напряжение драйвера должно быть в пределах 3-4,5В). Для этой задачи необходимо использовать Buck драйвер, но при этом не используется около 20% запасенной энергии в батареях! Эти 20% можно выжать, вставив в схему еще и Boost драйвер, который будет включаться, когда для Buck драйвера будет слишком низкое напряжения питания. Все это очень муторно и громоздко, 2 драйвера + компаратор или микроконтроллер для переключения. Так дело далеко не зайдет. Почитав раздел светотехники на speleo.ru открыл для себя Boost/Buck стабилизатор с нужным мне диапазоном питающих напряжений и недурной эффективностью (достижимой при вдумчивой намотке индуктивности). Эта микросхема следит за питающим напряжение и автоматически переключает встроенные Boost/Buck драйвера. Силовые ключи в мостовой схеме интегрированы в саму микросхему, и позволяют коммутировать токи до 1А. Схема включения была взята из и немного модифицирована:


Конденсаторы С3,С4 – танталовые в СМД исполнении 68мкФ, С1 ,С2 ,С5 – керамические по 0,1мкФ. С намоткой индуктивности я связываться не стал, поэтому купил взял SUMIDA CDRH5D28RNP-5RØN на 5мкГн. Как видно, микросхема драйвера имеет 2 «канала», которые можно включать по отдельности или вместе с помощью высокого логического уровня на выводах EN1 , EN2 . Токи «каналов» задается с помощью 2-х резисторов R1 , R2 которые рассчитывается по формуле R1=3580*0.8/I1 , R2=3580*0.8/I2 . Главное, чтобы суммарный ток «каналов» был меньше 1А, иначе есть хорошая вероятность спалить внутренние ключи. Далее по задумке, в фонарике будет 2 режима, «ходовой» и «мощный» с соответствующими токами через диод 0,2А и 1А (мощный режим достигается путем включения 2-х «каналов» по 0,2А и 0,8А одновременно). То есть резистор R1 , задающий «ходовой» режим должен быть номиналом 15кОм, а R2 – 3,9кОм. Переключатся режимы будут с помощью тактовой кнопки, герметизированной кусочком резины и прижимной пластиной. То есть для этого нужно повесить еще микроконтроллер, который будет считывать нажатия кнопки и переключать режимы свечения диода. Включение/выключение фонаря будет производиться с помощью длительного (2с) удержания кнопки. А переключение «ходового» и «мощного» режима будет с помощью короткого нажатия кнопки (0,5с). Полная схема устройства с микроконтроллером:


Микроконтроллер взял тот, который был ближе всего под рукой. Им оказался в SO-14 исполнении. Прошивка его тривиальна, кроме обработки нажатия клавиши, где учитывается время удержания. Когда фонарик выключен – микроконтроллер переходит в Power-Down режим, и потребляет всего 0,1мкА (LTC3454 в SHUTDOWN режиме потребляет тоже всего ничего – 1мкА) и ощутимо подсаживать аккумулятор не будет. Также добавил еще один элемент, конденсатор С6 – 0,1мкФ на питании микроконтроллера.

    #include

    #include

  1. #define EN1 2

    #define EN2 3

  2. #define KEY 2

  3. unsigned char mode= 0 ;

    unsigned char sleep_flag= 1 ;

  4. void pause (unsigned int a)

    { unsigned int i;

  5. for (i= a; i> 0 ; i-- )

  6. void set_mode(void )

    if (mode== 0 ) PORTA&= ~((1 << EN1) | (1 << EN2) ) ;

    if (mode== 1 ) PORTA= (1 << EN1) ;

    if (mode== 2 ) PORTA= (1 << EN1) | (1 << EN2) ;

  7. ISR (INT0_vect)

    { int count;

  8. count= 0 ;

    count= count+ 1 ;

  9. if (count== 1000 ) {

  10. if (mode== 1 ) mode= 2 ;

    else if (mode== 2 ) mode= 1 ;

  11. while ((PINB& _BV(KEY) ) == 0x00 )

    count= count+ 1 ;

    if (count== 9000 ) {

    if (mode== 0 ) mode= 1 ;

    else {

    mode= 0 ;

    sleep_flag= 1 ;

    set_mode() ;

  12. while ((PINB& _BV(KEY) ) == 0x00 )

    set_mode() ;

  13. return ;

  14. int main(void )

    DDRB= 0x04 ; //PB2 как вход

    PORTB= 0x04 ;

  15. DDRA= 0x0c ; //PA2,PA3 как выхода

  16. pause(1000 ) ; //Пауза

  17. GIMSK= (1 << INT0) ;

    MCUCR= (0 << ISC00) | (0 << ISC01) ; //Прерывание по низкому уровню на PB2

    MCUCR|= (1 << SM1) | (0 << SM0) | (1 << SE) ; //Разрешить power-down режим

    sei() ; //Разрешить прерывания

Первая часть про тюнинг и ремонт фонаря, вводная. Тут будут рассмотрены общее устройство среднестатистического фонаря, параметры мощных светодиодов и чуток нудной математики с ними связанные.

Итак, у вас есть светодиодный фонарик, но он сгорел или не устраивает по якости, или вы хотите его переделать в оружейный. Какие у вас есть варианты? Давайте разберёмся.

Конструкция сферического фонаря в вакууме.

Подавляющее большинство фонарей состоят из следующих частей:

  1. корпус - обычная трубка с резьбой на концах;
  2. батарейка - живёт внутри корпуса;
  3. торцевая кнопка - вкручивается в корпус на резьбе служит для включения фонаря. Иногда фонарь может комплектоваться вторым задником с выносной кнопкой;
  4. головка фонаря - вкручивается в корпус, имеет защитное стекло впереди. Иногда эта деталь бывает разборной (как на фото, из двух частей), иногда нет;
  5. светоизлучающий элемент - объединенный в один блок светодиод, формирователь пучка света, теплоотвод светодиода и драйвер светодиода. Иногда выпускается зацело с головкой фонаря.

Светоизлучающй элемент.

Эта самая сборка может быть разного исполнения. Очень распространены головки для фонаря Ultrafire WF-502B, они даже продаются разных видов, разной мощности, с кучей функций и т.п.
Например, на fasttech.com . Фонари с элементом этого типа хороши тем, что можно купить несколько модулей для разных задач и просто менять их.

Светодиод пока что оставим в покое, он заслуживает отдельного рассмотрения ниже, драйвер в принципе тоже, а вот оставшиеся детальки мы сейчас рассмотрим.

Формирователь пучка света бывает трех видов:

1. линза - самый простой и наименее эффективный вариант, так как в световой пучок собираются не всё излучение кристалла. Очень часто линзу можно перемещать, изменяя фокусировку пучка света, что является единственным плюсом данного решения.


2. коллиматор - деталь из прозрачного пластика, выполненная для получения пучка с заданными параметрами. Для этого коллиматор делается так, чтобы соответствовать определенной конструкцией линзы на светодиоде, поэтому поставить коллиматор от одного светодиода на светодиод другой конструкции не получится - параметры светового пучка будут другие.

3. отражатель - пришедшая от ламп накаливания конструкция, адаптированная под светодиод. Простая, надёжная и проверенная временем конструкция. Вообще, отражатель как и коллиматор оптимизируется под опреледенный светодиод, но с меньшей критичностью. На правом фото видно, что кристалл светодиода отражается всей площадью отражателя.

На практике замена светодиода вполне возможна, как и замена отражателя. Бывают как с гладкой поверхностью, дающей более жесткий луч, так и с бугристой, мне последний в помещениях понравился больше.


Теплоотвод, он же корпус, к которому зачастую прикручивается отражатель и в который монтируется драйвер светодиода. Обычно, рассчитан на установку светодиода на подложке - алюминиевой пластине, к которой припаивается светодиод. На фото показаны все механические компоненты модуля. Слева направо: отражатель, теплоотвод, пружина для отрицательного вывода (контачит с корпусом фонарика) и пружинка для положительного вывода (контачит с плюсом батарейки). Последняя пружинка припаивается к плате драйвера светодиода.

Параметры светодиодов.


Главным параметром с точки зрения качества освещения являются спектр излучения и яркость. , конструктивно это определяется качеством и хитростями люминофора. Увы, этот параметр может очень сильно отличаться даже для разных серий одного производителя. А уж что там намазывает дядюшка Ляо в своём подвале не знает даже сам Ляо. Дешевенькие фонари на сотню с гаком люмен уверенно проигрывают по качеству освещения (тому, насколько хорошо видно детали освещаемого объекта и насколько вообще эти детали разборчивы глазом) даже не очень мощным фонарям с галогенками.

Серьезные дядьки в лице компании Cree приводят следующий график для излучения их светодиодов серии XM-L. Увы, это усреднённые значения, насколько он равномерный, есть ли там провалы, нам не очень известно. По горизонтали длина волны, по вертикали относительная мощность излучения.


На графике приводятся три кривые - для разных цветовых температур. Видно, что светодиоды с меньшей температурой (красный) залезают в инфракрасную область (длина волны больше 740 нм), однако очень-очень мало и недалеко - там реально единицы процента мощности излучаются. Это причина того, что получить из любого белого светодиодного фонаря пристойный ИК фонарь простым добавлением ИК фильтра (как это легко делается с фонарем с лампой накаливания) невозможно. Светить он формально будет, но КПД - никакущий.
Цветовая температура это параметр-компаньон, напрямую связанный со спектром. Цветовая температура определяется как температура абсолютно чёрного тела (такой хитрый фетиш физиков), при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение. Для дневного света это 6500К, для ламп накаливания 2700-4000К. Чем меньше цветовая температура, тем боее желтый оттенок у света.

По личным наблюдениям, со светодиодами с меньшей цветовой температурой лучше видно детали освещаемых объектов. По крайней мере для меня. Недостатком светодиодов тёплого белого света является их меньшая отдача света - они менее яркие, чем более "знойные" собратья.

Второе, что нас интересует - это яркость светодиода. Указывается в документации как яркость при каком-то определенном токе через светодиод. К примеру, для уже упомянутого XM-L указана яркость разных токах. К примеру, XM-L T6 при 700мА (2Вт) имеет световой поток 280 люмен (400 лм/А), при 1А имеет 388 лм (388 лм/А), при 1,5А - 551 лм (367 лм/А), при 2А - 682 лм (341 лм/А). В скобочках указана удельная яркость в зависимости от тока. Она падает на 17% при повышении тока с 700мА до 2А. То есть чем выше ток, тем меньше эта удельная яркость, то есть ниже КПД. По графику, кстати, честно видно.


Еще один важный параметр светодиода - его мощность. Это максимальная мощность, которую можно в него "вдуть". Разумеется, на максимуме он будет жить меньше, чем на меньшей мощности, поэтому лучше его немного "недокормить". В свою очередь мощность определяет максимальный ток через светодиод. Как правило, мощность и ток через светодиод связаны нелинейной зависимостью, так как зависят еще и от падения напряжения на диоде. Вот для XM-L: по горизонтали прямое падение напряжения, по вертикали ток через диод.


Падение напряжения на светодиоде типично порядка 3 вольт для белого светодиода и зависит от тока через светодиод. Смотрим на график: при 200мА имеем падение в 2,7в, при 700мА - 2,9В, при 1А - 2,97В, при 1,5А - 3,1В, при 2А - 3,18В.

Если взять хитрые светодиоды типа MC-E с четыремя кристаллами это будет 350мА - 3,1В, 700мА - 3,5В. Совсем мощные кристаллы на 10-20 Вт будут иметь падение напряжения около 10В, а еще более мощные... ну, могут и еще больше.

Кстати, если перевести удельную светимость в зависимости от тока этих XM-L в светимость в зависимости от мощности, то получим, что у нас при токе I=700мА и падении напряжения U=2,9В потребляется мощность 2,03 Вт, а световой поток 280лм, то есть 138 лм/Вт. Продолжаем дальше и полчаем для 1, 1,5 и 2 А тока соответственно 130, 118,5 и 107 лм/Вт. Разница в 29%. Вот и ломай голову, какой режим выбирать.

Что же нам дают знания? Хотя бы понимание того, какое именно питание должно быть у того или иного светодиода, что от него можно получить, на какой другой светодиод можно заменить сгоревший светодиод фонаря. Но картинка не будет полной без знаний о питании светодиодов.

Питание фонаря.


Как правило, в фонарях используют либо литиевые батареи (номинальное напряжение 3В, совпадает с максимальным и при разряде несколько падает), либо литиевые аккумуляторы (номинальное напряжение 3,7 В, а минимальное и максимальное - приблизительно 3,2 и 4,2 В, про аккумуляторы можно почитать , там есть про типы и их отличия).

Кстати, аккумуляторы как на фото выше я бы по возможности избегал. Невысокое качество и сильно завышенная емкость (из заявленных 2500мА/ч там хорошо если 1800 будет). Лучше брать фирменные ячейки Samsung и прочих. Неплохие аккумуляторные ячейки можно добыть из их батарей для ноутбуков - даже замучанные нарзаном они получше китайчатских будут. Хотя, даже у китайских бывают "внутри" нормальные ячейки.

Иногда в светодиодных фонарях используют пальчиковые батарейки, но у них плохо с отдачей токов, необходимых для питания мощных светодиодов. То есть если в фонаре все-таки пальчиковые батарейки, то исправить проблему с низкой яркостью особенно не получится.

Драйверы.

Подавляющее большинство фонарей имеют на борту один светодиод мощностью порядка 3 Вт. То есть он имеет падение напряжения около 3 В и ток около 1 А. Для питания таких фонарей вполне достаточно одного Li-Ion (или Li-Po) аккумулятора. В таких фонарях могут стоять любые драйверные схемы, хоть обычные гасящие напряжения источники тока. При установке литиевых батареек их понадобится аж две штуки, причём КПД упадёт катастрофически. Хорошо, что нормальные импульсные драйверы светодиодов уже почти полностью вытеснили дешевенькие источники тока. В фонарях, использующих несколько элементов или аккумуляторов обязательно стоит импульсный драйвер.

Определить, какой драйвер перед вами можно по наличию катушки. Если она есть - наверняка это импульсный драйвер . Насколько он хорош и какие диапазоны входных напряжений терпит? Тут придётся искать документацию на применённую в нём микросхему. Например, для среднего драйвера на фото выше (жаль, плохо вышло) под лупой можно увидеть маркировку микросхемы 2541B и для неё удалось найти документацию (на китайском), у неё входное напряжение от 5 до 40 вольт, но КПД не указан. Итого, если взять топовый светодиод с КПД 30-40% и хороший импульсный драйвер (КПД будет около 90% в идеальном случае) получим КПД фонаря в 27-36 %. Не так уж и плохо.

А пример линейного драйвера на том же фото в правом нижнем углу. Вся электронная начинка сводится к защитному диоду и нескольким параллельно работающим линейным источникам тока. Можно прикинуть его КПД, как отношение напряжения на выходе к напряжению на входе. Если запитать схему от аккумулятора, то получаем максимальное напряжение в 4.2в, номинальное в 3,7в. До минимального скорее всего дело не дойдёт - драйверу нужно минимальное падение напряжения в пол вольта чтобы работать. Итак, считаем 3/4,2=70%. Однако, так как заткнётся он так и не использовав аккумулятор, то применять его надо с парой литиевых батарей (2 по 3В). Тогда КПД будет 3/6=50%. Не очень кучеряво, учитывая КПД кристалла в 20-30% и, как следствие, КПД всего фонаря в 10-15%. Надеюсь, понятно, что линейных драйверов надо избегать?...

Частенько в фонари ставятся драйверы, поддерживающие несколько режимов работы - полная мощность, средняя, пониженная и всякие моргалки. На фото такой драйвер внизу слева. Причём переключаются у дешевых моделей эти режимы кратковременным размыканием цепи. То есть слегка нажали на кнопку - фонарь гаснет и по отпусканию работает в новом режиме. Терпеть их не могу, по мне так лучше никакого переключателя режимов, чем такой.

Не всегда, но в некоторых моделях удаётся отучить фонарь от такого поведения и переделать под работу с выносной кнопкой (в виде оружейного фонаря). Но это уже отдельная тема.


Глобальная доработка светодиодного фонарика

Светодиодные фонарики китайского производства, которыми запаланен весь наш рынок - казалось что может быть проще (как показывает опыт - для китая это слишком просто), вроде-бы и выбор большой, но в каждом фонарике может что-то не понравиться, а если углубляться во внутренности, и схему - иногда удивляешся как оно работает.

Поставил я себе задачу - "Найти подходящего донора, и собрать фонарь пригодный для выживания, с которым можно отправиться куда угодно". После долгих поисков был найден донор:

Это китайский фонарик фирмы Police с маркировкой 20W.
После приобретения фонарик был разобран и проанализированы внутренности. Внутри стоял одноватный светодиод с отражателем дающим очень большую боковую засветку и очень узкий луч света. Драйвер (если это так можно назвать) состоял из небольшого количества деталей - микросхема ME2108А, катушка индуктивности, конденсатор, диод. Вроде-бы все нормально, но дроссель с микросхемой в данной схеме очень грелся, схема потребляла примерно 0.5А от пальчиковой батарейки, и светодиод давал относительно слабый световой поток. Как оказалось позже - данный преобразователь давал без нагрузки на выход 4.5V, а светодиод был рассчитан на 3.6V, за счет маленького тока насыщения дросселя происходило падение выходного напряжения до необходимого и схема "работала".

Так как у меня была задача сделать эффективный источник света, а не использовать китайский драйвер у которого КПД "ниже чем у паровоза", я решил его доработать поменяв светодиод на OSRAM LUW W5AM-LXLY-6P7R-Z с коллиматором OSS-M на угол 30° (можно было поставить всеми любимый Cree, но у нас с ними проблемы, такие как отсутствие маленьких подложек и оптики), и поставить драйвер на основе специализированной микросхемы ZXSC310.

Светодиод фирмы OSRAM был выбран по ряду причин: при токе 350мА светодиод дает световой поток до 150 люмен, максимальный ток светодиода составляет 1А, этот светодиод почти совместим по посадке с штатным, у него самая низкая цена при его мощности.


Замена светодиода производится подогревом подложки светодиода снизу. Отпаиваем старый светодиод и устанавливаем предварительно отцентрировав новый (благо они почти совместимы по выводам, но это не мешает замене).


Так-же необходимо снять фаску с края корпуса до резьбы, и уменьшить высоту гайки крепления оптики (так как наша система ниже чем стандартная).
Как показал опыт исполькования различных фонарей - узкий луч яркого света в большинстве случаев ухудшщает видимость и дает малую освещенность, поэтому мой выбор остановился на коллиматоре фирмы LEDIL с маркировкой OSS-M на 30º, предназначенный для светодиодов OSRAM серии DRAGON.
Дорабатываем коллиматор (по умолчанию коллиматор квадратный и в корпусе для приклеивания на подложку светодиода). Вытягиваем коллиматор из его корпуса, отрезаем уши и стачиваем его до необходимого диаметра на точиле.


Последняя доработка корпуса - расточка отверстия гайки крепления оптики (делал на заводе на станке), и герметизация. Отверстие растачивается буквально на 3мм почти до диаметра коллиматора. Для герметизации вклеиваем на термоклей комплектное защитное оргстекло (для этого удобно разогревать гайку феном и намазывать термоклей на горячую поверхность), так-же необходимо герметизировать все резьбовые соединения, хоть там и стоят резиновые уплотнители - они не помогают так как не достают, для решения данной проблемы наматываем сантехническую монтажную ленту в пазы для уплотнителей, и устанавливаем уплотнительные комплектные кольца (сверху их желательно смазать, например вазелином или циатимом) .

Так, с корпусом вроде все понятно, теперь наконец-то приступаем к электронике.

Первая версия фонарика была с широко распространенной схемой драйвера на ZXSC310 с питанием драйвера с выхода (эта схема позволяет "выжать" с батарейки всю мощность, и просаживает наряжение на батарее на одном дыхании до самого возможного миниума).


Но так как меня заразили страшнейшей болезнью - болезнью "Люмена", и кроме того что необходимо получить большую яркость нам необходима универсальность фонаря и долгое время работы. Для большой яркости обычные пальчиковые батарейки не подходят, и я применил Li-Ion аккумулятор LIR14500на 700 mAh, который по размерам совпадает с обычной пальчиковой батарейкой. Но вот не задача - напряжение аккумулятора в заряженном состоянии 4.2V, а максимальное напряжение светодиода при токе 300мА - 3.4V. Повышающий драйвер не подходит.
Вот тут то я и решил воспользоваться основой схемотехники повышающе-понижающих драйверов (Buck-Boost). Кроме схемы драйвера я решил сделать два режима яркости, для этого применил миниатюрный PIC10F220.


Данная схема драйвера обеспечивает питание светодиода током до 300мА при питании от аккумулятора, и ток порядка 100мА при питании от батарейки. Так как в данной схеме нет обратной связи по току светодиода, то при питании от пальчиковой батарейки ток уменьшается, но нестабильность тока при работе от аккумулятора почти не заметна.

Второй задачей была разработка системы управления драйвером. Данная система должна определять напряжение заряда аккумулятора, и при низком заряде индицировать это. Так-же необходимо обеспечивать 2 режима яркости (для увеличения продолжительности свечения).

Данная схема обеспечивает:
-Переключение режимов при кратковременном розрывании питания
-Два режима яркости
-Индикацию разряда аккумулятора и отключение драйвера при полном разряде
-Возможность работы от пальчиковой батарейки

При использовании батарейки система управления не работает (внутренний подтягивающий резистор микросхемы драйвера запускает рдайвер), но как только будет установлен аккумулятор - напряжения питания становится достаточным для запуска контроллера, и фонарик включается в первом "Эконом" режиме на 40% яркости. При кратковременном нажатии на кнопку питания происходит отключение питания, и при отпускании кнопки включается второй режим - максимальная яркость.

Для индикации разряда аккумулятора я использовал АЦП и измерение напряжения внутреннего опорного источника 0.6V (значения АЦП обратнопропорциональны напряжению питания, с учетом падения на диоде). При снижении напряжения до минимального фонарик переключается примерно в 10% яркости, а при полной разрядке аккумулятора контроллер выключает драйвер.

Больше всего проблем было при попытке сделать переключение режимов, и сброс режима через некоторое время (что-бы фонарик включался не с последнего режима, а с эконом), были попытки запитать контроллер от конденсатора на время разрыва питания кнопкой, но возникли проблемы с пробуждением из режима спячки, так как я использовал порт GP2, как датчик наличия напряжения на драйвере, а прерывания по этому выводу порта отсутствуют, а переключать на другой я посчитал неблагоприятным для внутрисхемного программирования контроллера. Долго проводив эксперименты я заметил что контроллер сохраняет состояние регистров даже при долгом отсутствии питания, и проверив теорию я понял в чем дело - на конденсаторе C1 при выключении питания остается заряд примерно 0.7V (при этом напряжении драйвер перестает работать), и этого напряжения вполне хватает что-бы в регистрах контроллера сохранились последние значения (а именно режим). Для "сброса" последнего состояния (происходит примерно за 5с после выключения) я поставил резистор R1.

Перемычка JP1 была введена на всякий случай для отключения котроля разряда.

Двухсторонняя плата получилась достаточно миниатюрной, и устанавливается на место штатной. Метализацию отверстий я производил заклепыванием медной проволоки:


Детали: конденсаторы танталовые в корпусе А, дроссель Sumida CDRH6D38NP-100NC, резисторы типоразмера 0603, низкоомные резисторы датчика тока - типоразмера 0805 сопротивлением 0,05 Ом (с маркировкой E05) установлено 2шт параллельно друг на друге для получения сопротивления 0,025 Ом, диод Шоттки - миниатюрный с низким падением на ток 2А, транзистор (Zetex) на максимально возможный в этом корпусе ток (можно поставить ZXTN25012, ZXTN19020). Светодиод и оптичесскую систему можно использовать и другую, главное что-бы светодиод был расчитан на ток более 300мА для уменьшения тепловыделения.

Драйвер без нагрузки не включать! При включении без нагрузки в лучшем случае будет пробой конденсатора C2, в худшем - выход из строя транзистора, с последующими спецэффектами в виде фейерверка.
Переполюсовка питания драйвера не допустима! При переполюсовке взрывается конденсатор С1 и транзистор!

В итоге получился фонарик внешне почти ни чем не отличимый от оригинала (кроме оптики, которая уже привлекает внимание), но с параметрами и углом светового потока намного лучшими чем у оригинала.

Давно присматривался к этим микросхемам. Очень часто что-нибудь паяю. Решил взять их для творчества. Эти микросхемы куплены ещё в прошлом году. Но до применения их в деле так и не доходило. Но не так давно моя мать дала мне на починку свой фонарик, купленный в офлайне. На нём и потренировался.
В заказе было 10 микросхем, 10 и пришло.


Оплатил 17 ноября, получил 19 декабря. Пришли в стандартном пупырчатом пакетике. Внутри ещё пакетик. Шли без трека. Был удивлён, когда обнаружил их в почтовом ящике. Даже на почту идти не пришлось.


Не ожидал, что они настолько маленькие.

Микросхемы заказывал для других целей. Планами делиться не буду. Надеюсь, что у меня найдётся время воплотить их в жизнь (планы). Ну а пока немного другая история, приближенная к жизни.
Моя маман, гуляя по магазинам, увидела фонарик с хорошей скидкой. Что больше ей понравилось фонарик или скидка, история умалчивает. Этот фонарик вскоре стал и моей головной болью. Попользовалась она им не более полугода. Полгода проблемы, то одно, то другое. Я купил ей на место этого штуки три других. Но делать всё равно пришлось.


Фонарик хоть из недорогих, но имеет ряд существенных достоинств: в руке лежит удобно, достаточно яркий и кнопочка в привычном месте, алюминиевый корпус.
Ну а теперь о недостатках.
Питается фонарик от четырёх пальчиковых элементов типа ААА.


Поставил батарейки все четыре штуки. Измерил ток потребления – более 1А! Схема простая. Элементы питания, кнопка, ограничительный резистор на 1,0 Ом, светодиод. Всё последовательно. Ток ограничивается только сопротивлением 1,0 Ом и внутренним сопротивлением элементов питания.
Вот, что имеем в итоге.


Странно, что безымянный светодиод оказался живым.


Первым, что сделал – изготовил пустышку из старой батарейки.


Теперь будет питаться от 4,5В, как все китайские фонарики в основной своей массе.
И самое основное, вместо сопротивления поставлю драйвер AMC7135.
Вот стандартная схема его подключения.

Для этой микросхемы требуется минимум обвязки. Из дополнительных компонентов желательно установить пару керамических конденсаторов, что бы не было самовозбуждения микросхемы, особенно если к светодиоду идут длинные провода. В даташите есть вся необходимая информация. В фонарике длинных проводов нет, поэтому конденсаторов я в реальности не ставил, хотя в схеме обозначил. Вот моя схема, переработанная под конкретные задачи.


В данной схеме через кнопку-выключатель большой ток больше не будет течь в принципе. Через кнопку протекает только ток управления и всё. Ещё одной проблемой меньше.


Кнопку я тоже перебрал и смазал на всякий случай.

Вместо сопротивления теперь стоит микросхема с током стабилизации 360мА.


Всё собрал на место и измерил ток. Подключал и батарейки и аккумуляторы, картина не меняется. Ток стабилизации не меняется.


Слева – напряжение на светодиоде, справа – ток, через него протекающий.
Что же я добился в результате всех переделок?
1. Яркость фонаря практически не меняется при эксплуатации.
2. Разгрузил кнопку включения-выключения фонаря. Теперь через неё протекает мизерный ток. Порча контактов из-за большого тока исключена.
3. Защитил светодиод от деградации из-за большого протекающего тока (если с новыми батарейками).
Вот, в общем, и всё.
Как правильно распорядиться сведениями из моего обзора каждый решает сам. Я же могу гарантировать правдивость своих измерений. Кому что-то неясно по поводу этого обзора, задавайте вопросы. С остальным – кидайте в личку, обязательно отвечу.
На этом ВСЁ!
Удачи!

И ещё хотел бы обратить внимание на тот факт, что у моего фонарика выключатель стоит на плюсе. У многих китайских фонариков выключатель стоит на минусе, а это будет уже другая схема!

Планирую купить +60 Добавить в избранное Обзор понравился +58 +118

Рекомендуем почитать

Наверх